2025 25th International Conference on Software Quality, Reliability and Security (QRS)

An Empirical Study of Logging Practice in CUDA-based Deep Learning Systems

An Chen', Kundi Yao'**, Haonan Zhang!*, Yiming Tang?, and Weiyi Shang'
University of Waterloo, Waterloo, Ontraio, Canada
2Rochester Institute of Technology, Rochester, New York, United States
{a429chen, kundi.yao, haonan.zhang, Wshang}@uwaterloo.cal, yxtvse@rit.edu2
*corresponding author

Abstract—Although logging practices have been extensively
explored in conventional software systems, there remains a
lack of understanding of how logging is applied in CUDA-
based deep learning (DL) systems, despite their growing
adoption in practice. In this paper, we conduct an empirical
study to examine the characteristics and rationales of logging
practices in these systems. We analyze logging statements
from 33 CUDA-based open-source DL projects, covering
both general-purpose logging libraries and DL-specific logging
frameworks. For each type, we identify the development or
execution phases in which the logs are used and investigate the
reasoning behind their usage. Our quantitative analysis reveals
that the majority of logging statements occur during the model
training phase, with significant usage also in the model loading
phase and model evaluation/validation phase. Furthermore, we
observe that logging is predominantly used for monitoring
purposes and tracking model-related information. Our findings
not only shed light on current logging practices in CUDA-
based DL development but also provide practical guidance on
when to use DL-specific versus general-purpose logging, help-
ing practitioners make more informed decisions and guiding
the evolution of DL-focused logging tools to better support
developer needs.

Keywords—logging practices; deep learning systems; mining
software repositories

1. INTRODUCTION

Deep learning (DL) systems, with their exceptional ability to
solve complex problems and process big data efficiently, are
pivotal in advancing modern technology and society. These
systems support major advancements across various domains,
including computer vision, where they enable real-time object
detection in autonomous vehicles, and natural language pro-
cessing, where they support context-aware machine translation
and text generation. Compared to traditional software systems,
DL systems exhibit greater complexity in both software design
and execution. For example, they rely on data-driven neural
networks and process large volumes of unstructured data
with the support of GPU/TPU acceleration. This complexity
makes ensuring their quality, performance, and maintainability
challenging.

Software logging is an important and widely used practice
for capturing runtime information in software systems, which
facilitates various critical development and maintenance ac-
tivities, including assessing software quality [1, 2], spotting

2693-9177/25/$31.00 ©2025 IEEE
DOI 10.1109/QRS65678.2025.00027

164

anomalies [3, 4], reporting errors [5], diagnosing performance
issues [6], understanding system behaviors [7, 8], as well as
estimating code coverage [9].

The importance of software logging in ensuring software
quality has been supported by many existing studies. For
example, Yuan et al. [10], Chen and Jiang [11] analyze the
logging practice in open-source C/C++ and Java projects,
respectively, Fu et al. [12] present the logging practice in
the Microsoft industrial systems, and Zeng et al. [13] explore
the logging practice in mobile applications. However, these
studies focus on traditional software systems, while logging
practice in DL systems still remains unclear.

The findings from existing logging studies may not be directly
applicable to DL systems, particularly those involving GPU
programming, where logs are typically generated on the CPU
side. Due to the architectural separation between the CPU
and GPU, and the asynchronous nature of GPU execution,
traditional logging practices face limitations in capturing run-
time behavior within GPU kernels. In DL systems, CUDA
has emerged as the dominant platform for GPU programming.
CUDA, developed by NVIDIA, provides a parallel computing
platform and programming model that helps developers ac-
celerate training and inference tasks by harnessing the power
of GPU accelerators [14]. It is widely adopted in popular
frameworks such as TensorFlow, PyTorch, MXNet, etc. By
studying CUDA-based DL systems, this study aims to bridge
the current research gap and provide a deeper understanding
of logging practices in GPU-accelerated DL systems.
Logging plays an even more important role in projects that
leverage DL techniques due to the unique characteristics of
these projects. The DL model often functions as a black
box with complex internal states unobservable, making their
behavior difficult to understand and debug without proper
observability [15]. Therefore, logging becomes an important
practice when using DL models as the log messages generated
often serve as the only source of information about the
model. Logging statements in these projects can help capture
crucial information about model training processes (e.g., loss
values, learning rates), inference behaviors (e.g., prediction
distributions), and resource utilization (e.g., GPU memory
consumption). This information is vital for reproducing ex-
periments, tracking model convergence, and ensuring model
reliability in production environments.

