Exploring the Use of Automated APl Migrating Techniques in
Practice: An Experience Report on Android

Maxime Lamothe, Weiyi Shang
Department of Computer Science and Software Engineering
Concordia University, Montreal, Quebec, Canada
{max_lam,shang}@encs.concordia.ca

ABSTRACT

In recent years, open source software libraries have allowed devel-
opers to build robust applications by consuming freely available
application program interfaces (API). However, when these APIs
evolve, consumers are left with the difficult task of migration. Stud-
ies on API migration often assume that software documentation
lacks explicit information for migration guidance and is impractical
for API consumers. Past research has shown that it is possible to
present migration suggestions based on historical code-change in-
formation. On the other hand, research approaches with optimistic
views of documentation have also observed positive results. Yet,
the assumptions made by prior approaches have not been evalu-
ated on large scale practical systems, leading to a need to affirm
their validity. This paper reports our recent practical experience
migrating the use of Android APIs in FDroid apps when leveraging
approaches based on documentation and historical code changes.
Our experiences suggest that migration through historical code-
changes presents various challenges and that API documentation is
undervalued. In particular, the majority of migrations from removed
or deprecated Android APIs to newly added APIs can be suggested
by a simple keyword search in the documentation. More impor-
tantly, during our practice, we experienced that the challenges of
API migration lie beyond migration suggestions, in aspects such as
coping with parameter type changes in new API. Future research
may aim to design automated approaches to address the challenges
that are documented in this experience report.

CCS CONCEPTS

« Software and its engineering — Software evolution;

KEYWORDS

Android API, API migration, Mining Software Repositories, Soft-
ware evolution

ACM Reference Format:

Maxime Lamothe, Weiyi Shang. 2018. Exploring the Use of Automated API
Migrating Techniques in Practice: An Experience Report on Android. In MSR
’18: MSR ’18: 15th International Conference on Mining Software Repositories ,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MSR 18, May 28-29, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5716-6/18/05...$15.00
https://doi.org/10.1145/3196398.3196420

May 28-29, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 12 pages.
https://doi.org/lo.l145/3196398.3196420

1 INTRODUCTION

The current trends of mobile computing and software as a service
present increasing opportunities for developers to rely on externally
maintained software rather than consume their valuable develop-
ment time [30]. However, as a consequence, software developers
become dependent on frameworks and public application program
interfaces (APIs) when developing their applications [14, 35, 42, 60].
When programming with an API, consumers must either use avail-
able documentation or code examples, in order to guide them in
consuming the targeted API [32, 42].

As of 2016, the Google Play application store presents over 2.2
million applications [2]. All of these applications rely on the An-
droid API to access device information and drivers. Released in
September 2008 [40], the Android API is currently in its 26 ver-
sion. This API provides a large number of varied functionalities
for its consumers exposing more than 19,000 public methods. With
over 1.5 million daily activations of Android devices, the use of the
Android API is expected to keep growing in the coming decade [1].

Since the development of the API is typically independent from
the consumption of the API, the consumers are at the mercy of
the evolution of the interface. Prior research has concentrated on
recommending or producing specialized tools to provide sugges-
tions for consumers pursuing API migrations [7, 10, 14, 16, 21, 28,
33, 34, 39, 43, 44, 48, 59, 63]. These tools use various means, such
as code documentation [6, 59] and historical code-change informa-
tion when producing API migration suggestions [16, 20, 26]. Yet
there exists no large-scale study to assess the effectiveness of these
approaches in real-world API migrations. The popularity and the
importance of the Android API makes it an ideal subject to conduct
such a study.

In this paper we report our experiences with Android API mi-
gration using strategies described by prior research, namely those
based on documentation and historical code-changes. Our findings
are summarized in Table 1. As a first step, we opt to leverage the
Android documentation [4], due to the important role of documen-
tation claimed by prior research [6, 8, 9, 11, 12, 15, 18, 37, 38, 45,
51, 57, 62]. We find that although not all migrated methods can be
found in the official Android online documentation, information
needed to assist in API migration can be also found in other forms
of documentation, such as code commit messages and code com-
ments. Still, the official documentation contributes the majority
(75.3%) of the information to suggest API migrations.

https://doi.org/10.1145/3196398.3196420
https://doi.org/10.1145/3196398.3196420

MSR 18, May 28-29, 2018, Gothenburg, Sweden

Maxime Lamothe, Weiyi Shang

Table 1: Our Findings and Implications on Android API Migrations

Leveraging documentation (Section 3.1)

Implications

1) For 26% of the deleted or deprecated Android API methods, we
could not find any replacements in our manual examination of the

APL

Developers of migration tools and API consumers should be aware
that not all modified methods have migration pathways. This might
mean supporting an old version of the API or changing functionality.

2) Android documentation, including the online documentation,
code comments, and commit messages often contains useful textual
information for method migrations as well as information for their
deprecation, addition, and removal per API version.

Android app developers should leverage such effective documenta-
tion as it allows them to understand and plan their API uses and
migrations around the modifications to the APL

3) Migration pathways in documentation are often very explicit.
Links between methods are clearly stated, and replacements are
identified with complete method signatures for easy recognition.

Android app developers could recover Android API migration links
by simple keyword search, instead of exploiting sophisticated tech-
niques.

4) The Android official documentation [4] effectively presents mi-
gration pathways. Based on documentation alone, with naive text
matching, we were able to automatically determine most of our
manually identified migration paths.

Due to the high quality and the ease of access of the Android docu-
mentation, suggesting Android API migrations may not be a chal-
lenging task. Instead, migration research should concentrate on
other tasks, such as handling different migration types.

Leveraging historical code changes (Section 3.2)

Implications

5) Historical code data, such as commits, only yields a few undocu-
mented migration pathways and a fraction of migration pathways
contained in documentation.

API migration researchers should employ historical code data as
a backup when documentation is lacking, and not as a primary
migration pathway source.

6) Some assumptions of history-based automated API migration are
not met for the Android API, since a replacement method can be
introduced earlier or later than the existing method, with a large
time gap.

Android app developers should verify the assumptions of automated
migration tools before exploiting them in practice.

API migrations in FDroid apps (Section 3.3)

Implications

7) Actual modified API usage is heavily centred around a few API
calls. Most API users only require support for few modified API
methods.

Android app developers and Android API architects could mine API
usage data to prioritize their migration efforts.

8) API migrations often require further code modifications than
simple renames or parameter changes, e.g. object instantiation.

Future research on API migration should investigate automated
support to suggest code modifications examples for API migration.

In the second step, we leverage historical code change infor-
mation (e.g. commits) to improve the results of the API migra-
tion suggestions from the previous step. In particular, prior ap-
proaches [16, 49, 59] that are based on this information typically
assume that code change information is in the source code commits,
i.e. if a method is removed, a replacement method should be added
promptly. Therefore, we first examined this assumption in order
to understand whether the techniques that are proposed in prior
research can be leveraged in migrating APIs in practice. We found
that most of removed/deprecated methods and newly introduced
API methods for migration do not change in the same code commit.
30.4% of the new Android API methods are not even introduced in
the same version as the removed/deprecated Android API meth-
ods. Furthermore, historical code change information only provides
42.7% of the necessary migration suggestions, and 90.5% of those
are already indicated in the documentation.

To test the effectiveness of identified migration pathways, in the
third step, we leveraged the API migration suggestions that we au-
tomatically recovered from both documentation (including official
online documentation, commit message, and code comments) and
historical code change information for FDroid apps.! We experience
that only a small subset of the removed/deprecated API methods
and API migrations are used by FDroid apps.

