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Abstract—Effective testing of sequence-to-sequence (seq2seq)
models, such as those used in question answering (QA)
systems, is essential for ensuring their reliability. While recent
efforts have introduced metamorphic testing strategies to detect
bugs without requiring ground-truth labels, the efficiency of
these methods remains limited by their lack of test case
prioritization. Executing all test cases uniformly can lead to
wasted resources and slower fault discovery. In this paper, we
propose a white-box prioritization framework that ranks test
cases based on internal signals extracted from the underlying
model. Building upon a prior work that introduced two white-
box techniques (i.e., GRI and WALI) for identifying vulnerable
tokens, we adapt these techniques to the task of test prioriti-
zation. Instead of generating new test inputs, our methods an-
alyze test cases produced by QAQA and prioritize those most
likely to uncover faults. We evaluate our approaches on three
widely-used QA datasets: BoolQ, NarrativeQA, and SQuAD?2.
Experimental results show that GRI significantly improves the
rate of bug detection under constrained testing budgets, while
WALLI achieves comparable performance to baseline methods.
Our findings demonstrate the value of incorporating white-box
insights into the prioritization process, offering a more efficient
and effective way to test QA systems.

Keywords—Natural Language Processing; Software testing;
Test prioritization; Question Answering systems

1. INTRODUCTION

The increasing integration of natural language processing
(NLP) systems into critical applications, such as digital as-
sistants and question answering (QA) platforms, demands
rigorous software quality assurance. Sequence-to-sequence
(seq2seq) models, widely adopted for tasks like machine trans-
lation and QA, introduce a unique set of challenges for testing
due to their complex, non-deterministic behavior and open-
ended outputs. To address this, metamorphic testing strategies
such as QAQA [26] have emerged, which validate system
robustness by introducing controlled perturbations to the input
and analyzing the resulting changes in output. However, a
common limitation among these approaches is the lack of test
prioritization. In real-world scenarios where test execution is
costly or time-sensitive, running test cases in an arbitrary or
fixed order often leads to inefficient use of testing resources.
In this work, we focus on the problem of test case prioriti-
zation for QA systems: how to rank and execute test cases
in an order that maximizes the rate of bug detection. While
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traditional test prioritization strategies in software engineering
have shown promise in reducing cost and effort, such ideas
remain underexplored in the context of NLP system testing.
Existing approaches like QAQA treat all test inputs equally,
neglecting the fact that certain test cases are inherently more
likely to expose model faults than others. By leveraging the
internal signals of the underlying model, we aim to guide the
execution order of test cases toward those most likely to reveal
bugs early.

This paper builds upon our prior work [25], which intro-
duced two white-box techniques for test input generation:
GRI (GRadient Information) and WALI (Word ALignment
Information). In that work, GRI used gradient information to
identify tokens in the input that contribute most to the model’s
prediction, while WALI utilized attention-based alignment to
locate low-confidence alignments between input and output
tokens. These techniques proved effective for generating test
cases that exposed translation and QA system failures.

In this follow-up study, we extend the use of GRI and WALI
from test generation to test prioritization in QA system testing.
Rather than generating new test cases, we take the test suite
produced by QAQA as input and apply white-box analysis
to prioritize the execution of these cases. For GRI, we score
test cases based on the gradient-based importance of inserted
sentence content relative to the original question. For WALI,
we analyze alignment matrices between the inserted sentence
and the predicted answer to quantify relevance. Our hypothesis
is that test cases with higher semantic or alignment-based
relevance to sensitive tokens are more likely to trigger errors.
To evaluate our proposed prioritization strategies, we apply
them to QA test suites generated from three benchmark
datasets: BoolQ [5], NarrativeQA [17], and SQuAD2 [23],
using a Transformer-based QA model [1]. We compare our
methods against the original QAQA approach using the area
under the curve (AUC) of fault detection over test execution
budget as our primary metric. Our results show that GRI
significantly improves the efficiency and effectiveness of bug
discovery compared to the baseline, while WALI performs
comparably. These findings support the utility of white-box
information in guiding test prioritization for NLP systems.
The contributions of this paper are as follows:

« We propose a novel application of two white-box strate-
gies, GRI and WALLI, for prioritizing test cases in QA
software testing.