To study logging practice in CUDA-based DL systems, we
systematically collect a set of open-source projects that use
CUDA-related DL libraries and study the logging practice

in these projects, hoping to shed light on the research about
logging in deep learning-based projects. Specifically, our study
investigates the usage of both general-purpose and DL-specific
logging libraries in the studied DL systems. Our findings indi-
cate that the majority of the studied DL projects leverage both
types of logging, highlighting a complementary relationship
rather than a substitutional one. Furthermore, our analysis
reveals that within the DL pipeline, the phases of model
training and model loading are the most frequently logged,
underscoring their importance in model lifecycle management.
We also observe that the majority of logging content focuses
on monitoring and model-related information, with such an
observation consistently present in both logging types. These
insights suggest that current DL logging tools should be
optimized to address the specific needs of DL developers,
particularly in reducing the fragmentation caused by routing
logs to separate destinations through different frameworks. By
aligning logging capabilities more closely with common usage
scenarios, future DL logging frameworks can better support
transparency, traceability, and debugging in DL workflows.

The contributions of this paper are as follows:

o To the best of our knowledge, this is the first study that
analyzes the logging practice in CUDA-based deep learning
systems.

o We report five findings concerning the characteristics of
both general-purpose and DL-specific logging, as well as
their interrelationships, providing valuable insights for fu-
ture research on logging in CUDA-based deep learning
systems.

o To facilitate the reproducibility of our work, we have made
our dataset and code publicly available !.

Paper organization. The paper is structured as follows: Sec-

tion 2 introduces the background in Deep Learning pipelines,

general and DL-specific logging libraries. Section 3 describes
the subjects we have studied and how we extract the related
data. Section 4 explains the motivation, approach, and results
of each research question. Section 5 presents the threats to
the validity of the study. Section 6 discusses the related work.
Finally, Section 7 concludes this paper.

2. BACKGROUND

In this section, we will introduce the general architecture of
a DL system: the DL pipelines, and compare DL-specific
logging libraries with general-purpose logging libraries.

2.1 DL Pipelines

DL pipelines are a series of steps that are used to build, train,
and deploy deep neural network models.

They enable the automation of DL workflows, making it easier
for data scientists and engineers to work with large datasets
and complex algorithms. DL pipelines typically consist of
several stages. Each stage of the pipeline is designed to
perform a specific task, and the output of one stage is often
used as the input for the next stage. This allows for a seamless
flow of data and information throughout the entire pipeline.

Mhttps://github.com/A lex-Chen/DL_project_log

165

o .|
%EI

Data Saving

\ Model Loading / Model Configuration

|
|
|
Model Training |
|
|
|

- — — = = — =

Model Fine-tuning |

Model
Evaluation/Validation

Model Saving
\

/

=
o =

Model Monitoring Model Deployment

Figure 1: Overview of DL pipeline

Figure 1 illustrates a general DL pipeline along with its key
stages, according to prior research [16, 17]. The pipeline
begins with data collection and preprocessing, followed by
model development where the architecture is defined and
hyperparameters are tuned. It then proceeds to model training,
where the model learns from the training data, and validation,
where performance is evaluated on unseen data. After the
model reaches the desired performance, it is deployed to
production environments. Throughout this process, monitoring
and logging are essential to track the model’s performance,
debug issues, and ensure the system operates as intended.
Each stage has distinct logging needs, from tracking data
distributions in preprocessing to monitoring inference latency
in deployment.