10ur automated script to recover Android API migration pathways is hosted online at
https://lamothemax.github.io/MSR_2018_Android_API_Study/

Our results and experiences imply that even though documenta-
tion is often reported as incomplete or outdated [17, 60], developers
should still consider the official documentation of the Android API
as their major source of information. Moreover, before using any
sophisticated techniques for API migration, developers should first
verify the assumptions of those techniques before exploiting them
in practice. On the other hand, developers could reduce and priori-
tize their efforts to a small subset of API methods, which are used
in practice.

Our experience agrees with prior research [6, 17, 18, 26, 43, 44,
55, 59, 60] and shows that it is feasible to provide suggestions when
migrating API methods to new versions. However, more impor-
tantly, after we successfully performed API migrations on three
apps from one version of Android to the next, we found that im-
plementing API migration code changes is much more challenging
than identifying a migration pathway. Challenges such as migrat-
ing multiple related-APIs as well as changing object types present
changes which would often require extensive knowledge and ef-
fort. We document these challenges in this experience report so
that further research on API migration can investigate and propose
automated solutions to assist API migration in practice.

The contributions of this paper include:

e We evaluate the use of documentation and historical code
change information in API migration in a large scale subject.

Exploring the Use of Automated APl Migrating Techniques in Practice

o We find that the information needed to identify replacement
API methods for migrations often resides explicitly in online
documentation and repository commits as natural language
text.

e We find that prior research-based sophisticated migration
techniques may fail because particular assumptions are not
met in practice.

e We documented our experiences and the challenges that we
encountered when migrating the use of Android APIs in
FDroid apps to benefit both practitioners and researchers.

e We documented the solutions we employed for our chal-
lenges, and presented our unsolved challenges as open chal-
lenges for future research.

The rest of the paper is organized as follows: Section 2 provides
a background on API migration practices and past research. Section
3 presents the methodology followed in our study and reports our
experiences the challenges we encountered. Section 4 discusses
related work. Finally sections 5 and 6 outline threats to validity and
the conclusions of our paper.

2 ANDROID API MIGRATION

Android app development heavily depends on the availability of
Android APIs. In the most recent version of Android, “Oreo”, there
currently exist 3,354 API classes and 33,560 API methods. However,
such APIs are updated every 6 to 12 months when Android releases
a new version. A prior study by McDonnell et al. showed that on
average 115 Android APIs are updated per month [32]. Such API
updates would cause around 28% of API references to become out-
dated in a median lagging time of 16 months, while upgrading these
updated APIs takes about 14 months [32]. Prior research shows that
Android app developers seek to update their API usage, however
their migrations are slower than the API updates [32]. Therefore,
efficient migration techniques are essential to help Android app
developers.

Android architects maintain an open online documentation to
share information on available API and to communicate API dep-
recations in each version [4]. However, knowing that an API is
deprecated may not give the consumer enough information on the
existence of a replacement API or which new API is needed to
replace any loss in functionality.

For example, the Android API has been releasing new versions
since September 23, 2008 [40]. The Android project provides a
number of resources to help consumers keep track of changes in
the API. However, even with its well maintained documentation,
it is sometimes required for an API consumer to look at the API
source code to determine how to migrate a removed API method
as presented in Section 2.1.

In the Android project, behaviour changes of API methods are
sometimes documented and presented with new API releases. This
documentation can be used to locate method substitutions directly,
and this has been used in this research in order to check the results
of our links. However, not all versions of the API provide this
documentation. We assume this documentation is rarely done due
to the resource requirements of maintaining such a list. Having a
tool to do this automatically, or at the very least to check the list
for errors, would be a welcome boon for maintenance efforts.

MSR ’18, May 28-29, 2018, Gothenburg, Sweden

Figure 1: Example of methods that are linked through com-
mit history.

API 23

API 24
)

‘‘‘‘‘‘‘‘ commit Sl
createAnd ¥ \essagde
InitiallizeUser()]

createAnd

- ManageUser()

Line Change
\), Commit k)
L 343fb33 27ee334 |
| i Time) i

2.1 A real-life example

API Documentation alone is sometimes insufficient to determine the
migration of a removed method. For instance, the API method cre-
ateAndInitiallizeUser from android.os.UserManager was re-
moved between Android API versions 23 and 24. The method was re-
placed by a new method, createAndManageUser. Since the method
was removed, no information on the methods is henceforth available
in the most recent Android official online documentation. How-
ever, it is possible to find the removal of the method in the change
documentation of the API [4].

In order to determine the genuine evolution of the method, one
needs to look at the revision history of the framework. Due to the
open source nature of the Android framework, the API version con-
trol repository is available online. Official online documentation of
the createAndInitiallizeUser method does not provide useful
information for the migration. However, by looking at repository
commits, it is possible to see that the createAndInitiallizeUser
method was replaced by the createAndManageUser method in com-
mit 343fb33 as shown in Figure 1. The information can also be found
in the internal code comments and commit messages. Moreover, by
looking at other commits during the history of the Android version,
we find another method createUser that is co-changed with cre-
ateAndInitiallizeUser, while having no other documentation
about the removal. This requires creativity and research on the part
of the user in order to find a substitute. However, by looking at
the commit history, and carefully parsing the commit comments, it
is possible to determine that the createAndInitiallizeUser and
createUser are interlinked through removals, modifications, com-
ments, and Java class, but they are never explicitly linked. Therefore,
a user that wishes to update their use of the createUser method
should also take a careful look at the createAndInitiallizeUser.

This example is particularly interesting because it shows that:

o Not all methods that have replacement methods present the
information in official documentation.

e Consumers of methods such as these are expected to put in
the effort to find the replacement themselves.

e API migrations can involve multiple API methods.

Examples such as these are the primary motivations for this
work. Ideally, with a complete mapping of all methods and their
relationships to other methods, developers should be able to get

MSR 18, May 28-29, 2018, Gothenburg, Sweden

an understanding of migrations with a simple glance. Therefore, in
this paper, we aim to evaluate the applicability and usefulness of
existing approaches on automated Android API migration.

3 AN EXPERIENCE REPORT

In this section, we aim to explore the use of existing automated API
upgrading techniques to migrate the Android APL In particular,
we explore the use of documentation and historical code change
information based techniques to assist in migrating removed or
deprecated Android API methods.

In order to evaluate the use of existing automated API migration
techniques, we first need to extract all the changes to Android API
including additions, deletions, deprecations, or modifications to
existing API in each version of Android. In particular, we select the
most recent six versions of Android (21 to 26). We first leverage
JDiff to identify all added, removed, deprecated and modified APIs
between every two Android versions. The Android API changes are
summarized in Table 2. In particular, we consider the total amount
of removed or deprecated API as the upper bound of all possible
API migrations, since they would suggest or even force developers
to change their source code in order to adapt to new APIs.

Figure 2: API migration extraction strategies.

Leveraging Documentation Verification
Data

(manually verified)

Official Doc.

