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ABSTRACT
Modern programming languages, such as Java and C#, typically
provide features that handle exceptions. These features separate
error-handling code from regular source code and aim to assist in
the practice of software comprehension and maintenance. Never-
theless, their misuse can still cause reliability degradation or even
catastrophic software failures. Prior studies on exception handling
revealed the suboptimal practices of the exception handling flows
and the prevalence of their anti-patterns. However, little is known
about the relationship between exception handling practices and
software quality. In this work, we investigate the relationship be-
tween software quality (measured by the probability of having
post-release defects) and: (i) exception flow characteristics and
(ii) 17 exception handling anti-patterns. We perform a case study
on three Java and C# open-source projects. By building statistical
models of the probability of post-release defects using traditional
software metrics and metrics that are associated with exception
handling practice, we study whether exception flow characteristics
and exception handling anti-patterns have a statistically significant
relationship with post-release defects. We find that exception flow
characteristics in Java projects have a significant relationship with
post-release defects. In addition, although the majority of the excep-
tion handing anti-patterns are not significant in the models, there
exist anti-patterns that can provide significant explanatory power
to the probability of post-release defects. Therefore, development
teams should consider allocating more resources to improving their
exception handling practices and avoid the anti-patterns that are
found to have a relationship with post-release defects. Our find-
ings also highlight the need for techniques that assist in handling
exceptions in the software development practice.

CCS CONCEPTS
• Software and its engineering→ Software reliability; Error
handling and recovery;Maintaining software; Software defect
analysis;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196435

KEYWORDS
Exception Handling,Software Quality,Empirical Software Engineer-
ing
ACM Reference Format:
Guilherme B. de Pádua and Weiyi Shang. 2018. Studying the Relationship
between Exception Handling Practices and Post-release Defects. In MSR
’18: MSR ’18: 15th International Conference on Mining Software Repositories ,
May 28–29, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3196398.3196435

1 INTRODUCTION
Modern programming languages, such as Java and C#, typically
provide exception handling features, such as throw statements and
try-catch-finally blocks. These features separate error-handling
code from regular source code and are leveraged widely in practice
to support software comprehension and maintenance [13, 37].

Having acknowledged the advantages of exception handling fea-
tures, their suboptimal usage can still cause catastrophic software
failures, such as application crashes [33, 56], or reliability degrada-
tion, such as information leakage [12, 57]. A large portion of systems
have suffered from system crashes that were due to exceptions [16].
Additionally, the importance of exception handling source code has
been illustrated in prior research and surveys [5, 18].

Prior studies aim to understand the practices of exception han-
dling in its different components: exception sources and handling
code [50]. Findings from those empirical studies have advocated the
suboptimal use of exception handling features in open-source soft-
ware [2, 3, 6, 31, 42]. Moreover, exception handling anti-patterns
that are defined by prior research [5, 13, 35, 56] are observed to be
prevalent in open-source projects [4]. These prior research find-
ings imply the lack of a thorough understanding of the practice of
exception handling. If the suboptimal practices do not share a rela-
tionship with software quality, our results may provide evidence to
explain the findings from prior studies. However, little is known
about the existence of such relationship.

Therefore, in this paper, based on the previous findings of sub-
optimal exception handling practices (i.e., anti-patterns and flow
characteristics), we perform an empirical study of the relationship
between exception handling practices and post-release defects (as a
proxy to software quality). In particular, our case study is conducted
on two open-source Java projects (Hadoop and Hibernate) and one
open-source C# project (Umbraco). Through the case study results,
we would like to answer the following two research questions:
RQ1: Do exception handling flow characteristics contribute
to a better explanation of the probability of post-release de-
fects?
RQ2: Do exception handling anti-patterns contribute to a
better explanation of the probability of post-release defects?
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We find that, in some projects (e.g., Umbraco), we do not observe
any statistically significant relationship between exception flow
characteristics and post-release defects. However, in the other two
Java projects, the suboptimal practices of exception handling (e.g,
the ambiguity of possible exceptions) indeed have a statistically
significant relationship with post-release defects. In addition, al-
though the majority of the anti-patterns do not have a statistically
significant relationship with post-release defects, four anti-patterns
are observed to be statistically significant. More importantly, these
anti-patterns may be prevalent ones and may provide large explana-
tory power to the probability of post-release defects in the studied
projects.

Our case study results imply the importance of avoiding subop-
timal exception handling practices. Furthermore, although not all
anti-patterns are shown to be harmful, developers should at least
consider avoiding the ones that are found to have a relationship
with post-release defects in this study. Our findings can be used as
a guideline for avoiding suboptimal exception handling practices.

In summary, the contributions of our paper are:

(1) Our paper is the first work that empirically studies the rela-
tionship between exception handling practice and the prob-
ability of post-release defects.

(2) Our results provide guidelines to practitioners for improving
their exception handling practices.

The rest of the paper is organized as follows: Section 2 discusses
related prior research of this work. Section 3 describes the design
of our case study. Section 4 presents the results of our case study.
Section 5 discusses the threats to the validity of our findings. Finally,
Section 6 concludes the paper and discusses its implications.

2 RELATEDWORK
In this section, we present the prior research that is related to this
paper. In particular, we present the prior research on exception han-
dling practices and the prior research on software defect modeling.

2.1 Exception handling practices�

�

�

�

Prior research conducted empirical studies with source code, de-
velopment history, issue tracking systems and developer surveys
to understand the exception handling practice. All of the studies
provide empirical evidence that unveils the existence of subopti-
mal exception handling practices.