2.2 General and DL specific logging libraries

In the context of DL systems, logging libraries can be cate-
gorized into two types:

« General-purpose logging libraries: General-purpose log-
ging libraries, such as Python’s built-in logging mod-
ule [18], provide basic functionalities for recording sys-
tem runtime information. These libraries offer essential
features for logging, such as log levels for filtering logs,
customizable formatting, and flexible output destinations
(console, files, or remote services). For instance, the
logging statement 1ogging.info ("Model training
started") records the initiation of deep learning model
training, with the log message directed to a predefined

output destination (e.g., console or file) in plain text format,
as specified by the configuration of the logging framework.
However, in the context of DL systems, general-purpose
logging lacks built-in support for tracking key artifacts such
as model weights, gradients, loss curves, or evaluation met-
rics over time. As a result, while such libraries remain useful
for operational and debugging purposes, they often fall
short in supporting model development and experimentation
workflows.

o DL-specific logging libraries: To address the specialized
needs of DL practitioners, DL-specific tools such as Ten-
sorboard and Weights & Biases (WandB) have emerged as
a DL-specific logging solution. These tools are designed
for the DL development lifecycle, focusing on experiment
tracking, model performance, and visualizing experiments.
For instance, Figure 2 is used to log an image for visualiza-
tion in distributed training and record training information.
Figure 3 shows the visualization produced by this logging
statement. Unlike general logging which primarily records
events after they happen, DL logging is actively incorpo-
rated into the experimentation workflow.

import torch.distributed as dist
from torch.utils.tensorboard import SummaryWriter
Initialize distributed training
dist.init_process_group(backend="nccl", init_method="env://")
local_rank = torch.distributed.get_rank()
torch.cuda.set_device(local_rank)
writer = SummaryWriter()
for epoch in range(5):
train_loss = 0.02 * (10 - epoch)
writer.add_image("Loss", train_loss, epoch)
Log an image
writer.add_image("MNIST Digits", figure, epoch)
writer.close()

Figure 2: Example of DL-specific logging

Figure 3: Example of visualization capabilities

3. CASE STUDY SETUP

In this section, we describe how we collect the subjects
under study and extract data from them for quantitative and
qualitative analysis [19].

a) Identifying CUDA-related Libraries

To identify CUDA-related libraries commonly used in DL
frameworks, we conduct a gray and white literature review
using Google search and Google Scholar to build a com-
prehensive list of documented CUDA-related libraries. This

166

approach allows us to identify both standard NVIDIA CUDA
libraries and other specialized CUDA-related libraries that
leverage GPU acceleration. We summarize in total five CUDA-
related libraries that are widely used in DL projects: PyTorch?,
TensorFlow®, CUDA*, Numba’®, and PyCUDAS.

b) Extracting GitHub projects using CUDA-related Libraries
We collect the study subjects from Github, the largest open-
source software platform to date. To find repositories that
utilize CUDA-related libraries, we leverage the GitHub Search
API 7 to search for projects that import or use our identified
CUDA-related libraries. Following the prior work [16], our
approach includes these steps: (1) We search repositories that
import any of the five CUDA-related libraries in Python files,
as these libraries are predominantly used within Python-based
DL frameworks. For instance, we search for keywords like
“import torch”and “from torch”, which are designed
to capture the usage of PyTorch in Python codebases. (2)
We remove duplicates from our results to ensure that each
repository is counted only once. (3) We adopt a similar
approach to previousous studies [16, 20] select only projects
with logging implementations using keywords like “log”,
“logging”, and “logger”. This methodology yields 392
unique repositories that use CUDA-based DL infrastructure
and contain logging implementations in their codebase.

c) Projects sampling

From our initial collection of 392 repositories, we conduct a
random sampling process to select a subset of 33 projects for
in-depth analysis. Random sampling is employed to ensure
that our selected projects represent the broader population of
CUDA -related repositories without selection bias. The random
sampling was implemented using Python’s random. sample
function, which provides an unbiased selection from the larger
population. We opt for this sample size to balance com-
prehensive analysis with the practical constraints of manual
inspection. A smaller, randomly selected subset allows us to
conduct a more thorough qualitative analysis of each project’s
logging practices, code structure, and documentation, which
would be infeasible across the entire corpus of 392 projects.
The resulting dataset retains the diversity of the original
collection in terms of project size, domain, and popularity
metrics.

d) Extracting logging libraries

As this study focuses on Python projects, we require logging
libraries that are specific to Python, with particular emphasis
on those that are widely adopted and have a significant pres-
ence in the Python ecosystem. Following a similar approach
to identifying CUDA-related libraries, we conduct a gray and
white literature review to compile a list of logging libraries
used in Python projects. As a result, our library list includes
both general-purpose logging libraries and DL-specific logging