Internal Documentation
Commit Messages
+
Android Migration
I Changes ! l
Verified
Migration Links

Leveraging Historical Code
Data

Table 2: Android API Modifications per API Version

Class Method Field
API Version Release Date Added Changed Removed | Added Changed Removed | Added Changed Removed
16 2012-07-09. 57 211 0 381 151 20 171 46
17 2012-11-13 41 111 2 150 37 19 155 69
18 2013-07-24 61 108 36 155 44 4 131 25
19 2013-10-31 78 180 0 268 26 5 391 6
20 2014-06-25 10 25 0 32 5 1 45 2
21 2014-11-12 147 360 0 770 17 29 | 1150 75
22 2015-03-09 4 439 0 73 128 3 53 1
6
3
0
4

% =
cocuBBruocormwa

23 2015-10-05 119 257 3 541 132 38 466 89
24 2016-08-22 147 433 877 127 13 585 31
25 2016-10-04 5 38 50 1 0 53 0
26 2017-08-21 145 349 795 139 18 572 69

Min 4 25 0 32 1 0 45 0

Max 147 439 36 877 151 38 | 1150 89 83
Mean 57 155 266 58 10 254 35 8

4
For the purposes of this study we concentrated on the six most
recent versions (API Versions: 21-26)

In the rest of this section, we report our experiences during the
migration of APIs uses in Android apps. We discuss our experiences
in three steps. For each step, we discuss its motivation, our approach,
and the outcome of the step as well as the challenges that we faced.

Maxime Lamothe, Weiyi Shang

3.1 Step 1: Leveraging documentation in API
migrations

Motivation

Due to the high dependence between Android apps and Android
APIs, ideally, all removed and deprecated APIs should be properly
documented, such that consumers can opt to adopt other APIs
to sustain the functionality of their apps. In addition, previous
research has shown that documentation can be used to determine
migration pathways in changing API [59]. Therefore, in this step,
we seek to determine whether the Android API documentation can
be leveraged when assisting with API migrations.
Approach

In order to automatically recover API migration suggestions
from documentation, we consider three readily available sources of
data as documentation: 1) code comments in JavaDoc format in the
source code, before the declaration of each method, 2) code commit
messages and 3) official Android online API documentation.

Code comments in JavaDoc. We first obtain all the source
code for each version of Android. We then use srcML [13] cou-
pled with python scripts to extract all the JavaDoc code comment
for each Android APL For each code comment, we use the API
name as keywords, and automatically search whether the name
of a changed (added, deleted, or deprecated) API is mentioned
in the comment. For example, as shown in Figure 3, in API ver-
sion 23, android.content.res .Resources.getColor(int) was
deprecated and obtained a JavaDoc link to its migrated method:
android.content .res.Resources.getColor(int, Theme).

Figure 3: getColor(int) source code snippet presents a mi-
gration pathway.

* @return A single color value in the form OxAARRGGBB.

@deprecated Use {@link #getColor(int, Theme)} instead.

®)

@ColorInt

@Deprecated

public int getColor(@ColorRes int id) throws NotFoundException {
return getColor(id, null);

1
S

Code commit messages. We extract all code commits and their
commit messages between every two consecutive versions of An-
droid from the git repository [5]. Similarly to code comments, we
automatically search whether the name of a changed API is men-
tioned in the code commit message. For example, as presented in
section 2.1, and in Figure 4, createAndInitiallizeUser presented
a link to createAndManageUser in commit message 343fb33.

Official Android API documentation. The Android API doc-
umentation contains a list of added, deleted, or deprecated APIs in
each version [4]. By checking the online documentation of each
deleted or deprecated API, we manually examine whether the offi-
cial documentation provides a replacement for the deleted or depre-
cated APIs. For example, android. text.Html. fromHtml(String)
appears in the online documentation as shown in Figure 5. It is also
possible to mine the documentation from JavaDoc links in the his-
torical code-data information. The createAndInitiallizeUser
method and its migration also appeared in online documentation,
however only in the framework repository documentation [5].
Results

Exploring the Use of Automated APl Migrating Techniques in Practice

Figure 4: Android framework commit message 343fb33,
presents a migration pathway.

Add new API function createAndManageUser

This is a reduced version of the (deprecated) function
createAndInitializeUser, that allows the device owner to create a
new user and pass a bundle with information for initialization. The
new version of the function has the same functionality, but the
profile owner of the new user is always the device owner.

A flag can be specified to skip the setup wizard for the new user.

The new user is not started in the background, as opposed to how
createAndInitializeUser did it. Instead, the bundle with
initialization information is stored and will be broadcast when the
user is started for the first time.

Bug: 25288732, 25860170
Change-Id: I4elaca6d2b7821b412c131e88454dff5934192aa

Figure 5: Android online documentation for method
fromHtml, presents a migration pathway.

fromHtml added in AP level
Spanned fromHtml (String source)

‘This method was deprecated in AP level 24.

use fromHtml(String, int) instead.

Returns displayable styled text from the provided HTML string with the legacy flags FROM_HTML_MODE_LEGACY.

source String

Spanned

The majority of replacements for deleted or deprecated APIs
can be recovered from the explicit wording in documenta-
tion. For the six studied versions, we were able to determine be-
tween 51% and 98.4% of the deleted or deprecated APIs through
documented replacements. We then manually examined the APIs
for which we could not recover a replacement, in order to under-
stand whether those APIs do not have an replacement or whether
we missed a documented replacement. For 26% of the deleted or
deprecated APIs, we cannot find a replacement at all (possible re-
moval of functionality). For example, all of the methods present
in the PskKeyManager class were removed without replacement
when the class was removed due to incompatibilities with TLS 1.3.

Experience #1: For 26% of the deleted or deprecated Android
API methods, we could not find any replacements in our manual
examination of the APL

We also found an extra 21.5% of replacement APIs which exist,
but we were unable to recover them explicitly from the documen-
tation. Some knowledge of the project had to be combined with
the documentation. For example, if method functionality had been
migrated to a different class, which existed prior to the studied
release, we were unable to provide a replacement automatically.
This was particularly prevalent when methods migrated from using
static methods to classes which produced similar results through
new objects. Externally maintained replacements as part of the
java.lang.Math package account for 8 of the 29 replacements
which were not found for API version 23. One of the undiscovered

MSR ’18, May 28-29, 2018, Gothenburg, Sweden

replacements was a Java wrapped C method which proved difficult
to link. However, we were able to link a similar method in API
version 24 through its documentation links. Out of the 15 other
undiscovered replacements, all of them referred to another class to
replace the lost functionality.

Experience #2: Android documentation, including the online
documentation, code comments, and commit messages often
contains useful textual information for method migrations as
well as information for their deprecation, addition, and removal
per API version.

Experience #3: Migration pathways of APIs in documentation
are often very explicit. Links between methods are clearly stated
in the documentation, and replacements are identified with
complete method signatures for easy recognition.

The official documentation of Android APIis the main source
of data for suggesting API migrations. Android provides a rich
documentation from the official documentation website [4], and
from the framework commits [5]. We find that the documenta-
tion of Android API provides more migration links than any other
sources. By manually inspecting all the sources of information of
the removed or deprecated APIs, we find that only 5 out of our 469
studied APIs had migration paths that were not presented in the
official online documentation. However, as presented in challenge
#2, not all previous documentation is readily available in the latest
online index [4], and some of it must be mined from the JavaDoc
in the repository [5].

Our results show that identifying replacements for the removed
or deprecated Android APIs may not compose a challenging task,
since developers may not need sophisticated techniques to analyze
documentation in order to detect the API replacement, while simple
keyword searching on the API names may recover the majority
of the API replacement. More importantly, the majority of the
replacements can be recovered from the official documentation.
Compared with the code comments and the commit messages, the
online Android official documentation is the easiest to access and
to analyze by consumers. This finding also implies that developers
may not need sophisticated techniques nor access to the software
repositories to migrate Android APIs.

Experience #4: The Android official documentation [4] effec-
tively presents migration pathways. Based on documentation
alone, with simple text matching, we were able to automat-
ically determine most of our manually identified migration
paths.

Challenges

Challenge #1: Associating documentation to APIs.

Description: Source code documentation is not always favourably
located in order to determine the targeted source code artifacts.
During this research we noticed that sometimes documentation
provided at the top of a Java class can give migration or removal
information about a method in the class. However, linking this
documentation requires foresight of its existence.