Empirical studies are conducted in order to understand the excep-
tion handling practices in general. Cabral and Marques [7] studied
exception handling practices from 32 projects in both Java and .Net.
The study results unveil suboptimal practice of exception handling.
Sena et al. [50] investigated sampled exception flows from 656
Java libraries for flow characteristics, handler actions, and handler
strategies. A recent study by B. de Padua and Shang [3] revisits
exception flow analysis by looking into a higher number of flows
per system. The authors included C# .NET systems and considered
factors that can impact exception handling practices such as the
differences between applications and libraries. Osman et al. [44]
differentiates applications and libraries in terms of the usage of
exception handling in an evolutionary study of Java systems. Cacho

et al. [10, 11] studied the evolution of the behavior of exception
handling in Java and C# source code changes. Their results high-
light the impact of the programming language design differences in
the maintenance and robustness of exception handling mechanisms.
Oliveira et al. [43] studied Android software changes of regular
code in comparison with changes in exception handling code. They
found that the introduction of new Android-specific abstractions
and invocations of methods of these abstractions are both very
strongly correlated with an increase in the number of uncaught
exception flows.

Some empirical studies focus on one or some special aspects of
exceptional handling. Jo et al. [26] focus on uncaught checked ex-
ceptions in Java projects. The authors proposed an inter-procedural
analysis based on set-based framework without using declared ex-
ceptions. Coelho et al. [15] assessed exception handling strategy
with exception flows from Aspect-oriented systems and object-
oriented systems. The authors evaluate the number of uncaught ex-
ceptions, exceptions caught by subsumption, and exceptions caught
with specialized handlers. Some studies reveal that developers con-
sider exception handling hard to learn and to use and tend to avoid
it or misuse it [2, 31, 42]. Bonifacio et al. [6] also surveyed C++
developers encountering revelations of educational issues.�

�

�

�
Undesired practices, especially defined anti-patterns, or rules
are proposed as indicators of suboptimal exception handling
practices [5, 13, 35, 50, 56]. However, such anti-patterns are still
found to be prevalent [4].

Sinha et al. [53] leveraged exception flow analyses to study
the existence of 11 anti-patterns in four Java systems. Other re-
search [5, 13, 18] classified exception-handling related defects by
mining software issue tracking. Thummalapenta and Xie [55] pre-
sented a rule-based approach and detected 160 defects, including
87 new defects not previously known, from 294 real exception-
handling rules in five applications. Coelho et al. [14] mined Android
stack traces and find a set of defect hazards related to exception
handling anti-patterns, such as cross-type wrappings, null pointer
problems and undocumented runtime exceptions signaled by third-
party code.

Prior research also highlights the lack of documentation of ex-
ceptions. Kechagia and Spinellis [30] found that 69% of the methods
had undocumented exceptions and 19% of crashes could have been
caused by insufficient documentation. Sena et al. [50]’s findings
confirm that API runtime exceptions are poorly documented. Cabral
andMarques [9] identify that infrastructure (20%) and libraries (15%)
have better exception handling documentation when compared to
applications (2%).

Besides understanding exception handling practices, other work
revealed the opportunities of leveraging various analysis to combine
information from different sources to understand and assist in
exception handling flows and practices [4, 8, 20, 29, 47, 53, 59, 60].
However, it is still unclear if the observed and defined suboptimal
exception handling practices are harmful, leading to bad software
quality or whether the proposed analysis may improve the quality
of software by improving exception handling. Therefore, in this
paper, we aim to study whether there exists a statistically significant
relationship between the exception handling practices that are
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studied and defined in prior research, and the probability of having
post-release defects, as one indicator of software quality.

2.2 Software quality and defect modeling
there exists a large body of research aiming to model software
defects using product (e.g., the number of lines of code) and process
metrics (e.g., the number of changes). Emam et al. [19] revealed
that size is a common confounding factor for the previously defined
object-oriented metrics. In a different work, D’Ambros et al. [17]
presented a benchmark for defect prediction comparison in terms
of the the explanatory and the predictive power of well-known
defect prediction approaches (i.e., models with product and process
metrics), together with novel approaches. Nevertheless, source code
metrics are lightweight alternatives with overall good performance.
In a comparison, Hassan [23] introduced change complexity metrics
(e.g., number of prior faults) as indicators for future faults.

Besides basic product and process metrics, various research pro-
poses metrics quantifying other aspects of software engineering
in order to model software quality. For example, Shihab et al. [52]
consider branching activities; Zhang et al. [58] examine editing
patterns, Shang et al. [51] investigate logging characteristics and
McIntosh et al. [36] study code reviews.

Moreover, researchers investigated the use of programming pat-
terns and anti-patterns and their impact on software quality. Khomh
et al. [32] and Taba et al. [54] considered the use of anti-patterns
because they are more actionable (e.g., developers can apply refac-
toring) than other metrics (e.g., churn). Their proposed anti-pattern
based metrics provided additional explanatory power over the tra-
ditional metrics. Similar to this work, Khomh et al. [32] and Taba et
al. [54]: used logistic regression; tested which anti-patterns impact
more and showed that size alone cannot explain defective classes.
Moreover, Jaafar et al. [25] demonstrated that dependencies to
classes with anti-patterns increase the probability of post-release
defects.

To the best of our knowledge, this paper is the first attempt to
study the relationship between exception handling flow character-
istics and their anti-patterns, and software quality. We base our
study using the best traditional metrics from the afore-mentioned
research that are shown to have a significant relationship with
post-release defects.

3 CASE STUDY DESIGN
In this section, we present the design of our case study. We first
present our research questions. We then describe the studied sys-
tems. Finally, we present our metrics, modeling approach and rele-
vant preliminary results.

3.1 Research questions
The general goal of this paper is to understand whether suboptimal
exception handling practices have a relationship with the probabil-
ity of post-release defects. To achieve the goal of the paper, in this
subsection, we discuss our formulated research questions and their
motivation.

As discussed in Section 2, prior studies often expose the subopti-
mal exception handling practices in two ways. First, they generally
quantify the exception handling characteristics. Second, they define

particular exception handling anti-patterns. Although prior studies
claimed that some quantified exception handling characteristics
(e.g., handling exceptions using the generic handling strategy) and
exception handling anti-patterns are undesired, practitioners still
often suboptimally use exception handling without considering the
impact of such inadequate practices. [50].