Zhttps://pytorch.org/
3https://www.tensorflow.org/
“https://developer.nvidia.com/cuda-toolkit
Shttps://numba.pydata.org/
Ohttps://pypi.org/project/pycuda/
Thttps://api.github.com/

-~
7
-

Wiy

044<

Identifying CUDA-related Searching GitHub
DL frameworks projects

DL Projects

o1

[RATS

Quantitative and
qualitative
analysis

Extracting logging
libraries

Extracting logging
statement

Figure 4: Overview of our research workflow.

libraries, which differ significantly in their functionality and
purpose.

Understanding the distinction in logging libraries is crucial for
our study. Treating them as equivalent would be inappropriate,
as they serve fundamentally different purposes and use cases.

4. CASE STUDY RESULT

In this section, we present the study results of the research
questions.

4.1 RQI: What are the characteristics of logging practice
in deep learning systems?

4.1.1 Motivation

Logging practices have been extensively studied in traditional
software systems [10, 11, 13], but their application in DL
systems remains underexplored. Although there are studies
[16] on logging practices in modern software systems, they
focus on ML systems and lack exploration of DL systems. DL
systems present distinct characteristics that differ significantly
from traditional software systems, such as high computational
complexity, non-deterministic behavior, and resource-intensive
operations, making effective logging practices essential for
debugging, monitoring, and performance optimization. By
understanding the characteristics of logging practices in DL
systems, we aim to uncover how developers address logging-
related challenges and identify areas for improvement in
logging practices. The results are expected to contribute to
enhancing the quality, reliability, and maintainability of DL
software projects.

4.1.2 Approach

Following a similar approach to the prior research [16], we
study the characteristics of the logging practices in the DL
systems from the following aspects:

Project-level characteristics: According to the prior re-
search approaches [16], we first identify the project-level
characteristics of logging practices in DL systems using
four metrics: (1) number of stars, (2) number of commits,
(3) number of contributors, and (4) source lines of code
(SLOC).

Library-level characteristics: We then study the library-
level characteristics of logging practices in DL systems,
with a focus on analyzing the use of DL-specific and
general-purpose logging libraries. The process of extracting

167

logging libraries from DL systems involves both automated
and manual approaches. We began with an automated ap-
proach using Python’s Abstract Syntax Tree (AST) to parse
each code file and extract import statements. These import
statements were then compared against our curated list of
known logging libraries to identify logging framework us-
age across projects. For ambiguous cases or custom logging
implementations, we conducted a manual analysis to ensure
accurate identification.

« Density of logging statements: We measure the density
of logging statements to reflect the popularity of logging
in DL systems. Projects with higher density often exhibit
a stronger emphasis on debugging and monitoring, which
is critical for DL systems due to their complexity and non-
deterministic behavior. The density is calculated as the ratio
of the number of logging statements (/Viog) in the DL
project to the total source lines of code (Nsioc), expressed
as Jy\,sl—”g’c This metric provides a quantitative measure of the
emphasis on logging within a DL project. For each studied
project, we use the scc® tool to calculate the total source
lines of code in all Python files. We then count the number
of logging statements by identifying calls to both general
and DL-specific logging methods. Our logging statement
extraction is based on the logging libraries identified in the
previous aspect and is conducted using a Python AST parser
as well.

4.1.3 Results

In this section, we present our study results based on the three
aspects mentioned above.

Project-level characteristics. Figure 5 provides an overview
of the project-level characteristics of logging practices, which
shows the diversity of our project selection. In this figure, the
distributions of stars, contributors, and commits show similar
trends, with the majority of DL projects clustered at the lower
end of each metric. This suggests that many DL systems
are relatively new or less mature in terms of community en-
gagement and development history. In contrast, SLOC differs
evidently, with many projects having higher SLOC values,
which indicates that DL projects can be complex in their
implementation. Such complexity renders logging practices
critical for understanding the behavior of DL systems.

8https://github.com/boyter/scc

TABLE I: Summary of logging libraries used in studied DL systems.