MSR 18, May 28-29, 2018, Gothenburg, Sweden

Our solution: Since our method of using naive text matching
worked well for migration suggestions, we determined that in the
case of the Android API we could also apply text matching to
documentation found throughout a given class (cf. Table 3). After
identifying the removal of a method in a given API we suggest
looking at all unlabelled documentation in its class for text matches,
and attempting to identify any other method mentioned.

Challenge #2: Missing historical information of API doc-
umentation.

Description: All references to removed methods are expunged
in the official Android documentation. Therefore when a method
finally gets removed, it is no longer possible to find its information
on the Android developer website [4]. Likewise, the JavaDoc for
the project is not provided for removed API methods. This likely
prevents the misuse of inaccessible methods, however it makes it
more challenging to find migration paths for removed methods.

Our solution: Although the documentation for removed meth-
ods is not directly accessible from the Android developer site, it
is accessible in the source code repositories JavaDoc. Therefore,
it is possible to mine the source code history for documentation
information which was removed, in order to build a complete mi-
gration picture. It could help slow adopters if Android built this
information into the website as a removed section to help them
migrate very old app versions.

Open Challenge #1: N-to-N API methods migrations

Description: Using the current approaches, it is difficult to assist
in the migration between two sets of multiple APIs as a whole, i.e.,
N-to-N migration scenarios. First of all, with current techniques it is
difficult to determine if a migration path search is returning multiple
results because of false positives or due to multiple migration paths.
Secondly, understanding the relationship between the multiple
APIs is challenging. Current approaches concentrate on one-to-one
migration scenarios and shy away from automatically creating new
source code that consists of multiple new migrated APIs.

Table 3: Android API suggestions automatically found, com-
pared to manually confirmed migrations.

Only methods with replacements are presented here.

API Found Missed
Version Replacement | Replacement
22 5 1

23 31 29

24 25 3

25 1 0

26 62 1

3.2 Step 2: Leveraging historical code-change
information in API migrations

Motivation

In the previous research step, we found that a large portion
of API upgrades can be recovered by searching simple keywords
in documentation; only 4% of API upgrades were unrecoverable
by only analyzing documentation. On the other hand, prior stud-
ies leverage software development history, such as code change

Maxime Lamothe, Weiyi Shang

per commit, when assisting in recovering API migrations [16, 17].
For example, SemiDiff identified code changes within a commit to
determine API method replacements [16, 17].

We do not directly test any specific tool as many of them have
not been maintained, or require modification to run on our chosen
project. Since modifying the tools could introduce errors or a bias
for certain methods, we chose to test the underlying assumptions of
API migration techniques in an effort to determine whether these
underlying assumptions and theories hold in practice.

These techniques often assume that the removal of an existing
API and the addition of an upgraded APIs exist within a short
period of time (i.e. within a few commits)[16, 20, 26, 42]. Since such
an assumption is heavily depended upon, yet never validated in
practice, the assumption can lead to uncertainly in the usefulness of
automated API upgrading techniques. Therefore, we aim to leverage
historical information to recover Android API upgrades.
Approach

We first leverage code change history in the implementation of
the removed or deprecated API methods. If two methods change
implementation in the same commit, it is likely that their imple-
mentations are linked in some way. The more often two methods
present simultaneous implementation changes, the more likely they
are to share implementation details. This can allow us to determine
which methods provide similar features and make links between
features that would not be available by looking at release snapshots.

We collect all commits in the git repository of Android. For each
commit, we identify the Android APIs that are changed. Since git
diff would only provide textual based differences in a commit, we
use srcML [13] as an intermediary to provide XML representations
of Abstract Syntax Tree (AST) of the source code. By comparing
sreML output of each source code file before and after a commit,
we are able to identify which method is changed in the commit. We
then track all API implementations that are co-changed with the
API implementation that is removed, modified or deprecated in the
Android release. Although not all co-changes present migrations,
most, if not all, migrations should present co-changes. We study
whether these co-changed APIs can provide useful information for
recovering API upgrades [41].

Second, for each of the known API upgrades (see Section 3.1),
we examined the time span between its deprecation (if present), the
removal of the existing API and the introduction of a new APL
Results

Over all the Android API versions studied, source code
change history provides a total of 53 migration pathways.
Out of these pathways, only 5 are uniquely identified by com-
mit information. However, documentation with basic text match-
ing identifies 119 suggestions. The Android API documentation
suggestions include 90.5% of the migrations found through source
code change history.

Experience #5: Historical code data, such as commits, only
yields a few undocumented migration pathways and a fraction
of migration pathways contained in documentation.

Existing APIs are not always deprecated, removed, or mod-
ified in the same commit as new APIs are introduced. Based
on our manually identified replacements, we found that for 57.3%

Exploring the Use of Automated APl Migrating Techniques in Practice

of them, we could not identify any commit migration pathways
between the outgoing API and any replacement APL

Newly introduced APIs are often added into source code
earlier than the removal or the deprecation of the existing
APIs. Table 4 presents the API version difference between the ap-
pearance of a replacement method and the removal, deprecation,
or change of the original method. In the studied system, 59.5% of
modified methods have a replacement which appears in the same
version as the modification. 10.1% of modifications have replace-
ments outside of the Android API, and the rest of replacements
are spread over the entire evolution of the APIL For example, the
method getCellLocation() was deprecated in API version 26,
and was given a documented migration pathway to API method
getAllCellInfo(). However, getAl1CellInfo() was introduced
in API version 17. Therefore, no clear migration pathway exists in
API version 26 other than documentation.

In three cases, the Android API method replacement was
provided in future releases. This makes it impossible to deter-
mine a replacement functionality at deprecation time for these
methods, as it does not exist yet. It also makes it impossible to use
commit based links since the methods clearly are modified in differ-
ent releases. However, with constant monitoring of the project, it
may be possible to determine a replacement through documentation
and commit messages. Similarly, migration paths that appear mul-
tiple releases before deprecation time, may not be linkable through
commits. Therefore we must depend on documentation to tell us
when links are created.

There are many deprecated methods left in the source code
without removal. In the Android API versions studied, depre-
cated APIs outnumber removed APIs by a factor of 2.94. Through
our research of migration methods and their emergence, we deter-
mined that there are more deprecations (244) than removed (83)
and changed (142) methods in the versions studied. This presents
us with an interesting finding. Only a fraction of deprecated meth-
ods were removed. This presents a contrast to Zhou and Walker
[64] who show that removed API outnumber deprecated API sig-
nificantly. This is not the case for the most recent Android ver-
sions. We did notice that some methods were undeprecated, such
asandroid.app.Notification.Builder.SetNumber(int), how-
ever only a few such outliers were found in the versions studied.

Experience #6: Some assumptions of history-based automated
API migration are not met for the Android API, since a re-
placement method can be introduced earlier or later than the
existing method, with a large time gap.

Challenges

Open Challenge #2: Identify the time gap between the ad-
dition and removal of APIs

Description: Our findings indicate that many API methods use
migration paths that are introduced in a different version than
the deprecation or removal of the targeted method. This makes
it difficult to use commit based methods to identify a migration
path between two methods. Table 4 shows that a large amount of
modified methods have a replacement introduced earlier than their
removal/deprecation. By widening the search for a migration path

MSR ’18, May 28-29, 2018, Gothenburg, Sweden

to a wider release cycle, it may be possible to identify these migra-
tion paths without documentation. However our experience shows
that widening the search increases the amount of false positives.
Therefore, we believe developers should minimize the use of broad
time-spans when searching for method replacements and instead
determine ways to optimize their historical data search through
documentation informed time spans.