On one hand, maybe such undesired exception handling does
not impact software quality in practice. On the other hand, lacking
statistically rigorous empirical evidence, practitioners may not be
aware of such impact, leading to the prevalence of suboptimal
exception handling practices (e.g., anti-patterns) in their source
code.

Therefore, we formulate two research questions, according to
the two ways of unveiling suboptimal exception handling practices
by prior research.
RQ1: Do exception handling flow characteristics contribute
to a better explanation of the probability of post-release de-
fects?
RQ2: Do exception handling anti-patterns contribute to a
better explanation of the probability of post-release defects?

We choose to use post-release defects as one widely used indi-
cator of software quality. Since traditional software metrics exist
which have been shown to have a statistically significant relation-
ship with software quality, we would like to understand whether
the suboptimal exception handling practices provide additional
information to complement the traditional metrics in explaining
software quality (i.e., post-release defects in this paper).

3.2 Subject projects
Table 1 depicts the overview of the studied subject projects. We
consider Java and C# due to their popularity and that they arewidely
studied in prior research (see Section 2). Moreover, the different
approaches of exception handling between Java and C# may further
help us understand our study results. To facilitate replication of our
work, we opt to study open-source projects that are available on
GitHub.

We leverage GitHub filters on the number of contributors (i.e.
projects with multiple contributors) and the number of stargazers
(i.e. projects withmore than ten stargazers), as they have been found
to be good indicators for selecting engineered software projects [39].
To narrow down the number of projects, we also prioritize on the
projects with higher numbers of stargazers and larger project sizes
in terms of lines of code.

After reading the official description of the projects, we inves-
tigate the traceability of information in the projects issue tracker.
Similar to previous research (see Section 2), the post-release defects
should be reasonably straightforward to trace to source code files.
From each project, we inspected the release notes of their most
recent stable version of the source code at the moment of data
collection for analysis. We selected the versions that have had a
higher number of post-release updates. In the end, to better under-
stand post-releases defects related to exception handling, the three
subject projects and their corresponding releases are chosen also
due to (i) the number of files with catch blocks; (ii) the number of
files with post-release defects.
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Table 1: An overview of the subject projects.

Project Characteristic Umbraco Hadoop Hibernate

Language C# Java Java
Purpose CMS Big Data tool Database ORM
Release Version (tag name) release-7.6.0 release-2.6.0 5.0.0.Final
Latest Post Release Version (tag name) release-7.6.12 rel/release-2.6.5 5.0.16
# Files 3174 3698 3488
# SLOC (K) 247 859 271
# Pre Release Changes 1182 2753 11855
# Pre Release Defects 126 673 3038
# Post Release Changes 317 593 672
# Post Release Defects 112 383 499
# Files with Post Release Defects 93 226 356
# Catch 647 5939 1546
# Files with Catch 321 926 478

3.3 Metrics
In order to study the relationship between exception handling prac-
tices and post-release defects, we extract metrics based on the
analysis of source code, development history of the version con-
trol system and issue tracking systems of the subject projects. We
extract four categories of metrics for our study.1

3.3.1 Post-release defects. We first extract post-release defects
of each source code file of the subject projects. We only consider
the fixed defects in the issue tracking systems. We use the ID of
the defects to identify code changes on the corresponding files that
fix such defect. We compare the defect report time and the release
date of the subject project to determine whether the defect is a
post-release defect or not.

3.3.2 Traditional product metrics. Prior research on defect mod-
eling found that product metrics such as size (e.g., lines of code)
and complexity (e.g., cyclomatic complexity) are good indicators of
post-release defects [17]. Therefore, we use Understand [48] on the
release version of the source code of the subject projects to extract
traditional product metrics. In particular, we extract all the 39 file
level product metrics that are provided by Understand for both Java
and C#. [49].

3.3.3 Traditional process metrics. Process metrics are found to
be more powerful in defect modeling than product metrics [38]. We
extract traditional process metrics from the development history
of the subject projects. In particular, we extract three categories of
the traditional process metrics:

• Change metrics.We calculate the change metrics based on
pre-release changes using the specific release branch for a
given version. For pre-release changes, we used specific pre-
release branches, the date range based on the subject release
notes and the oldest change associated with the release. We
calculate the total number of changes and total code churn
as two change metrics.

• Human factors. Code ownership is observed to have a re-
lationship with software defects [45]. We use the number
of unique authors of a file as a proxy for code ownership.
We calculate the number of unique authors by checking the

1 The exception flow analyzer and the full list of metrics with their aggregation rules,
the raw data and the model construction and analysis steps scripts and results are
available online at https://guipadua.github.io/eh-model-defects2018

associated e-mail address of a change in the development
history of a file.

• Pre-release quality metrics. Prior research finds that pre-
release defects are a good indicator of the probability of post-
release defects [38, 40]. Therefore, we extract the number
of pre-release defects by following a similar approach to
extracting post-release defects that are explained above.

3.3.4 Exception handling metrics. To study exception handling
practices, we use two sets of the exception handling metrics that
we revisited in our two previous studies [3, 4]. With those metrics,
we can answer the two research questions.

• Exception flow characteristics metrics. This set of met-
rics describes the characteristics of exception flow. As dis-
cussed in Section 2, such characteristics often unveil the
suboptimal exception handling practices. Table 2 describes
the metrics and the rationale of including such metrics in the
modeling. Each metric is calculated using its total amount
and its average value.

• Exception handling anti-pattern metrics. This set of
metrics describes the anti-patterns of exception handling
since the anti-patterns are claimed to be harmful to software
quality. Our previous study [4] describes all the anti-patterns
that are considered in this study. We do not consider the
throws anti-patterns since they do not apply for C# projects.
In particular, each of the 17 catch anti-patterns has two met-
rics that measures (i) the total amount and (ii) the average
number of catch blocks that are impacted by the anti-pattern.
In order to provide the basic information about exception
handling blocks (catch blocks), we also calculate four addi-
tional metrics as shown in Table 3.