« We show that gradient-based prioritization (GRI) can
substantially increase bug detection efficiency compared



to existing black-box strategies.

« We provide an empirical evaluation of prioritization meth-
ods on standard QA benchmarks, revealing key insights
into the value and limitations of internal model signals
for guiding test execution.

Our work demonstrates the effectiveness of incorporating
white-box techniques into the test prioritization process, con-
tributing to more efficient and targeted NLP system testing. All
code, data, and replication materials are publicly available!.
Paper organization. The rest of the paper is constructed
as follows: Section 2 presents some background informa-
tion about two white-box techniques used in our approach.
Section 3 illustrates our approach of applying the white-
box approaches to test case prioritization for QA software.
Section 4 describes our experimental methodology. Section 5
presents results and analyzes the effectiveness of our proposed
approach. Section 6 discusses threats to validity. Section 7
presents the prior studies related to this work. Finally, Sec-
tion 8 concludes with a summary of contributions and future
research directions.

2. PRELIMINARY: WHITE-BOX APPROACHES

The test case prioritization approach presented in this paper
leverages two white-box analysis techniques, GRI and WALI,
originally introduced in our prior work [25] primarily for
test generation on testing machine translation. To provide the
necessary foundation for understanding their application to
QA test prioritization in this work, we briefly summarize the
concepts of these methods below.

2.1 Gradient-based Information (GRI)

Gradient information, indicating the sensitivity of model out-
put to input changes, is used in deep learning for tasks
like adversarial example generation [8, 10, 11, 22, 34] and
identifying critical input features [12, 18]. While common for
classification systems, its application to QA testing is limited.
Treating QA as a sequence of multi-class classification prob-
lems (predicting tokens based on source and previous tokens),
we hypothesize that gradients can identify vulnerable tokens in
QA. GRI uses gradient information for this purpose. Inspired
by Li et al. [18], we assume tokens with higher gradients are
more likely to alter system output upon replacement.

GRI calculates the partial derivative of the loss L with respect
to each input token z; to obtain gradients. This is given by:

V]

Where y; is the output for the j-th element in the output
vocabulary V, and |V)| is the size of the output vocabulary.
Using automatic differentiation, we compute the Jacobian
matrix for the loss concerning the input sentence. The resulting
gradient vector highlights input tokens whose perturbation
is expected to significantly alter the model’s output, guiding
prioritization.
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2.2 Word Alignment-based Information (WALI)

Word alignment identifies correspondences between source
and target words in a bitext, benefiting tasks like neural
machine translation and grammatical error correction [20, 27,
32, 35]. WALI adopts this to identify vulnerable source tokens.
Unlike GRI, WALI first identifies vulnerable target tokens and
then uses alignment information to map them back to source
tokens. If a target token y; is vulnerable and aligned to the
source token x;, then x; is deemed vulnerable.

We use a Transformer model, which relies on attention, for
testing [29, 30], following prior work [2, 9, 32]. Attention
weights o ; from the Transformer provide alignment scores
between target token y; and source token x;:

oy ; = softmax (Ql J

)

where Q; is the query matrix, K; is the key matrix, v/dg
is a normalization factor where dj is the dimension of the
key/query matrix. Based on the extracted the attention weights
«, the alignment matrix A is then calculated as:

T

2

1 j=arg max o,
J/
otherwise

Aij(a) = 3)

0

where A; ; = 1 indicates y; is aligned to x;.

For both machine translation and QA evaluation, we employ
a transformer-based sequence-to-sequence model. This allows
leveraging encoder-decoder attention layers to map input and
output tokens, identifying candidates for replacement in test
generation and bug-revealing test cases for prioritization.

3. APPROACH

This section details how two white-box methods prioritize
generated QA test sentences. Our approach focuses on sen-
tences strongly correlated with vulnerable tokens, which are
hypothesized to be more bug-revealing, to streamline testing
by emphasizing impactful test cases.