Figure 6: API Migration Mapping Example

New Migration
Method Introduced i
A Version

Old Method Introduced Old Method Modified

Table 4: API migration mapping version A
Negative A implies migration introduction before modification.

Positive A implies migration introduction after modification.

A Version | Modified Methods
-25 11
-23 1
-22 2
-18 7
-14 1
-13 3

-9 1
-8 2
-6 1
-5 8
-3 2
-2 2
-1 4
0 94
1 2
3 1

3.3 Step 3: API migration in FDroid apps

Motivation

In the previous research steps, we recovered API migration in-
formation using both documentation and historical code change
information. However, such information may not be enough nor
beneficial at all when migrating API usage in real-life Android apps.
Therefore, in this step, we seek to determine how these links should
be used to facilitate API usage in open-source Android apps from
FDroid [3].
Approach
Android API usage in FDroid Applications

FDroid Android applications are open-source Java applications
that call the Android API to interact with an Android end user. Prior
studies have been done on the FDroid dataset [25]. With knowledge
of the available Android API methods, it is possible to mine the
FDroid applications for their API uses. We first mined the FDroid

MSR 18, May 28-29, 2018, Gothenburg, Sweden

database for FDroid projects which had multiple versions and had
downloadable source code. We then used a list of removed Android
methods to determine the usage of removed Android methods in
these FDroid projects. The list of removed methods is maintained by
the Android project as part of their public framework repository [5].
Finding the usage of removed methods is done by parsing all files
in all 415 FDroid projects for uses of the removed methods. We
counted how many times a removed method was used, which file
it was used in, and in which version of each project. We then use
this information to determine the popularity of removed methods,
and to find which methods are preventing an app from targeting a
higher API level.

To determine whether the links produced by our approach could
be useful to developers, we looked at the links between removed
methods and their replacements. We gathered the uses of removed
methods from a sample of 415 open source Android applications.
We concentrated on Android API versions 21-25, as 66.4% of appli-
cations targeted these versions. Although Android API version 26
was used during this study, we did not have any FDroid projects
with uses of the API and it is therefore not present in this research
step. Since Android API version 25 only deprecated one method we
do not present data related to it for clarity.

Migrating API usage in FDroid Applications

To test our suggestions in a more rigorous fashion, we use three
applications which are blocked from changing API versions due
to removed methods. Using our list of FDroid application method
uses, we identified three applications, Tasks, Forrunners, and Poet-
Assistant to test our migration suggestions and attempt to migrate
the applications from one version API version to the next. These
applications were chosen because they presented multiple app re-
leases (6-167), they were prevented from accessing Android API
24 due to their use of methods which were removed after API
23, and had included test suites in their development packages.
We manually migrated the apps by using our suggested migration
methods and ran their test suites to see if any tests were broken
by our changes. We also successfully ran the apps in the Android
Studio’s development environment simulator as a safeguard against
defective or lenient tests. We specifically attempted to target the
modified functionality in the simulator, and did not experience any
crashes.

Table 5: Android API methods found in FDroid projects.

API Changed API | Found in | Can
Version Methods FDroid Migrate
22 128 5 3

23 157 28 20

24 56 22 11

API levels 25 and 26 are not presented here for clarity.

Results

Only a small sample of APIs are used in FDroid projects
and a small number of APIs account for the majority of the
removed APIs. Not all methods which were removed by the An-
droid development team were sampled in our study of 415 FDroid
projects. Table 5 shows that between 4% and 39% of removed API
methods were sampled in the FDroid projects. Therefore, not all

Maxime Lamothe, Weiyi Shang

removed methods bear the same migration weight. This implies
that API architects can focus on a small amount of APIs to prioritize
API migration efforts.

Experience #7 Actual modified API usage is heavily centred
around a few API calls. Most API users only require support
for few modified API methods.

API migrations may vary in scope. Not all migrations are
equal in scope [21]. In the versions of the Android API studied we
found multiple migration types.

Some migrations require the removal of one or more parameters
such as android.hardware.usb. UsbRequest.queue(Bytebuffer,
int) which became queue (Bytebuffer) in API version 26. The
removal of a parameter could mean reworking some code if old
parameters were joined.

Other migrations require the addition of one or more parame-
ters, such as android. text.Html.fromHtml (String) which was
changed to android. text.fromHtml(String, int). The int argu-
ment was added as a way to return different flags from the fromHtml
method. If the user wanted to keep the same functionality as the
previous version of the method, the int could simply be set to a value
of 0. Therefore, although inconvenient, this change is relatively
simple to develop.

Similarly, some methods were simply refactored to a different
class, the FrameLayout class getForeground() methods were mi-
grated to the View class. For methods like these, simple refactoring
could allow these methods to be migrated [21]. This is not a prob-
lem as long as the classes were not delegated outside the Android
repository which happened to the FloatMath Android expressions
which were relegated to the java.lang.Math package.

Comparatively, the WebViewClient method shouldOverrideUrl-
Loading(WebView, String) changed parameter type and migrated
to shouldOverrideUrlLoading (WebView, WebResourceRequest),
and contained a very different migration strategy. The API con-
sumer now has to learn how the new WebResourceRequest works
and properly instantiate the object. This is a slightly more difficult
task for a developer. A machine would almost assuredly require
code examples from which to map the changes. Giving the maxi-
mum amount of available information to the API consumer in these
cases allows them to determine if the migration is worthwhile. If
they determine that the migration cost is acceptable, they then
have access to links which could help them understand the new
functionality.

Experience #8 API migrations often require further code modi-
fication than a simple rename or parameter change, e.g. object
instantiation.

Developers may migrate APIs while keeping support for
the old API version. In two cases, we identified applications which
were using migration methods as expected and the migrations were
done without any problems. However, in the case of Poet-Assistant
we discovered that the developers were already aware of the mi-
gration of these methods. The developers had put in conditional
statements to determine the API level of the user in order to de-
termine which API call to make. Therefore, the developers had

Exploring the Use of Automated APl Migrating Techniques in Practice

two solutions in place for every use of the fromHtml method. this
allowed us to determine that our suggested method was the appro-
priate migration method for this situation. It also presented new
information that we had not anticipated. Some developers are will-
ing to support multiple versions of the Android API simultaneously.
Although Poet-Assistant developers had gone through the effort
of making the migration to API 24, they had kept the backwards
compatibility functionality for previous API levels.

Challenges

Challenge #3: Ranking migrations suggestions

Description: Using naive text matching alone, or historical source
code data alone, provides multiple false positives, such as similar
method names, for migration paths. Therefore, it is often challeng-
ing to rank migration suggestions in a way that makes them usable
to an end user.

Our solution: By coupling both approaches we were able to pro-
duce more accurate migration suggestion rankings. We used both
approaches independently and ranked migrations based on a cou-
pled answer from both sources of information. More accurate meth-
ods for both documentation mining and source code mining could
be developed, but we believe that coupling both sources of informa-
tion will lead to more accurate results than having them separate.

Open challenge #3: Identifying the existence of API re-
placements.

For the Android API versions studied we found that many (66.3%)
API modifications did not contain migrations. It is possible that we
missed migration pathways in our manual examination. However,
in practice it makes little difference if there is no replacement or
if the replacement is too difficult to find. Either way the API con-
sumer does not obtain a replacement and will assume one does
not exist. Therefore, we open a challenge to develop an approach
to determine a gold-standard to identify the existence of migra-
tion pathways. Currently, we have no way to be certain whether
a method migration exists without documentation or architecture
information, and it is possible for these sources of information to
fail.