In order to extract these metrics, we use our exception flow anal-
ysis tool developed in our previous research [3, 4]. Our tools use
Eclipse JDT and .NET Compiler Platform (“Roslyn”) to parse Java
and C# source code, respectively. The detection of exception flow
and handling anti-patterns is implemented without using heuris-
tics [3, 4]. To precisely detect anti-patterns, the tools not only parse
the try-catch blocks but also analyze the flow of the exceptions.
The tools’ exception flow analysis collects the possible exceptions
from four different sources: documentation in the code syntax,
documentation for third party and system libraries, explicit throw
statements, and binding information of exceptions (not available for
C#). We consider both runtime and non-runtime (i.e., both checked
and unchecked exceptions in Java) exception flows.

3.4 Model construction
We build logistic regression models to evaluate the explanatory
power of the exception handling practices on post-release defects.
Regression models require less data than machine learning and it
is capable of providing exact understanding for each predictor [22].
Similarly to previous studies [36, 51], we consider the explanatory
power of the traditional metrics that are empirically known to have
a relationship with post-release defects. For that reason, we first
build a base model (i.e, BASE) with only the traditional software
metrics and without the metrics that are associated with exception
handling practices. Section 3.3.2 and 3.3.3 details the traditional
metrics that are used in the base model. Afterward, we construct a
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Table 2: Exception handling flow characteristics metrics. The symbol †indicates the rows where each metric represents mul-
tiple metrics.

Metric Description Rationale

Flow Quantity The distinct number of possible exceptions that
arrives in the handler.

It is more challenging for developers to handle all exceptions [3]. Missing handling
exceptions is a cause for exception handlings defects. [18].

Flow Quantity -
Propagated

The distinct number of possible exceptions that is
propagated by the handler.

If propagated exceptions remain uncaught, there could be a risk of system fail-
ures [5, 18, 53].

Flow Quantity
- Propagated
and Potentially
Recoverable

The distinct number of potentially recoverable pos-
sible exceptions that is propagated by the handler.

Leaving recoverable exceptions [1, 21] unhandled might increase the probability
of defects since developers and users do not expect they will happen.

Flow Type Preva-
lence

The average prevalence of the flow exception types
of a try block.

Many exception types appear in only one try block [3] and developers might not
be familiar with how to handle it.

Flow Sources - De-
clared

The average number of declaring method(s) per
possible exception of a try block.

Although an exception might be traced from different invoked methods [3], it
might be also declared in different methods, which increases the complexity.

Flow Sources - In-
voked

The average number of invoked method(s) per pos-
sible exception of a try block.

Having multiple sources for an exception creates ambiguity for developers/testers
handling/testing the different possible control flow paths of such exception [3].

†Flow Sources -
Documentation

The percentage of the possible exceptions of a try
block found by a given exception documentation
source.

Lacking immediate documentation is one of the challenges of exception han-
dling [7, 30, 50].

†Flow Handling
Strategy

The percentage of the possible exceptions of a try
block that are handled with a given strategy (i.e,
specific and subsumption).

The subsumption handling strategy introduces harmful uncertainty [4, 50, 53]
and, therefore, could increase the probability of defects.

†Flow Handling
Actions

The number and the percentage of possible excep-
tions of a try block handled with a given action
(i.e., 12 different actions [3]).

Proper recovery actions taken during handling would reduce the probability of
defects, meanwhile inappropriate actions could reveal a higher probability of
defects.

Try Quantity The number of try blocks in the file. Try blocks can affect the normal control flow of the program. Such increase can
potentially lead to more defects in the file, as it becomes more complex.

Try Size - LOC The number of lines of code in the try blocks of
the file.

Longer try blocks are more complex and include more code that could potentially
go through abnormal situations and have their flow altered due to an exception.

Try Size - SLOC The number of source lines of code in the try blocks
of the file.

The lines of code in a try block might not be source code (e.g., comments).

Invoked Methods The number of invoked methods in a try block. Try blocks with more invoked methods can potentially have more possible ex-
ceptions and are inherently more complex.

Try Call Depth The average relative (i.e. to the handler) call graph
depth in which a possible exception was found.

The large distance between throw and catch makes the exception handling less
meaningful and testing and debugging more difficult [46, 53].

†Try Scope Scope in which the try statement was declared:
Declaration, Condition, Loop, EH Feature, Other

Nested exception handling constructs are harder to read, test and maintain. [7,
13, 18].

Table 3: Exception handling anti-patterns metrics. The symbol †indicates the rows where each metric represents multiple
metrics.

Metric Description Rationale

†Catch Anti-
patterns

The number and the percentage of handlers af-
fected by a given anti-pattern (i.e., 17 different
anti-patterns [4]).

Exception handling anti-patterns are prevalent [4] and they can compromise the
robustness of the program and can lead to defects [13, 32, 35].

†Catch Recover-
ability

The recoverability of the exception type declared
in the catch block.

Potentially unrecoverable exceptions are more challenging to handle [1, 21] and
may be associated with less reliable code.

Catch Quantity The number of catch blocks in the file. Catch blocks are only executed during exceptional events and they may be related
to more exceptional scenarios of the execution.

Catch Size - LOC The number of lines of code in the catch blocks
of the file.

Longer catch blocks include more code that takes measures in the event of an
exception and it indicates a higher complexity and bigger size.

Catch Size - SLOC The number of source lines of code in the catch
blocks of the file.

The lines of code in a catch block might not be source code (e.g., comments).

combined model called BSFC by adding software metrics that are
associated with quantified exception flow characteristics from prior
studies [3] into the base model. We also add software metrics that
are associated with the exception handling anti-patterns from prior
studies [4] into the base model to construct a second combined
model called BSAP. By examining the significance and the explana-
tory power of the metrics in BSFC and BSAP, we answer our two

research questions, respectively. In the rest of the subsection, we
present the detail of our model construction process as illustrated
by Figure 1.