Type Library Stars Contrib. Releases Main Purpose Import keywords
MLflow 14,076 573 65 Experiment tracking and management miflow
Wandb 5,800 127 113 Visualization and experiment tracking wandb
TensorBoard 6,195 224 49 Training visualization and metrics monitoring torch.utils.tensorboard
PyTorch Lightning 23,819 801 107 Training organization and logging lightning.pytorch
DL-specific ~ Comet_ml 2,114 17 42 Experiment and model management comet_ml
logging ClearML 4,388 112 54 ML workflow automation and tracking clearml
DLLogger 251 18 5 Performance tracking for deep learning dllogger
Accelerate 5,745 228 37 Training optimization and monitoring accelerate.logging
Neural_compressor 1,412 83 19 Model optimization and benchmarking neural_compressor.utils.logger
Colossal Al 34,583 309 29 Distributed training management colossalai.logging
Logging 51,877 2,234 540 Standard Python logging facilities logging
General Structlog 3,473 133 43 Structured logging for Python structlog
logging Loguru 16,113 78 30 Simplified logging with enhanced features loguru
Sentry_sdk 4,578 291 453 Error tracking and performance monitoring sentry_sdk

Notes: Some libraries like PyTorch, TensorFlow, and Transformers contain logging functionality but are primarily DL frameworks rather than dedicated
logging libraries. These libraries are not presented in this table to avoid ambiguity while logging practices using these libraries are included in this study.

15

200
10

100
5
0 0

Stars Contributors

600
150000

400
100000
200 50000
0 0

Commits sloc

Figure 5: Distribution of selected deep learning projects across
metrics

Library-level characteristics. Table I presents an overview
of the logging libraries involved in this study. It can be
observed that DL systems include many DL-specific logging
libraries that have been overlooked by prior logging studies,
which highlights the necessity of this study.

We then analyzed the distribution of logging library types
across the selected projects. Figure 6a illustrates the prevalence
of different types of logging libraries. We can observe that
general logging libraries are far more widely used as log-
ging solutions in DL-based systems compared to DL-specific
logging libraries. This result reflects that while DL-specific
logging statements are valuable for visualizing training metrics
and tracking experiments, general-purpose logging remains a
fundamental aspect of DL development. The reliance on gen-

168

o GENERAL 79.5%
o

>

o

£

(=]

g

- DL 20.5%

o

10 20 30 40 50 60 70 80
Percentage of logging

(a) Overall distribution.

GENERAL ONLY 10

DL ONLY. 2

0 5 10 15 20
Number of Repositories

Logging Type

(b) Distribution by repositories.

Figure 6: Distribution of logging library types.

eral logging indicates that developers still prioritize traditional
software engineering practices, even in the context of complex
DL systems.

As shown in Figure 6b, we can observe that most of the studied
projects adopt both general-purpose and DL-specific logging
libraries, with a few exceptions that utilize only one type of
logging libraries. The prevalence of projects using both types
of logging libraries (representing 64% of our sample) indicates
a recognition of the unique monitoring needs in DL systems
that cannot be fully addressed by general-purpose logging
alone. The high adoption rate of both general and specialized
logging libraries suggests that DL project developers recognize
the need for different types of logging libraries to address var-
ious aspects of system observability. General logging handles
traditional software concerns like error reporting and execution

Patric et al. (ML) 1150
Zeng et al. (Android) 479
This paper (DL) 194
Alves et al. (Python) 128
Zhu et al. (C#) {59
Chen et al. (JAVA) 51
Yuan et al. (C/C++) {30
0 200 400 600 800 1000 1200
Logging Density (SLOC per logging statement)

Paper

Figure 7: Distribution of logging density across different
systems.

flow tracking, while DL-specific logging addresses unique
DL requirements such as hyperparameter tracking, gradient
monitoring, and visual representation of training dynamics.

DL projects primarily adopt a mix of general and DL-
specific logging libraries, with general logging libraries
being the dominant logging solution. This reflects the
complexity of logging practice in DL projects.