4 RELATED WORK

In this section, we discuss prior related research based on leading
approaches for analyzing API method migrations.

4.1 Existing automated API migration
techniques

Due to the importance and challenges of API migration, there exist
prior research that proposes automated techniques to assist in API
migration. In particular, these techniques are mainly either based
on the development history or documentation of the APL

4.1.1 APl migration techniques based on development history .
Previous research has produced numerous API migration mapping
methods that rely on historical source code repositories.

Dagenais and Robillard produced SemDiff, a tool for recom-
mending adaptations to clients of a changing framework [16, 17].
By studying the changes to internal method calls of a framework,
SemDiff produces a list of suggestions for migrations of framework
methods. SemDiff uses repository information to observe changes

MSR ’18, May 28-29, 2018, Gothenburg, Sweden

in source code in order to create recommendations to method mi-
grations.

Dig and Johnson [20] present an approach to update applications
by using a tool to record refactorings done on a component appli-
cation and then replay them on a target application. Their research
proposes that this could be used to refactor API uses from one
version to another. The approach presented requires two versions
of an application to target in order to determine the refactoring
that produces changes between the two versions.

However, since these methods rely on historical source-code
information, they make the assumption that the information they
seek can be retrieved from historical data. Furthermore, they have
no way to determine if there is no answer to a migration pathway
other than brute force. Likewise, if migration pathways are intro-
duced over long periods of time, the pathways may not be found in
the commits studied. Furthermore, these methods usually present
the best migration pathway [16, 17] and may not present migration
pathways that require multiple APIs.

Techniques such as those proposed by Nita and Notkin [44] and
Wang et al. [60] use programmed guidelines to migrate from one
API to another. The use of guided mappings allows full developer
involvement and therefore testing of the migration. However, it
is a resource intensive approach, since migration paths must be
manually deliberated. Henkel and Diwan [26] produced an Eclipse
plugin called CatchUp! which captures refactorings while an API
architect is making modification to the API and replays the refactor-
ing in a target application in order to migrate the API consuming
application. These approaches currently require foresight from API
developers since the techniques must be active during development
as there is currently no tool to mine all of the required refactoring
information from historical code data.

4.1.2 APl migration techniques based on documentation. Tools
such as JDiff [6] use Javadoc information to present differences
between any two versions of documented Java software. As long
as the software is produced in the Java programming language and
properly documented, JDiff can tell a user whether a method has
been changed, removed, or added based on a previous software
version. JDIff converts source code to XML representations to de-
termine which code items were modified. This information is then
augmented through internal documentation based on Javadoc an-
notations [6]. Similarly, the JaSCUT Generator [59] parses source
code to find Javadoc annotations, which can be used to heuristically
find API mappings. We used a similar approach to track methods
through commits in order to determine if any renames, removals,
or additions to source code had taken place. JDiff concentrates on
the addition, removal, or modification of source code items such as
fields, methods, classes, and packages. However, other than these
changes, it does not generate any links that do not exist in the
Javadoc.

4.2 API Suggestions

Prior research has produced numerous API studies and API sugges-
tion approaches [7, 10, 11, 14-39, 41-47, 50, 52-61, 63, 64].

These approaches could be used to help API consumers when
attempting to find suggestions to migrate their apps. ApiRec pro-
duced by Nguyen et al. [42] uses statistical learning approaches

MSR 18, May 28-29, 2018, Gothenburg, Sweden

to correctly recommend API calls 77% of the time in their top 5
guesses. The system is based on the intuition that, developers make
low-level changes while having a higher-level intent in mind. Simi-
larly, Nguyen et al presented a vector representation code mapping
approach also based on statistical approaches [43]. Using their vec-
tor mining approach they are able to mine API mappings between
the Java JDK and the C# NET framework. Their approach is based
on mining usage relations and contextual uses of other APIs. Using
this data they were able to detect pairs of API with different names
which could allow mapping from one programming language to
the next with an accuracy ranging from 42.8% to 73.3%. In this
paper, instead of suggesting API usage, we focus on the use of docu-
mentation and historical code change information to automatically
suggest API migration.

4.3 API Documentation enhancement

Several approaches to link documentation to source code have been
explored in the past. Dagenais and Robillard presented an approach
to automatically analyze documentation and link code elements
to documentation terms [18]. Their prior experience showed that
API consumers repeatedly asking questions led to the improvement
of documentation. This led them to use documentation augment
source code understanding. Similarly, Chen produced a system inte-
grated into the Eclipse IDE to provide source code to documentation
visualization links [12]. This approach uses a mix of information
retrieval and text mining techniques to uncover links and then
displays them using the eclipse visualization toolkit. ARENA, a tool
proposed by Moreno et al. uses both source code analysis and docu-
mentation to produce release notes for API changes [37]. This type
of tool can be directly useful to developers by documenting buried
API links, and could potentially be modified to use the automated
release notes for migration automation. The rich knowledge and
value of documentation motivates the first step of our work and
our results shows that Android documentation provides valuable
information to assist in API migration.

5 THREAT TO VALIDITY

The following section aims to address the various threats to validity
present in our research and how these problems were mitigated.
Construct validity.

It is possible that due to improper maintenance, documentation
and source code are not representative of one another. Since all the
information in this research was mined from documentation and
source code history, this would cause the information in this project
to be ineffective at showing the links between various methods.
Any links created from unsynchronized documentation and code,
would tend to arbitrary directions. We believe this to be unlikely
for multiple reasons. The Android project is popular and used to
support millions of apps. These millions of apps rely on and expect
a high quality API as service to their businesses. It is likely that
inconsistencies in documentation and source code are rapidly re-
ported and fixed. The links produced in this study have been tested
as migration links through manual inspection of both the Android
framework and its documentation. No inconsistencies were noticed
during this research. Our suggested method links were also tested

10

Maxime Lamothe, Weiyi Shang

on three different projects and the suggestions provided have been
shown to compile and produce working applications.
External validity.

Since Android and Android applications were the only case stud-
ies done for this work, it is possible that the findings determined in
this report are not common to other projects. Therefore these re-
sults might not generalize to other projects. We attempt to mitigate
the drawbacks of this threat by making our findings as general as
possible, and looking at general trends in our project sample.

We also cannot claim that the findings in this report can general-
ize to other programming languages. The study done in this report
requires Java tooling and Java files. Therefore, it is possible that the
findings in this report are only indicative of Java APIs. However,
since documentation and source code repositories are not unique to
the Java programming language, we believe that our findings have
the potential to apply to APIs from any programming language.
Internal validity.

The findings in this report are all based on documentation that
was accepted by the Android development team. This might present
a bias, as it is possible that the Android development team uploads
only documentation that is favourable to them and removes older
documentation to hide any mistakes or risks caused by erroneous
documentation. We did not observe documentation maintained
outside of the source code repository. This was mitigated by look-
ing at all available commits, which should present all changes in
documentation. If any inconsistencies in documentation exist, they
should appear in the committed changes to the documentation, and
none were noticed. If the Android development team only presents
filtered commits which have perfect documentation, we must ac-
cept the available information at face value as we have no other
sources of information about the API

6 CONCLUSION

In this paper we present our experience in using Android API source
code repository coupled with documentation to provide sugges-
tions for Android API migration. During our practice, we find that
although a portion of the removed or deprecated API methods do
not have a replacement, identifying a replacement using documen-
tation or historical code change information is not a challenging
task for practitioners. In particular, Android official online docu-
mentation provides valuable information and enables the use of
simple keyword searches to find a replacement for removed or dep-
recated API methods. Existing tools such as ARENA [50] should
theoretically be able to mine this information. However, when we
applied API method replacements to migrate Android API meth-
ods in FDroidApps, we experienced other challenges, which are
more time consuming to address, such as initializing new parameter
types. We document these challenges so that future research can
investigate them and propose automated techniques to assist in
API migration.