3.4.1 MC1: Missing data analysis. After extracting metrics from
the data, we might still have missing data. We manually examine
the files with missing data. We find that the reasons may due to the
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Figure 1: An overview of our modeling approach: model construction and model analysis.

cases where the file is not compilable or cases in which the methods
of a try block actually doesn’t throw any exception (e.g., forgotten
try blocks during code evolution). As recommended by statistical
modeling researchers [22], we discard the files with missing data
since it only stands for less than 3% of the entire data.

3.4.2 MC2: Predictors budget estimation. An overfitted model is
a statistical model that contains more parameters than the possible
amount (i.e., budget) that can be justified by the data. Such model
will match the training data too closely and might not be useful to
understand the explanatory power of its predictors [22]. To reduce
the potential overfitting, one can use as a reference the amount of,
at least, 15 observations per predictor, which is suggested by prior
research on statistical modelling [22]. Therefore, in our study, each
model will have a # Predictors Budget of the number of files divided
by 15. The result for each project can be found in Table 4.

3.4.3 MC3: Normality adjustment. Logistic regression models
expect normality in the outcome and in the predictors. Metrics
from software engineering data typically do not follow a normal
distribution [36, 52]. For example, post-release defects exist only in
a small portion of the files. Therefore, we apply a log transformation:
loд10(x + 1) to reduce the skew and adequate the data to the logistic
regression assumption.

3.4.4 MC4: Correlation analysis. Software metrics can be highly
correlated to each other [19]. Highly correlated metrics (i.e., |ρ | >
0.7 ) can be clustered and then represented in regression modeling
by a single predictor [22]. Prior to modeling, we evaluate the corre-
lations among our extracted metrics. We use Spearman pair-wise
rank correlation to better account for potential lack of normality in
the data. We use the findCorrelation method from the Caret R Pack-
age [34]. Such method automatically removes the metrics among
the highly correlated metrics with the highest mean correlation
values.

3.4.5 MC5: Redundancy analysis. Besides pair-wise correlations,
we can analyze whether one predictor can be explained based on a
model composed of all other predictors [22]. This step is executed
in an iterative manner in which predictors are dropped until no
predictors can be predicted with an R2 or adjusted R2 higher than
0.9. We use the redun method from the Hmisc R Package [27]. After
we perform correlation analysis and redundancy analysis, we have

a list of # Potential Predictors for modeling, which can be found in
Table 4.

3.4.6 MC6: Budget based correlation analysis. From the result
of step MC2, we compare the predictor budget of each project
(i.e., # Predictors Budget in Table 4) with, from the result of step
MC5, how many potential predictors exist in the metric set (i.e., #
Potential Predictors in Table 4). From the comparison, a given project
is over budget if the number of potential predictors is higher than
the budget. If # Potential Predictors is higher than the # Predictors
Budget we execute a new correlation analysis. However, at this
time we use the # Predictors Budget as a target in terms of the
number of predictors. For example, if the # Predictors Budget is
eight, we run the correlation analysis reducing the correlation
cutoff and removing the predictors with higher correlation until
we only have eight predictors. We use the findCorrelation method
from the Caret R Package [34]. During the selection of metrics we
force the significant metrics from the BASE model to stay in the
model using the varclus method from the Hmisc R Package [27].

By using this approach we blind ourselves from the outcome,
which is the number of post-release defects. Therefore, we eliminate
any bias which other outcome-based approaches could cause in the
modeling [22]. Nevertheless, we aim to still keep the predictors that
are different from each other, which could potentially contribute
more to the model.

3.4.7 MC7: Fit regression model. Similar to previous work men-
tioned in Section 2, we use logistic regressions to model the prob-
ability of post-release defects of our subject projects. As we have
the final list of predictors, we use the method lrm from the RMS R
Package [28]. We use logistic regression since we aim to understand
the likelihood of having post-release defects in a given file instead
of building a defect prediction tool.

3.5 Model analysis
3.5.1 MA1: Model stability assessment. The initial model anal-

ysis is to assess the model fit using the Nagelkerke R2 (provided
by the lrm method). The Nagelkerke R2 is an adjusted version of
the Cox & Snell R2 that adjusts the scale of the statistic to cover
the full range from 0 to 1 [41], and is an adequate measure for
evaluating competing logistic regression models [24]. The regular
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R2 does not apply to logistic regression and deviance explained is
inappropriate [22].

However, since the model is built using historical data, there is a
possibility that unseen observations would reduce the validity of the
model. Therefore, to validate our model stability, we use bootstrap
with 1,000 repetitions with the function validate from the RMS R
package [28]. From the bootstrap, we obtain an optimism-reduced
Nagelkerke R2. The optimism-reduced Nagelkerke R2 accounts for
noise among the predictors as well as the model stability with
different data sample (i.e., overfitting).

3.5.2 MA2: Model simplification. Not all predictors in the model
significantly contribute to the model fit. To simplify the model we
apply the fast backward predictor selection technique in the fitted
model. Such technique is appropriate since it is not biased and we
can judge the impact of the model fit after iteratively removing
each insignificant predictor. We use the fastbw function from the
RMS R package [28]. We use Wald χ2 test of individual predictors
and significance level (i.e., p-value) of 0.05 as our stopping rule.
With the remaining predictors, we refit the model for analysis and
execute again the assessment of the model stability.

3.5.3 MA3: Predictors’ explanatory power estimation. We use the
Wald χ2 test to identify the predictors with the highest explanatory
power among the significant predictors. A higherWald χ2 indicates
a higher contribution to the model fit [22].

3.5.4 MA4: Predictors’ effect in the outcome measurement. Al-
though the previous step can explain the power of each predictor
in the model, we cannot measure what would be the impact of
each predictor on the model outcome, i.e., the probability of post-
release defects. In this step, similarly to previous research [51, 52],
we calculate the model outcome by setting all predictors at their
mean value. For each significant predictor, we increase its value
by 10% while keeping all other significant predictors at their mean
values. We measure the differences of the model outcome as the
effect of the predictor. We use the predict function from the RMS R
package [28].