3.1 Overview

Figure 1 outlines our proposed approaches for testing QA
software. Initially, for each source sentence, we identify re-
lated sentences from the training dataset using methods from
baseline research [26]. Next, we create a new input by adding
a redundant sentence to either the question or the context,
following a consistent strategy. Within our white-box frame-
work, we employ two specific strategies to order the test cases:
(1) identifying vulnerable tokens based on gradient informa-
tion (GRI) and (2) identifying them through word alignment
(WALI). Subsequently, we organize the new test inputs by
ranking the test cases according to the relevance of the selected
sentences and the targeted tokens, specifically ordering them
by the maximum gradient or attention values associated with
the selected tokens within the sentences. This reordering of test
cases ensures they are executed in a prioritized manner. The
QA software then processes these reordered sentences (test
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Figure 1: An overview of our approach.

cases or mutants), generating corresponding responses. If the
variance between a new response and the original response
surpasses a predetermined threshold, it indicates a potential
bug.

3.2 GRI for test prioritization

We reorder QA software test cases using question token
gradients presented in Section 2-A to enhance bug detection.
In particular, we identify top-k tokens in the original question
by gradient magnitude using the baseline’s semantics-guided
search. Test cases are then prioritized by the maximum gradi-
ent of these top-k tokens found within the inserted sentence
(or O if these tokens are absent). This approach leverages the
inserted sentence’s gradient-derived relevance, based on the
hypothesis that higher relevance is more likely to confuse
the QA software, even if question semantics are preserved.
Algorithm 1 details this GRI-based prioritization process.

Algorithm 1: GRI Prioritization

Input: a source sentence x, and the QA system F (-) and tokenizer Tokenizer
Output: a set of reordered sentences X’

begin

tokens « Tokenizer (x)

embeddings «— F (tokens)
output «— F (embeddings)
G « GetGradient (output)
Gsorted < Sort (G)
Tordered < SortTokensbyGrad (tokens)
Sselected < Semantics-GuidedSearch (Training Set)
gmax < 0
foreach w;, g; € Tordered do
L if w; € Sseiectea then

gmaz < max{gmaax, gi}
X! - dereq < SortbyMaxGradient (X')

’
return X, e req

3.3 WALI for test prioritization

As explained in section 2-B, attention weights in the trans-
former model illustrate the connections between target and
source tokens. Specifically, question-answering scenarios usu-
ally present an intricate token mapping due to the dispropor-
tionate lengths of source inputs and outputs. Consequently, the
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emphasis shifts toward analyzing the alignment weights that
link target and source tokens.

To enhance the identification of bug-revealing test sentences,
the hypothesis is that a stronger correlation between the
inserted sentence and the answer increases the likelihood of
influencing the answer. Thus, the goal is to assess the correla-
tion between the inserted sentence and the answer. While the
transformer model provides attention weights showing input-
output token mappings, it does not directly offer the correlation
with inserted sentences. The proposed method involves using
these attention weights, as detailed in section 2-B, to derive
the attention matrix for the input sentences (question and
context) against the output answer. An alignment matrix is
then calculated for the original input and the inserted sentence
using a pre-trained BERT model [6]. The BERT model is
also a transformer-based model pre-trained on a large corpus
of multilingual data that can provide the alignment between
the input and output sentences. By matrix multiplication of
these two matrices, a new matrix emerges, illustrating the
relationship between the selected tokens and the answer, aiding
in prioritizing the test cases effectively.

To mathematically formalize the algorithm described for pri-
oritizing bug-revealing test sentences, consider the following
equations:

Let A € R™*™ represent the attention matrix from the
transformer model, where m is the number of input tokens
and n is the number of output tokens (answer). An element
a;; in A indicates the attention weight from the i-th input
token to the j-th output token.

A=Ja;] fori=1,...,mandj=1,...,n

Let B € R™*° denote the alignment matrix obtained using
the BERT model [6], where o is the number of tokens in
the inserted sentence. An element b;; in B represents the
alignment score between the ¢-th input token and the k-th
token in the inserted sentence.

B = [bi]

The correlation matrix C' € R°*" is computed by multiplying
matrices A and B, where an element cy; in C' corresponds to
the correlation between the k-th token in the inserted sentence

fori=1,...,mandk=1,...,0



and the j-th token in the output answer.