This paper highlights some failings of current API migration
techniques and provides opportunities to improve the understand-
ing of API evolution, particularly API migration. Several challenges
to be tackled by future research have been presented based on our
experience with the Android API and FDroid apps.

Exploring the Use of Automated APl Migrating Techniques in Practice

REFERENCES

(1]
(2]

[9

=

[10

[11]

[12]

[13

[14

(18]

[19]

[20

[21]

[22

[23

[24]

[25

[26]

2017. Android. (2017). https://www.statista.com/topics/876/android/

2017. App stores: number of apps in leading app stores
2016. (2017). https://www.statista.com/statistics/276623/
number-of-apps-available-in-leading-app- stores/

2017. F-Droid. (2017). https://f-droid.org/

2017. Package Index. (Jul 2017). https://developer.android.com/reference/
packages.html

Android. 2017. Android Platform Frameworks Base. (Aug 2017). https://github.
com/android/

Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. 2006. JDiff:
A differencing technique and tool for object-oriented programs. Automated
Software Engineering 14, 1 (2006), 3-36.

Muhammad Asaduzzaman, Chanchal K. Roy, Samiul Monir, and Kevin A. Schnei-
der. 2015. Exploring API method parameter recommendations. 2015 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME) (2015).
Alberto Bacchelli, Michele Lanza, and Romain Robbes. 2010. Linking e-mails and
source code artifacts. Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - ICSE 10 (2010).

Tobias Baum, Kurt Schneider, and Alberto Bacchelli. 2017. On the Optimal Order
of Reading Source Code Changes for Review. 2017 IEEE International Conference
on Software Maintenance and Evolution (ICSME) (2017).

Raymond P. L. Buse and Westley Weimer. 2012. Synthesizing API usage examples.
2012 34th International Conference on Software Engineering (ICSE) (2012).
Wing-Kwan Chan, Hong Cheng, and David Lo. 2012. Searching connected API
subgraph via text phrases. Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering - FSE 12 (2012).

Xiaofan Chen. 2010. Extraction and visualization of traceability relationships
between documents and source code. Proceedings of the IEEE/ACM international
conference on Automated software engineering (Sep 2010), 505-510.

Michael L. Collard, Michael John Decker, and Jonathan 1. Maletic. 2013. srcML:
An Infrastructure for the Exploration, Analysis, and Manipulation of Source
Code: A Tool Demonstration. 2013 IEEE International Conference on Software
Maintenance (2013).

Bradley E. Cossette and Robert J. Walker. 2012. Seeking the Ground Truth:
A Retroactive Study on the Evolution and Migration of Software Libraries. In
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering (FSE ’12). ACM, New York, NY, USA, Article 55, 11 pages.
D. Cubranic, G.c. Murphy, J. Singer, and K.s. Booth. 2005. Hipikat: a project
memory for software development. IEEE Transactions on Software Engineering
31, 6 (2005), 446-465.

B. Dagenais and Martin Robillard. 2008. Recommending adaptive changes for
framework evolution. Proceedings of the 13th international conference on Software
engineering - ICSE "08 (2008).

Barthélémy Dagenais and Martin P. Robillard. 2011. Recommending Adaptive
Changes for Framework Evolution. ACM Transactions on Software Engineering
and Methodology 20, 4 (2011), 1-35.

Barthelemy Dagenais and Martin P. Robillard. 2012. Recovering traceability links
between an API and its learning resources. 2012 34th International Conference on
Software Engineering (ICSE) (2012).

Marco Dambros, Michele Lanza, Mircea Lungu, and Romain Robbes. 2009.
Promises and perils of porting software visualization tools to the web. 2009
11th IEEE International Symposium on Web Systems Evolution (2009).

Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. 2006. Au-
tomated Detection of Refactorings in Evolving Components. ECOOP 2006 —
Object-Oriented Programming Lecture Notes in Computer Science (2006), 404-428.
Danny Dig and Ralph Johnson. 2006. How do APIs evolve? A story of refactoring.
Journal of Software Maintenance and Evolution: Research and Practice 18, 2 (2006),
83-107.

Ekwa Duala-Ekoko and Martin P. Robillard. 2011. Using Structure-Based Rec-
ommendations to Facilitate Discoverability in APIs. Lecture Notes in Com-
puter Science ECOOP 2011 — Object-Oriented Programming (2011), 79-104. https:
//doi.org/10.1007/978-3-642-22655-7_5

Stefan Endrikat, Stefan Hanenberg, Romain Robbes, and Andreas Stefik. 2014.
How do API documentation and static typing affect API usability? Proceedings of
the 36th International Conference on Software Engineering - ICSE 2014 (2014).

T. Espinha, A. Zaidman, and H. G. Gross. 2014. Web API growing pains: Stories
from client developers and their code. In 2014 Software Evolution Week - IEEE
Conference on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE). 84-93.

Giovanni Grano, Andrea Di Sorbo, Francesco Mercaldo, Corrado A. Visaggio,
Gerardo Canfora, and Sebastiano Panichella. 2017. Android apps and user feed-
back: a dataset for software evolution and quality improvement. Proceedings of
the 2nd ACM SIGSOFT International Workshop on App Market Analytics - WAMA
2017 (2017).

J. Henkel and A. Diwan. [n. d.]. Catchup! capturing and replaying refactorings
to support API evolution. Proceedings. 27th International Conference on Software

11

[27]

[28

[29]

(31]

(32

[33

&
=)

(35

[36]

(37]

(38]

[40]

[41

[42

[43

[44

[45

‘o
2

MSR ’18, May 28-29, 2018, Gothenburg, Sweden

Engineering, 2005. ICSE 2005. ([n. d.]).

R. Holmes and G.c. Murphy. [n. d.]. Using structural context to recommend
source code examples. Proceedings. 27th International Conference on Software
Engineering, 2005. ICSE 2005. ([n. d.]).

Daging Hou and David M. Pletcher. 2011. An evaluation of the strategies of
sorting, filtering, and grouping API methods for Code Completion. 2011 27th
IEEE International Conference on Software Maintenance (ICSM) (2011).

Mario Linares-Vasquez, Gabriele Bavota, Carlos Bernal-Cardenas, Rocco Oliveto,
Massimiliano Di Penta, and Denys Poshyvanyk. 2014. Mining energy-greedy
API usage patterns in Android apps: an empirical study. Proceedings of the 11th
Working Conference on Mining Software Repositories - MSR 2014 (2014).

Mario Linares-Vasquez, Gabriele Bavota, Carlos Bernal-Cardenas, Massimil-
iano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2013. API change and
fault proneness: a threat to the success of Android apps. Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2013 (2013).
Mario Linares-Vasquez, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
and Denys Poshyvanyk. 2014. How do API changes trigger stack overflow
discussions? a study on the Android SDK. Proceedings of the 22nd International
Conference on Program Comprehension - ICPC 2014 (2014).

Tyler Mcdonnell, Baishakhi Ray, and Miryung Kim. 2013. An Empirical Study of
API Stability and Adoption in the Android Ecosystem. 2013 IEEE International
Conference on Software Maintenance (2013).