3.6 Preliminary results
As a preliminary analysis, we build models using all available files
(i.e., with or without exception handling constructs) from the sub-
ject projects. In the preliminary analysis, the only exception han-
dlingmetrics we use is the number of exception handling constructs,
such as try, catch or throws blocks. If such a simple metric is not
significant in the models, further analysis on exception handling
practices might be less promising. As a result, we find that the
number of exception handling constructs is indeed significant in
all models and not highly correlated with any other metrics (e.g.,
for Hadoop, the number of try blocks only has a 0.4 |ρ | correlation
with the lines of code.)

By knowing the significance of basic metric of exception han-
dling, we decide to focus only on the files with exception handling
constructs since our metrics defined in Section 3.3 are only mean-
ingful if there exist exception handling constructs in the file.

4 CASE STUDY RESULTS AND DISCUSSION
In this section, we present the results of our case study according
to our research questions. For each question, we discuss the model
construction and the model analysis results that lead to our findings.

RQ1: Do exception handling flow characteristics
contribute to a better explanation of the
probability of post-release defects?�
�

�
�

Exception flow characteristics of Java projects complement tra-
ditional metrics in explaining post-release defects.

Table 4 presents the model fits in optimism-reduced Nagelkerke
R2 on Simplified Models. By comparing the model fits of the BASE
model of each project and its corresponding BSFC, we find that
in both Java projects, the metrics extracts from exception flow
characteristics can statistically significantly improve the fit of the
BASEmodel. Nevertheless, such metrics cannot provide statistically
significant explanatory power to the BASE model of Umbraco, even
though the optimism-reduced Nagelkerke R2 of the BASE model
is only 9%. By closely looking at the model construction, to reach
the budget of the model, many metrics in the BSFC of Umbraco are
discarded, leading to a low correlation threshold of 0.24. Therefore,
there may exist metrics with a higher explanatory power that were
discarded. However, without more data to support our analysis, we
cannot claim the complementary explanatory power from exception
flow metrics in Umbraco.�
�

�
�

The prevalence of the flow exception type has a negative rela-
tionship on the probability of post-release defects.

The significant metric with highest χ2 in BSFC model of Hi-
bernate is the prevalence of particular exception types. Table 5
shows the large explanatory power of the metric on the probabil-
ity of post-release defects. This result shows that a file with very
common exception types (i.e., types that appear in a large number
of try blocks of the project as a possible exception) have a lower
probability of post-release defects, while files with rare exception
types have a higher probability of post-release defects. For example,
developers of Hibernate may be familiar with how to handle the
common java.sql.SQLException. But might not be the case for excep-
tions such as org.hibernate.procedure. ParameterStrategyException.
This finding implies that developers should carefully handle files
with rare exceptions.�
�

�
�

The actions in the catch blocksmay have a statistically significant
relationship with the probability of post-release defects.

In Hibernate, the files with more possible exceptions handled
with Throw Wrap action (i.e., HB-6) have lower probability of post-
release defects (i.e., negative relationship). Throw Wrap means that
the original exception or its associated information was wrapped
into a throw statement in the catch block. Prior research finds that
this action is the most prevalent action in Java [3] and we find that
this action is present in 55% of the catch blocks in Hibernate. On
one hand, such wrapping may be used to help better explain the
exception and provide more customized exception types to handle.
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Table 4: A summary of the fitted models’ construction and analysis.

Indicator Umbraco Hadoop Hibernate

BASE BSFC BSAP BASE BSFC BSAP BASE BSFC BSAP

# Predictors Budget 15 15 15 59 59 59 29 29 29
# Potential Predictors 12 23 16 10 31 23 18 27 19
Adjusted Correlation Cutoff 0.70 0.24 0.67 0.70 0.70 0.70 0.70 0.70 0.70
Optimism-reduced Nagelkerke R2 on Simplified Model 0.09 0.09 0.18 0.33 0.37 0.35 0.21 0.28 0.23

Table 5: Significant metrics in the final models withWald χ2 and effect values. Effect is measured by setting ametric to 110% of
its mean value, while the other metrics are kept at their mean values. A positive impact (i.e., direction ↗) means that higher
values of the metric, higher probability of post-release defects.

Project ID Metric(s) Direction BASE BSFC BSAP

χ2 χ2 Effect χ2 Effect

Umbraco
UM-1 Size and Complexity ↗ 10.01 10.01 6.9%
UM-2 Catch Anti-patterns (Dummy Handler) ↗ 7.58 2.9%
UM-3 Catch Anti-patterns (Generic Catch), Catch Recover-

ability, Catch Quantity, Catch Size (LOC and SLOC)
↗ 14.82 10.5%

Hadoop

HA-1 Changes and Human Factors ↗ 101.09 102.74 7.0% 108.4 7.0%
HA-2 Size and Complexity ↗ 12.31 7.94 5.7% 10.77 7.8%
HA-3 Complexity ↘ 8.99 4.7 -5.5%
HA-4 Complexity ↗ 6.72
HA-5 Catch Anti-patterns (Ignoring Interrupted Exception) ↗ 12.79 1.4%
HA-6 Catch Anti-patterns (Log and Throw) ↗ 4.44 0.3%
HA-7 Catch Recoverability, Catch Quantity, Catch Size (LOC

and SLOC)
↗ 6.98 2.1%

HA-8 Try Scope (Other) ↗ 8.97 0.5%
HA-9 Flow Handling Actions (Log) ↗ 14.78 2.9%
HA-10 Flow Handling Actions (Method) ↗ 4.64 2.1%
HA-11 Flow Quantity - Propagated ↗ 12.51 5.1%
HA-12 Flow Handling Strategy (Specific) ↗ 15.82 7.5%