C=B"xA

C = [exy]

This product C = BT x A provides a detailed view of how
tokens in the inserted sentence is related to tokens in the
answer. Figure 2 illustrates the matrix multiplication between
Aand BT.

fork=1,...,0and j=1,...,n

m n n
— > — > «—>
0 X m —_—> °
BT A C

Figure 2: Matrix multiplication where A represents the at-
tention matrix, m is the number of input tokens and n is
the number of output tokens, B denote the alignment matrix
obtained using the BERT model [6], o is the number of tokens
in the inserted sentence.

The magnitude of the correlation matrix is utilized to sequence
the test sentences, prioritizing those that have a higher like-
lihood of revealing bugs during testing. Test sentences are
ordered in descending order according to the magnitude of
the correlation matrix, ensuring that those with the greatest
potential impact are tested first.

3.4 Test input generation

For the test input generation, we follow the methodology from
a previous study. The process, known as QAQA, involves
searching the training data for a sentence that closely re-
sembles the original question in terms of semantic content.
To identify the core semantics of the question, it is first
condensed using the compression model SLAHAN [13]. Sub-
sequently, both the truncated question and the training data
sentences are transformed into embeddings using Sentence-
BERT (SBERT) [24]. By computing the cosine similarity
between these embeddings, the sentence from the training set
with the highest similarity score to the truncated question is
chosen for mutation. This selected sentence is then used to
generate a new test input.

To generate mutants, QAQA leverages five metamorphic re-
lations: Equivalent Question (EQ), Equivalent Context (EC),
Test Integration (TI), Equivalent Question & Context (EQC),
and Equivalent Test Integration (ETI). These relations guide
how the selected sentence is inserted into the question and/or
context to create a new test input. We employ this same
methodology to produce mutants in our testing strategy. For a
more detailed explanation of these metamorphic relations and
their application in the mutant generation, refer to the study
detailed in [26].
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3.5 Bug detection

The bug detection approach aligns with the baseline method to
ensure comparability, focusing on the consistency of metamor-
phic relations. Answers provided by the QA software are com-
pared; if the discrepancy between the answer to the generated
input and the original exceeds a predefined threshold, it signals
a potential bug. Considering the linguistic variability where
identical semantics can be presented differently (e.g., "UK"
vs. "United Kingdom"), the approach also includes measuring
the embeddings’ similarity to ensure semantic consistency
between answers. Phrase-Bert (PBERT) [33], an advanced
model for phrase-level representation, is employed to convert
the answers into embedding vectors, followed by computing
cosine similarity to detect semantic variations. When the
similarity score falls below the established threshold (0.76,
consistent with the baseline methodology [26]), a bug is
reported. More details can be found in prior research on QA
software testing [26].

3.6 Test prioritization evaluation metric

To assess the effectiveness of test prioritization, it is essential
to have an evaluation metric. A common metric is a graph
depicting the percentage of detected faults versus the fraction
of the test suite used. This curve illustrates the cumulative
percentage of faults detected as testing progresses. The shaded
area under this curve signifies the weighted average of the
percentage of faults detected throughout the lifespan of the
test suite. This area is referred to as the prioritized test suite’s
average percentage of faults detected.

In our experiments, we will evaluate the area under the
curve (AUC) of the percentage of detected faults during test
execution. We will compare this with the ideal scenario, where
all bugs are scheduled in priority, to assess the performance
of our white-box approaches (Figure 3 provides an example
of the curves). This comparison will allow us to quantify how
effectively our approaches can identify and prioritize critical
test cases that are likely to reveal faults, thereby optimizing the
testing process and ensuring more efficient resource utilization.

4. EXPERIMENTAL SETUP

In this section, we present our experimental setup, including
the QA dataset and software for evaluation, and the experi-
mental environments.

4.1 Dataset

The study employs three well-regarded QA datasets previously
utilized in existing research. The baseline QAQA used these
datasets as well for evaluation; therefore, we adopted the same
datasets to maintain consistency in comparison. The training
datasets are used to build the UnifiedQA model, while the test
sets are used as test cases for the proposed approaches. The
details of the datasets are listed below.

BoolQ. BoolQ [5] is a Boolean QA dataset, where the answers
to the questions are either "yes" or "no". This dataset com-
prises questions sourced from Google search engine queries,
with corresponding contexts extracted from Wikipedia articles.