Density of logging statement. For a more straightforward
comparison with other system types, we incorporate our results
into those reported in prior studies [10, 11, 21, 22, 13, 16]. In
Figure 7, “The paper (DL)” is the result of this study, while the
remaining items are from the existing paper. Among the 33 se-
lected DL projects, we identified 7,561 logging statements and
1,466,769 source lines of code, resulting in a logging density
of 194. The comparison reveals that modern software systems
tend to have lower logging frequency compared to traditional
software systems, with higher values in the figure indicating
fewer logging statements per source line of code. DL systems
rank among the top three with the sparsest logging, suggesting
that current DL systems could be improved through denser and
more deliberate logging practices.

m A

DL systems exhibit sparse logging, significantly lower
than that of traditional software systems, which high-
lights the need for denser logging practices in DL
systems.

m)

DL projects are complex, often adopting a mix of
general-purpose and DL-specific logging libraries, but
they tend to have sparser logging compared to tradi-
tional software systems. This highlights the challenges
of studying logging practices in DL systems, particu-
larly in terms of system complexity, the diversity of
logging libraries involved, and the need for denser
logging practices.

4.2 RQ2: Which phases of the DL pipeline incur more
logging?

4.2.1 Motivation

Understanding the phases of the DL model lifecycle where
logging is most prevalent is crucial for improving development
practices. While traditional software logging studies examine
where [21, 12] and what to log [23, 24], the unique character-
istics of DL systems—such as complex training pipelines, hy-
perparameter tuning, and model evaluation processes—require
specialized logging considerations. Identifying which phases
of the DL lifecycle (e.g., data preprocessing, model training,
evaluation) are most frequently logged and understanding
developers’ intentions can provide valuable insights for prac-
titioners. This knowledge can help establish effective logging
patterns specific to DL systems, enabling better model moni-
toring, debugging, and reproducibility of experiments, which
are essential challenges in DL system development.

4.2.2 Approach

To answer this RQ, we need to associate logging statements
with the phases of the DL pipeline. This requires manual
analysis to interpret the context of each logging statement and
identify which phases of the DL pipeline it originates from.
The manual analysis consists of two steps:

Logging statements sampling:

Due to the large number of logging statements across the
selected projects, we apply random sampling, as adopted by
a prior study [25], to narrow down the dataset for feasible
manual analysis. The sampling is based on 95% confidence
level with a 5% confidence interval. Specifically, we apply
sampling to general and DL-specific logging separately, as
these two types of logging serve different purposes and exhibit
distinct characteristics. As a result, we obtained 265 and 203
logging statements from a total of 845 and 428 general and
DL-specific logging statements, respectively.

Manual investigation: Our manual investigation is inspired by
previous research [16, 17]. The first two authors of this paper
first independently examined each of the sampled logging
statements to identify the corresponding DL model phase.
The DL pipeline phases involved in this study were not
created from scratch. Instead, we carefully reviewed existing
research to construct an initial version of the DL pipeline,
which we then refined based on the characteristics of the
specific DL systems analyzed in this study. For each log-
ging statement, we analyzed its context by reviewing the
surrounding code, method definitions, invocations in the call
graph, comments, and documentation to determine which
phase of the DL pipeline incurs the logging statement. To
establish a reliable and consistent categorization scheme, we
first conducted a preliminary labeling round on the randomly
selected 100 logging statements. This initial round helped us
obtain consensus on the categorization approach and develop
a shared understanding of the model phases and the phases’
identification rationale. After this preliminary analysis, we
built a categorization scheme that received approval from two

raters, which could serve as a “codebook” for the full analysis.
For the second round of labeling, we applied the established
categorization scheme to analyze all remaining log samples.
This round included both labeling the previously unexamined
logging statements and revisiting the initial 100 statements to
ensure consistency with our established categorization scheme.
After independent reviewing, the two raters conducted recon-
ciliation meetings to resolve any disagreements and achieve
consensus on the final categorization. For model phase identi-
fication, we calculated Cohen’s kappa coefficient [26], which
measures agreement between two raters while accounting for
chance agreement. This statistical metric helped validate the
consistency and objectivity of our categorization approach.