Hibernate

HB-1 Changes and Human Factors ↗ 6.62 5.66 5.1% 7.82 5.3%
HB-2 Size ↗ 16.5 13.83 5.9% 13.65 5.2%
HB-3 Documentation ↘ 14.3 15.62 -7.9% 12.61 -6.4%
HB-4 Catch Size - SLOC ↗ 6.52 3.8%
HB-5 Catch Anti-patterns (Dummy Handler) ↗ 4.69 0.8%
HB-6 Flow Handling Actions (Throw Wrap) ↘ 5.84 -2.9%
HB-7 Flow Sources (Invoked and Declared) ↗ 6.21 7.6%
HB-8 Flow Type Prevalence ↘ 19.85 -4.6%

On the other hand, this pattern is often used in Java to transform
a checked exception into an unchecked exception. This removes
the need to handle or propagate the exception, keeping the method
signatures clean. By examining all the catch blocks in Hibernate, we
find that java.sql.SQLException and java.lang.Exception are the two
most handled exception types. In particular, most of the wrapping
(i.e., 148 out of 205, or 72%) for java.sql.SQLException was done by
converting into an exception that is easier to understand by devel-
opers. Such wrapping may help developers who use Hibernate as an
API to better handle its thrown exceptions. For java.lang.Exception,
21% (i.e., 36 cases out 174) of the catch blocks re-throw the exception
as HibernateException, which aims to help developers distinguish
the java.lang.Exception thrown by Hibernate and the ones thrown
by other APIs in order to handle the exception accordingly.

The files with a higher percentage of handlers using the Log
action in Hadoop have a higher probability of post-release defects
(i.e., positive relationship). The Log action is an indicator that the
exception is not handled, but, instead, the exception is recorded by
logging [7, 15, 50]. Moreover, for Hadoop, 64% of the logged catch
blocks were handled with a generic exception type (i.e., IOException
40%, Exception 15% and Throwable 9%) leading to an ambiguity of
properly handling the exception.Therefore, logging the exception is
often required to later (i.e., in the case of a runtime event) examine
such exception. Prior research also finds that more logsmay indicate
that developers have uncertainties about the source code, leading
to a positive relationship with the post-release defects [51].

The files with a higher percentage of handlers using the Method
action in Hadoop have a higher probability of post-release defects
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(i.e., positive relationship). The Method action is when other meth-
ods are called in the catch block [7, 50]. Invoking other methods
often indicates a more complex handling of exceptions. In par-
ticular, we find that 13.19% of the catch blocks with the Method
action handle com.google.protobuf. ServiceException. protobuf is an
external library for data serialization. Developers may face more
post-release defects when dealing with data serialization in Hadoop.
Other popular methods include getMessage, and println. Both of
them are special cases of the Log action that is also found to have a
positive relationship with post-release defects.

�
�

�
�

The characteristics of try blocks may have a statistically signifi-
cant relationship with the probability of post-release defects.

The average number of invoked methods per possible exception
in the try blocks of the file (HB-7) has a positive relationship with
the probability of post-release defects in Hibernate. We find that
this metric was correlated (i.e.,|ρ > 0.8|) with the average number
of declaring methods per possible exception. In other words, the
files with possible exceptions that are originated from multiple
different sources have a higher probability of defects (i.e., positive
relationship). Prior research has claimed that an exception that
has multiple distinct sources may have an ambiguous meaning
when thrown [3]. Handling such exception is more challenging and
requires a better understanding of the source code by developers.

The average percentage of propagated possible exceptions has a
positive relationship with the probability of post-release defects in
Hadoop. A large number of possible exceptions may increase the
challenge of handling them properly within a file. If a large portion
of such exceptions is propagated, it means the file does not handle
the exceptions and the responsibility is transferred to the callers of
the methods of the file. Propagating exceptions is an easy way to
transfer the risk of handling an exception instead of taking action
to recover from the exception. However, the exceptions can still
occur and the methods of the file might not work properly since
the abnormal behavior was not dealt properly. We consider that
this chain reaction may be the reason for such positive relationship.

The scope in which the try statement was declared may also
have a relationship with the probability of post-release defects. This
metric measures the number of try blocks inside another block that
is not a declaration, a condition, a loop or an exception handling
feature. By examining Hadoop’s source code, we find that try state-
ments are often declared inside a SynchronizedStatement to ensure
the correctness of the exclusive access to an object’s state. For
example, in Hadoop HDFS class DatanodeManager, a method han-
dleHeartbeat leverages a try-catch block to access a data node object
in a synchronized manner. The higher probability of post-release
defects may due to the complexity of the SynchronizedStatement.

RQ2: Do exception handling anti-patterns
contribute to a better explanation of the
probability of post-release defects?�

�

�

�
Exception handling anti-patterns complement traditional metrics
in explaining post-release defects. However, the majority of the
anti-patterns do not provide statistically significant explanatory
power to post-release defects.

Wefind that, in all three studied projects, at least one anti-pattern
is significant in the BSAP models, providing additional explanatory
power to the BASE models. In particular, Umbraco has the highest
improvement in model fit when adding exception handling anti-
pattern related metrics to the BASEmodel. However, the majority of
the exception handling anti-patterns are not statistically significant
in explaining post-release defects.�
�

�
�

The size of the exceptional handling blocks (catch blocks) have a
positive relationship with the probability of post-release defects.

Similar to the findings of our preliminary analysis, the average
number of source lines of code in the files’ exception handling
blocks has a relationship with the probability of post-release defects.
This means that if the file has larger exception handling blocks on
average, there is a higher probability of defects. Intuitively, this
may be due to the correlation between the size of the catch blocks
and total lines of code. However, surprisingly we find that the size
of exception handling blocks is not highly correlated with other file
size metrics. Therefore, the size of the exception handling blocks
brings unique information to explain the probability of post-release
defects.�
�

�
�

Some exception handling anti-patterns may have a positive rela-
tionship with the probability of post-release defects.