SQuAD2. SQuAD?2 [23] is an extractive QA dataset in which
the answer is a segment of text. The questions and answers
are collected from Wikipedia articles. SQuAD?2 includes unan-
swerable questions, meaning that some questions are designed
with “<No Answer>" indicating that the text does not contain
information to answer the query.

NarrativeQA. NarrativeQA [17] is an abstractive QA dataset
in which the answer is not a span of the context. The
dataset is collected from books and movie scripts to test the
comprehension of the model in the context.

4.2 QA software

We used the pre-trained T5-large-based UnifiedQA [1] model
as the testing subject, which aligns with the baseline approach,
QAQA. It is one of the state-of-the-art models that is proven to
perform well across diverse datasets. In addition, it was widely
studied in prior researches [4, 26] as well as an experimental
subject; employing this model facilitates direct comparisons
with prior results.

4.3 Implementation settings

In this experiment, we improve the testing efficiency using
GRI and WALI for prioritization. For the purpose of a fair
comparison, we adopt the same approach as in the previous
study [26] for generating new test sentences using metamor-
phic relations for each original source sentence. We conducted
the experiment on Ubuntu 18.04 with an NVIDIA GTX 1080Ti
GPU.

5. EVALUATION

In this section, we evaluate our proposed approaches against
the SOTA testing baseline (i.e., QAQA). The effectiveness of
our approach can be evaluated by the ability to identify the
bug-revealing test sentences and position these potential bug-
triggering sentences at the beginning of the testing sequence,
thus improving the fault detection rates over the testing phase.
Specifically, we aim to answer the following research ques-
tions (RQs):

RQ1: How effective are the white-box approaches in
prioritizing the bug-revealing test cases?

Motivation. Extensive approaches have been proposed for
testing question answering systems, while few consider con-
ducting the testing from a white-box perspective. Meanwhile,
studies [11, 18, 32] have shown that using white-box methods
can benefit many NLP tasks. Therefore, in this RQ, we would
like to explore whether our two white-box-based approaches
(i.e., GRI and WALI) can improve the AUC (Area Under
Curve) of the cumulative count of bugs reported during the
testing, which indicates the rate of fault detection of the
prioritization techniques.

Approach. To answer this research question, we apply GRI
and WALI as well as the baseline approaches on each source
sentence in the BoolQ, NarrativeQ, and SQuAD?2 datasets.
With the generated mutants, we then examine whether the
mutants can reveal a bug (cf. Section 3-E). For quantitative
evaluation, we focus on the number of bugs detected using the
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TABLE I: AUC for different approaches
BoolQ NarrativeQA SQuAD2

QAQA  51.37 51.04 50.19
GRI 58.24 55.54 52.68
Ideal 89.72 84.59 80.86

similarity metrics over the number of test cases executed. To
ensure the validity of the results, following previous work [26],
we randomly sample 100 test cases for manual evaluation.
Result. Our proposed approaches, GRI, can outperform the
baseline approaches under identical experimental settings.
The results comparing GRI and WALI with baseline methods
are shown in Figure 3. This figure demonstrates the cumulative
bugs detected by different strategies against the number of test
cases executed in various sequences across three datasets. It’s
evident that GRI surpasses the baseline in two key areas: (1)
it uncovers more bugs within a specific testing budget, and
(2) it achieves set testing goals with fewer resources post-
prioritization. For instance, GRI detects 315 bugs in BoolQ
with 1,000 test cases, surpassing the 221 bugs identified by
QAQA, as illustrated in Figure 3(a). Moreover, to find 200
bugs, GRI requires 522 tests, whereas QAQA needs 890 tests.
This figure illustrates the effectiveness of GRI in identifying
test cases with a higher likelihood of revealing bugs, thereby
enhancing the testing process’s efficiency through prioritiza-
tion.

Additionally, GRI consistently shows a higher percentage of
AUC when set against the QAQA baseline. The AUC (Area
Under the Curve) in Figure 3 illustrates the rate at which bugs
are discovered as testing progresses. A higher AUC indicates
that a larger number of bugs are identified early in the testing
cycle, suggesting that the testing process is effective in quickly
uncovering faults in the software. Table I displays these
comparisons, with the best results in bold. Specifically, GRI
outperforms the baseline approach in identifying more bugs
within the same testing budget across BoolQ, NarrativeQA,
and SQuAD?2 datasets, showing an increase in AUC percentage
of 6.87%, 4.50%, and 2.49%, respectively. This emphasizes
GRTI’s effectiveness in exploiting QA systems’ vulnerabilities
by using gradient information, thus enhancing testing success
rates.