Collin Mcmillan, Mark Grechanik, Denys Poshyvanyk, Chen Fu, and Qing Xie.
2012. Exemplar: A Source Code Search Engine for Finding Highly Relevant
Applications. IEEE Transactions on Software Engineering 38, 5 (2012), 1069-1087.
Collin Mcmillan, Denys Poshyvanyk, and Mark Grechanik. 2010. Recommending
source code examples via API call usages and documentation. Proceedings of the
2nd International Workshop on Recommendation Systems for Software Engineering
- RSSE 10 (2010).

B. Morel and P. Alexander. 2004. SPARTACAS: automating component reuse and
adaptation. IEEE Transactions on Software Engineering 30, 9 (2004), 587-600.
Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Andrian Marcus. 2015. How Can I Use This Method? 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering (2015).

Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrian
Marcus, and Gerardo Canfora. 2014. Automatic generation of release notes.
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering - FSE 2014 (2014).

Laura Moreno and Andrian Marcus. 2017. Automatic software summarization:
the state of the art. 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C) (2017).

Evan Moritz, Mario Linares-Vasquez, Denys Poshyvanyk, Mark Grechanik, Collin
Mcmillan, and Malcom Gethers. 2013. ExPort: Detecting and visualizing API
usages in large source code repositories. 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE) (2013).

Dan Morrill. 1970. Announcing the Android 1.0 SDK, release
1. (Jan 1970). https://android-developers.googleblog.com/2008/09/
announcing-android-10-sdk-release- 1.html

Brad A. Myers and Jeffrey Stylos. 2016. Improving API usability. Commun. ACM
59, 6 (2016), 62-69.

Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily Mast,
Eli Rademacher, Tien N. Nguyen, and Danny Dig. 2016. API code recommendation
using statistical learning from fine-grained changes. Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering -
FSE 2016 (2016).

Trong Duc Nguyen, Anh Tuan Nguyen, and Tien N. Nguyen. 2016. Mapping
API Elements for Code Migration with Vector Representations. In Proceedings of
the 38th International Conference on Software Engineering Companion (ICSE ’16).
ACM, New York, NY, USA, 756-758.

Marius Nita and David Notkin. 2010. Using Twinning to Adapt Programs to
Alternative APIs. In Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 1 (ICSE ’10). ACM, New York, NY, USA, 205-214.
Chris Parnin and Christoph Treude. 2011. Measuring API documentation on
the web. Proceeding of the 2nd international workshop on Web 2.0 for software
engineering - Web2SE 11 (2011).

Pujan Petersen, Stefan Hanenberg, and Romain Robbes. 2014. An empirical
comparison of static and dynamic type systems on API usage in the presence
of an IDE: Java vs. groovy with eclipse. Proceedings of the 22nd International
Conference on Program Comprehension - ICPC 2014 (2014).

S. Raemaekers, A. van Deursen, and J. Visser. 2014. Semantic Versioning versus
Breaking Changes: A Study of the Maven Repository. In 2014 IEEE 14th Interna-
tional Working Conference on Source Code Analysis and Manipulation. 215-224.
Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code completion with
statistical language models. ACM SIGPLAN Notices 49, 6 (May 2014), 419-428.
Romain Robbes and Michele Lanza. 2010. Improving code completion with
program history. Automated Software Engineering 17, 2 (Dec 2010), 181-212.
Romain Robbes, Mircea Lungu, and David Réthlisberger. 2012. How do developers
react to API deprecation? Proceedings of the ACM SIGSOFT 20th International

https://www.statista.com/topics/876/android/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://f-droid.org/
https://developer.android.com/reference/packages.html
https://developer.android.com/reference/packages.html
https://github.com/android/
https://github.com/android/
https://doi.org/10.1007/978-3-642-22655-7_5
https://doi.org/10.1007/978-3-642-22655-7_5
https://android-developers.googleblog.com/2008/09/announcing-android-10-sdk-release-1.html
https://android-developers.googleblog.com/2008/09/announcing-android-10-sdk-release-1.html

MSR 18, May 28-29, 2018, Gothenburg, Sweden

[51]

[52]

[53

[54]

[55

[56]

[57

[58

[59

[60

[61]

[62

[63

[64]

Symposium on the Foundations of Software Engineering - FSE 12 (2012).

Martin P. Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar
Chaparro, Neil Ernst, Marco Aurelio Gerosa, Michael Godfrey, Michele Lanza,
Mario Linares-Vasquez, and et al. 2017. On-demand Developer Documentation.
2017 IEEE International Conference on Software Maintenance and Evolution (2017).
Anand Ashok Sawant and Alberto Bacchelli. 2015. A Dataset for API Usage. 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories (2015).
Anand Ashok Sawant and Alberto Bacchelli. 2016. fine-GRAPE: fine-grained APi
usage extractor — an approach and dataset to investigate API usage. Empirical
Software Engineering 22, 3 (Apr 2016), 1348-1371.

Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. 2017. On the
reaction to deprecation of clients of 4 1 popular Java APIs and the JDK. Empirical
Software Engineering (2017).

Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. 2014. Live API
Documentation. In Proceedings of the 36th International Conference on Software
Engineering (ICSE 2014). ACM, New York, NY, USA, 643-652.

Ferdian Thung, Shaowei Wang, David Lo, and Julia Lawall. 2013. Automatic
recommendation of API methods from feature requests. 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE) (2013).
Christoph Treude and Martin P. Robillard. 2016. Augmenting API documentation
with insights from stack overflow. Proceedings of the 38th International Conference
on Software Engineering - ICSE 16 (2016).

Pradeep K. Venkatesh, Shaohua Wang, Feng Zhang, Ying Zou, and Ahmed E.
Hassan. 2016. What Do Client Developers Concern When Using Web APIs? An
Empirical Study on Developer Forums and Stack Overflow. 2016 IEEE International
Conference on Web Services (ICWS) (2016).

Roman Strobl and Zdenék Tronic¢ek. 2013. Migration from Deprecated API in
Java. In Proceedings of the 2013 Companion Publication for Conference on Systems,
Programming, 38; Applications: Software for Humanity (SPLASH ’13). ACM, New
York, NY, USA, 85-86.

Chenglong Wang, Jiajun Jiang, Jun Li, Yingfei Xiong, Xiangyu Luo, Lu Zhang,
and Zhenjiang Hu. 2016. Transforming Programs between APIs with Many-to-
Many Mappings. In 30th European Conference on Object-Oriented Programming
(ECOOP 2016) (Leibniz International Proceedings in Informatics (LIPIcs)), Shriram
Krishnamurthi and Benjamin S. Lerner (Eds.), Vol. 56. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 25:1-25:26. http://drops.dagstuhl.
de/opus/volltexte/2016/6119

Martin White, Christopher Vendome, Mario Linares-Vasquez, and Denys Poshy-
vanyk. 2015. Toward Deep Learning Software Repositories. 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories (2015).

Deheng Ye, Zhenchang Xing, Chee Yong Foo, Jing Li, and Nachiket Kapre. 2016.
Learning to Extract API Mentions from Informal Natural Language Discussions.
2016 IEEE International Conference on Software Maintenance and Evolution (ICSME)
(2016).

Cheng Zhang, Juyuan Yang, Yi Zhang, Jing Fan, Xin Zhang, Jianjun Zhao, and
Peizhao Ou. 2012. Automatic parameter recommendation for practical API usage.
2012 34th International Conference on Software Engineering (ICSE) (2012).

Jing Zhou and Robert J. Walker. 2016. API Deprecation: A Retrospective Analysis
and Detection Method for Code Examples on the Web. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2016). ACM, New York, NY, USA, 266-277.

12

Maxime Lamothe, Weiyi Shang

http://drops.dagstuhl.de/opus/volltexte/2016/6119
http://drops.dagstuhl.de/opus/volltexte/2016/6119