The percentage of catch blocks affected by the Dummy Han-
dler anti-pattern has a positive relationship with the probability of
post-release defects in both Umbraco and Hibernate. The Dummy
Handler anti-pattern indicates that the catch block was superficially
handled and might not be really effective in terms of taking care of
the exception. In Java, the compiler forces the developers to catch
checked exceptions and therefore Dummy Handler is often used
by developers to make the code compilable [4, 13]. However, C#
does not force developers to handle exceptions. When there exists
a Dummy Handler, it may mean that developers intentionally leave
the exception caught by not handled properly, which may lead to
severe issues at run-time and also post-release defects.

The total amount of the Generic Catch anti-pattern has a positive
relationship with the probability of post-release defects in Umbraco.
The metric has higher explanatory power than the traditional size
and complexity metric of the base model (i.e., χ2 of 14.82 vs 10.01,
see Table 5). Prior study finds that this anti-pattern is prevalent
in practice [4]. It is indeed convenient that developers can use a
generic catch block to handle all exceptions. However, exceptions
caught by such blocks cannot be properly recovered without the
knowledge of the exact type of the exception. Moreover, our results
imply the harmfulness of this anti-patterns. Developers should
consider avoiding using Generic Catch in practice.
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The percentage of catch blocks affected by Ignoring Interrupted
Exception has a positive relationship with the probability of post-
release defects in Hadoop. This anti-pattern is related to the Java
exception called InterruptedException, which is used on concurrent
programming with threads. Due to the complex programming fea-
ture that is associated with this exception, ignoring the exception is
considered an anti-pattern [35]. Especially for Hadoop, a platform
where concurrency is a major feature of the software, ignoring
the exception may be even more harmful. The special context of
Hadoop and the nature of the anti-pattern may explain the posi-
tive relationship between this anti-pattern and the probability of
post-release defects.

The total number of catch blocks affected by Log and Throw has a
positive relationship with the probability of post-release defects in
Hadoop. The Log and Throw anti-pattern has been advocated to be
harmful [35]. Log and throw in a file canmake harder for developers
to understand where an exception comes from. This anti-pattern
could affect software operation since repeated exceptions would
show in the logs. This anti-pattern could also affect debugging by
preventing developers to find the errors. Although this anti-pattern
is not prevalent in practice [4] and it was found to have a small effect
on the probability of post-release defects (see Table 5), practitioners
should still avoid such a suboptimal practice.

5 THREATS TO VALIDITY
In this section, we discuss the threats to the validity of our findings.
External validity Our study is based on a set of open-source Java
and C# projects from GitHub. Our findings may not generalize
to other projects, languages or commercial systems. Replicating
our study on other subjects may address this threat and further
understand the state-of-the-practice of exception handling.
Internal validityWe aim to include all possible sources of infor-
mation in our automated exception flow analysis. However, our
analysis may still miss possible exceptions, if there is a lack of
documentation or the source code is not compilable. Also, the doc-
umentation of the exception may be incorrect or outdated. In our
analysis, we trust the content of documentation. Therefore, we
cannot claim that our analysis fully recovers all possible exceptions
nor that the recovered information is impeccable. Further studies
may perform deeper analysis on the quality of exception handling
documentation to address this threat.

Our study of the relationship between exception handling prac-
tice and post-release defects cannot claim causal effects. We do
not aim to conduct impact studies in this paper. The explanatory
power of our exception handling metrics on post-release defects
does not indicate that exception handling cause defects. Instead, it
indicates the possibility of a relationship that should be studied in
depth through further studies. Moreover, we aim to understand the
relationship between exception handling practices and post-release
defects, and we do not aim to predict post-release defects.

There are rooms for improvement of the model fit in our sta-
tistical models. The model fit may be further improved by adding
more predictors to the models in our two research questions. How-
ever this is expected and should not impact the conclusions, i.e.,
the found relationship between exception handling practices and
post-release defects.

Construct validity Our study may not cover all possible handling
actions. We selected actions based on the previous research in the
subject [7, 15, 50, 56, 60]. Some actions are not included in our study
if they are either 1) require heuristic to detect, or 2) are not well
explained in details in related work.

Our possible exception identification approach is based on a call
graph approximation from static code analysis that obtains both
runtime and non-runtime exceptions. However, we may still miss
possible exceptions due to under-estimation for polymorphism or
unresolved method overload. To complement our study, dynamic
analysis on the exception flow may be carried out to understand
the system exceptions during run-time.

We leveraged a list of software metrics to measure exception
handling practices. However, there may exist other aspects of ex-
ception handling that we do not measure. Similarly, there may be
other software metrics to measure other factors which could af-
fect the results, such as, the developer’s experience. Adding more
metrics may provide a further understanding of its relationship
with post-release defects. In addition, this paper only focuses on
post-release defects as one aspect of software quality. There exist
other aspects of software quality other than post-release defects.
One may consider extending our study by modeling other aspects
of software quality.

We leverage an automated approach to remove predictors in
order to keep the number of predictors under modeling budget.
Another approach to resolving this issue is using expert knowl-
edge [22]. Expert knowledge would indicate which predictor should
not be considered. We do not opt to leverage expert knowledge
since we want to avoid subjective bias in the results. However, the
approach of using expert knowledge can be leveraged if closely
working with practitioners on this empirical study. Such a study is
already in our future plan.

6 CONCLUSION
Exception handling is an important feature in modern program-
ming languages. Prior studies have unveiled the suboptimal usage
of exception handling features in practice and have proposed ex-
ception handling anti-patterns. In this paper, we study whether
the exception handling practices, including the characteristics of
exception flow and the exception handling anti-patterns, have a
statistically significant relationship with post-release defects. We
find exception flow characteristics in Java projects have a signifi-
cant explanatory power when complementing traditional software
metrics in modeling post-release defect. Such results imply the im-
portance of properly handling exceptions. In addition, although the
majority of the exception handling anti-patterns are not significant
in explaining post-release defects, there exist some anti-patterns
that indeed have a positive relationship with post-release defects.
Developers should try to avoid such anti-patterns in practice.

Our paper highlights the importance of avoiding suboptimal
exception handling practices and advocates the need for techniques
that can improve exception handling in software development prac-
tice.
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