From Figure 4, it is evident that the performance of WALI is
not particularly impressive. The curve and the Area Under the
Curve (AUC) of WALI are quite similar to those of the original
QAQA curve. For the SQuAD?2 dataset, the percentage of AUC
is only about 5% higher than the original baseline approach.
However, since this improvement is not consistent across all
three datasets and is relatively modest, it is not sufficient
to conclude that WALI significantly enhances detection ef-
ficiency. Thus, the prioritization based on the WALI approach
does not offer a significant improvement over the established
QAQA method. However, our proposed approach offers the
potential to explore the relationship between the input and
output using the alignment information of the sequence-to-
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TABLE II: Manual evaluation results.
Dataset | NarrativeQA  SQuAD2

Precision 79.49% 86.67%
Recall 96.87% 83.87%
F1 Score 87.32% 85.24%

sequence models.

As the test oracle depends on the similarity score between
the original and new answers, ensuring the validity of the
results necessitates a manual evaluation. Given that the original
test generation methodology of QAQA remains unchanged,
the precision of the test oracle should remain consistent.
To validate the results, we employed the same evaluation
approach, sampling 100 test cases from the NarrativeQA and
SQuAD?2 datasets. These test cases and their results were
manually labeled to assess accuracy. The precision, recall, and
F1-score of this evaluation are presented in Table II.

From Table II, the precision, recall, and F1 score align closely
with those reported in the earlier study [26], demonstrating
the test oracle’s reliability. Specifically, in the NarrativeQA
dataset, there were 8 false positives and 1 false negative out of
100 random samples. For the SQuAD2 dataset, the evaluation
revealed 4 false positives and 5 false negatives among the
100 samples. Additionally, the QAQA report noted 5 false
positives and 27 false negatives from 300 samples of generated
question and answer pairs. By comparing these outcomes
with the false positives and false negatives documented in
the paper [26], it is clear that our testing strategy maintains
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its accuracy. This consistent performance results from our
adherence to the original test generation process and the use of
the same threshold values, ensuring robust and reliable testing
across different datasets. Thus, the validity of the results is
maintained.

Prioritizing tests with GRI quantitatively surpasses the
QAQA baseline while maintaining human-validated accu-
racy; WALI performs comparably to the baseline. This
demonstrates the potential for future research into white-
box methods to enhance QA test prioritization and effi-
ciency.

\

RQ2: What are the characteristics of the test cases that
are not identified by GRI and WALI?

Motivation. While GRI and WALI have effectively identified
several test cases more likely to uncover bugs, there are
still instances where test cases evade detection. This research
question (RQ) aims to investigate the characteristics of the test
cases that GRI and WALI failed to identify and to explore the
factors that may increase the likelihood of generating bug-
revealing test cases for QA systems.

Approach. To address this research question, we analyze test
cases that reported bugs despite low gradient or attention map-
ping values. Our investigation includes an in-depth analysis of
source input length to determine its influence on bug detection
effectiveness and its correlation with the probability of a test
case revealing a bug. This aims to refine and enhance QA



Percent Detected Faults

e
AUC = 88.16 C = 48.01
@
AUC = 83.66 C =50.21
(b)
P> |
AUC = 80.69 AuC = 55.47

02

©

3 08

Test Suite Fraction
Figure 4: Percentage of detected bugs(y-axis) vs. fraction of test suite executed(xz-axis) using the initial test order, the ideal
scenario, and WALI-based prioritization for (a) BoolQ, (b) NarrativeQA and (c) SQuAD2 dataset respectively.

system testing strategies.

BoolQ NarrativeQA

Percentage of reported bugs (%)

T i
SQuAD2
Length of input text

Figure 5: Percentage of reported bugs (y-axis) vs. length of
the input sentence (x-axis). This figure shows the distribution
of bugs in terms of sentence length.
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First, we examine the correlation between the length of the
question and the likelihood of reporting a bug after a mutation
is inserted. Figure 5 illustrates a negative relationship between
the percentage of bugs reported and the length of the question
in the input across all datasets except BoolQ. This trend arises
because shorter questions are more significantly affected by
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the addition of redundant sentences to the input question and
context, logically leading to a negative relationship between
the likelihood of bug reporting and question length. For the
dataset NarrativeQA, the Spearman correlation coefficient [19]
p is -0.69 with a p-value of 0.057, which indicates a strong
negative correlation between the variables. This finding im-
plies that shorter questions in NarrativeQA are particularly
susceptible to generating detectable bugs when altered with
test case mutations.

The exception observed with the BoolQ dataset can be at-
tributed to the binary nature of its answers and the consistent
structure of boolean questions. Typically, boolean questions
demand a straightforward "yes" or "no" response, which may
not vary significantly with changes in question length. This
consistency in the question format and answer type reduces
the variability in how questions are processed and understood,
potentially diminishing the impact of additional or redundant
information introduced through mutations. Consequently, the
correlation between question length and bug occurrence that
is evident in other datasets may not manifest as strongly in
BoolQ.

In Table 6, two test cases are presented where GRI and WALI
did not effectively prioritize as bug-revealing, yet they reported
bugs. Observing these examples, it is evident that the added
sentences do not initially correlate with the question. How-
ever, when incorporated into the question using the QAQA
methodology—prefaced with phrases like “I have known” or
“I have heard”—they are likely to create an implication that



Original Question Added Sentence Original Answer New Answer
What is another name || have known that pauline Cynthia juliet is diana
for the goddess admires juliet's outspoken
diana? arrogance and beauty
What is the name of || heard a whisper that Gabriel Lord Humungus pappagallo

the leader of the gang |Syme gives a rousing
that is laying siege to anarchist speech and wins the
the oil refinery? vote

Figure 6: Example of test cases that reported a bug but were
not identified by GRI and WALI.

influences the answer.

BoolQ NarrativeQA

10 15 20 25 30 35 40 45 50

Percentage of reported bugs (%)
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SQuAD2
Noise Impact Ratio (Length of question/ Length of inserted sentence)
Figure 7: Percentage of reported bugs (y-axis) vs. length
of question/ length of inserted sentence (z-axis). This figure
shows the distribution of bugs in terms of the ratio between
texts.

For the first example, GRI identified “diana” and “goddess”
as significant tokens within the question. Upon analyzing the
keywords in the added sentence, it failed to find any direct
correlation with these identified tokens. WALI calculated a
score of 0.45 for the magnitude of the correlation matrix of
the added sentence and the answer, suggesting a moderate
connection. Despite the initial absence of a direct link, the way
the sentence was integrated and the phrase, “juliet’s outspoken
arrogance and beauty” imply a semantic connection. This
integration subtly misled the model, causing it to provide an in-
correct response. This outcome underscores the complexity of
detecting and interpreting the semantic implications of added
sentences in QA systems, highlighting areas for improvement
in the tools used to prioritize potential bug-revealing test cases.
In the second example, there is a potential implication estab-
lished even though there is no direct correlation or similar-
ity between the added sentence and the question. However,
while the answer changes, it is not influenced by the added
sentence but rather presents a completely different response.
This scenario is another typical example of test cases that GRI
and WALI fail to identify. The addition of a new sentence to
the input text introduces noise and can impact the model’s
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output. To explore this effect further, we analyze whether
the ratio of the length of the question to the length of the
added sentence correlates with the number of bugs reported.
We hypothesize that the longer the added sentence relative to
the shorter original question, the greater the impact of noise
on the model.

From Figure 7, we observe a negative correlation between
the ratio, which we will refer to as the “Noise Impact Ratio”
(Length of question/ Length of inserted sentence), and the
number of reported bugs. This metric helps us quantify how
the proportion of added content to original content influences
the likelihood of generating bugs, underscoring the sensitivity
of the QA model to variations in input length. This observation
emphasizes the importance of the length of the inserted
sentence in relation to the original input text. A lengthy
inserted sentence can introduce significant noise, causing the
model to produce a different answer even if there is no
semantic correlation between the texts. In such cases, the
model struggles to accurately comprehend the question and
identify the crucial segments, leading to incorrect responses.

Reported bugs negatively correlate with source sentence
length and also with the ratio of question length to in-
serted sentence length. Although the question and added
sentence may not be directly similar, their combination can
introduce misleading implications for the model, leading
to incorrect answers.

6. THREATS TO VALIDITY

In this section, we discuss the threats to the validity of our
research.

External Validity. In our study, we have utilized three datasets
(i.e., BoolQ [5], NarrativeQA [17] and SQuAD?2 [23]) and a
QA software (i.e., UnifiedQA [1]). We followed strictly the
experimental setup of QAQA in the research to ensure a fair
comparison. Therefore, it is necessary for future research to
examine the effectiveness of our proposed approaches on other
QA models and datasets.

Internal Validity. In WALI, we use the encoder-decoder
attention weights of the UnifiedQA model to align the target
and source tokens, which although effective, may not always
be precise. For future research, we can employ a more
sophisticated alignment approach to enhance the approach.
In addition, the automatic test oracle used for bug detection
relies on cosine similarity of embedding vectors to evaluate the
quality of answers. However, the metrics used for evaluating
output answers may not accurately reflect human perceptions
of quality, and human evaluation may be subject to individual
biases. We followed the same human evaluation criteria as
used in the baseline approaches and randomized the test inputs
to reduce bias. To address this issue, future research could
incorporate more manual evaluations to assess the effective-
ness of GRI and WALI with a larger number of evaluators to
minimize bias.



7. RELATED WORK

In this section, we present the related work in test selection
and prioritization, and QA system testing.

7.1 Test selection and prioritization techniques

Test case prioritization aims to improve testing efficiency
by running fault-detecting test cases earlier [7]. Machine
learning approaches are commonly leveraged to address this
problem [21]. Examples include reinforcement learning using
test failure as a reward [28], unsupervised learning to group
test cases by coverage [14], and supervised learning models
like Random Forest and Rank Boost [3]. NLP topic modeling
has also been used for test case vector representation and
prioritization via a greedy algorithm [31]. However, these tech-
niques often depend on source code coverage [14], historical
failures [28], or structured test descriptions [31]. Their direct
application to complex Al systems like QA is challenging due
to unstructured natural language inputs, semantic correctness
criteria, and testing methodologies [26] that don’t easily pro-
duce traditional coverage or failure logs. This gap highlights
the need for prioritization techniques tailored to QA systems.

7.2 Question answering system testing

QA systems, significantly advanced by machine learning and
deep learning, aim to answer human questions in natural
language. Reference-based evaluation, using benchmarks like
SQuAD?2 [23], BoolQ [5], BoolQ-NP [16], NarrativeQA [17],
and MultiRC [15], has been a primary testing methodology.
However, this approach is labor-intensive due to manual label-
ing and ineffective for the vast number of unlabeled, real-world
user questions [4, 26]. To address these limitations, automated,
label-free methods like QAAskeR [4] and QAQA [26] have
emerged. Both employ metamorphic testing. QAAskeR gener-
ates new question-answer pairs from initial outputs, flagging
inconsistencies as potential bugs. QAQA applies sentence-
level mutations (e.g., adding redundant sentences) to original
questions or contexts, expecting consistent answers. While
these methods overcome the manual labeling dependency,
they are black-box approaches that execute test cases without
prioritizing those more likely to find bugs. Our white-box
approaches, GRI and WALI, address this by prioritizing test
cases for sequence-to-sequence transformer-based QA models
(like that in QAQA). By identifying unstable tokens in source
sentences, these methods aim to reveal model vulnerabilities
and optimize testing by prioritizing effective test cases.

8. CONCLUSION

In this study, we apply two white-box approaches, GRI and
WALLI to prioritize test cases generated by QAQA for QA
software testing, aiming to enhance test execution efficiency.
Results show GRI efficiently and effectively prioritizes bug-
revealing test cases, outperforming the baseline, while WALI’s
performance is comparable. These white-box methods identify
and prioritize test cases more likely to reveal bugs for early
execution, thereby improving efficiency and reducing compu-
tational costs. Our research highlights advancements in using
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white-box approaches for testing sequence-to-sequence mod-
els and demonstrates their potential for Al software quality
assurance.
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