4.2.3 Results

Based on our manual analysis of the sampled logging state-
ments, we identified and categorized the DL pipeline phases
incurring logging. The Cohen’s kappa coefficients for DL
pipeline phase categorization are 0.93 for DL-specific log-
ging and 0.89 for general logging, indicating a high level
of agreement between raters. In general, the most frequent
phase in DL systems that incurs logging is Model Training,
accounting for 37.2% of all the logged statements we analyzed.
This is followed by Model Loading (14.8%) and Model Eval-
uation/Validation (14.3%). Model Configuration incurs 9.3%
of logging statements, while Data Processing accounts for
7.5%. Other phases incurring a nontrivial amount of logging
include Model Saving (6.4%), and Data Collection/Loading
(2.9%). 4.6% of logging statements were left uncertain due
to insufficient information in their log messages, surrounding
context and documentation.

M)

Logging in DL systems is predominantly concen-
trated in the model training phase (37.2%), followed
by model loading (14.8%) and evaluation/validation
(14.3%), reflecting the critical importance of monitor-
ing these key processes in the DL lifecycle.

J

Table II presents the detailed distribution of logging statements
across different phases of the DL pipeline. According to the
table, general and DL-specific logging libraries are introduced
during different phases of the DL development pipeline. DL-
specific logging libraries are more likely to be introduced dur-
ing model development phases, such as training and validation,
while general logging libraries are more likely to be introduced
during setup-related phases, including model configuration and
data processing.

The concentration of logging in the training phase aligns
with the computationally intensive and time-consuming nature
of DL model training, where developers need visibility into
progress and performance metrics. The substantial focus on
model loading and evaluation phases highlights their critical
importance in the DL workflow, particularly for ensuring
model correctness and tracking performance. However, Model

170

Monitoring accounts for only 0.7% of logging statements,
suggesting a potential gap in current logging practices. As DL
models increasingly move to production environments, more
robust logging practices for ongoing monitoring may become
necessary to ensure the DL pipeline’s reliability.

m)

In general, the model training phase (37.2%) is the
dominant phase of the DL pipeline for incurring log-
ging, followed by model loading (14.8%) and evalu-
ation/validation (14.3%). DL-specific logging libraries
are more likely to be introduced during model develop-
ment phases, while general logging libraries are more
likely to be introduced during setup-related phases.
These results indicate that general and DL-specific
logging libraries serve different logging purposes in
DL systems and complement each other, providing
useful runtime information to developers, especially
regarding the DL models.

\ J

4.3 RQ3: What rationales are behind DL system logging
practice?

4.3.1 Motivation

In RQ2, we studied logging practice from the perspective of
DL pipelines without considering the developers’ intention.
This RQ aims to answer what specific purposes these logging
statements serve. By examining developers’ motivations for
logging, we can develop a comprehensive understanding of
logging practices in DL systems that not only identifies the
corresponding DL pipeline phases that incur logging but also
why logging occurs at those specific points in DL system
development.

4.3.2 Approach

To understand the rationales behind logging in DL systems,
we conducted a qualitative analysis of the logging statements
collected in RQ2. Our approach involved systematically exam-
ining each logging statement along with its contextual infor-
mation to identify the underlying motivation for its inclusion
in the source code. Similar to the approach used in RQ2,
we manually analyzed each statement; however, unlike the
DL pipeline phase identification, a single logging statement
could be associated with multiple rationales. For example,
the logging statement logging.info (f’test time:
test_elapseds | test loss test_loss’) records
both as model monitoring metrics (test_loss) and time infor-
mation (test_elapsed).

Since rationale classification allows for multiple labels per
instance, we used Krippendorff’s alpha [27]—a statistical
measure of inter-rater reliability that accommodates multi-
label data—to evaluate the level of agreement between raters.

4.3.3 Results

Based on our manual analysis, we categorized the ratio-
nales behind logging statements in DL systems. We achieve

TABLE II: Distribution of logging

statements in the different phases of the DL pipeline.

DL pipeline Description Example % overall % general % DL
Model Training The chosen models are trained and logger.info (f’Continuing training from 37.2% 254% 50.2%
tuned on the collected data and labels. global step self.state.global_step’)
Model Loading Loading a pre-trained model. logger.info (f’ Loading model_name checkpoint 14.8% 21.7% 7.0%
from: pretrained’)
Model Evaluation/Vali- Engineers evaluate the output model on logger.info (£’ >> Validation: step loss: 14.3% 104% 18.6%
dation tested datasets using pre-defined met- meter.loss_meter.avg:.4’)
rics.
Model Configuration Configuring or Initializing a model. logger.info (f’Initialize PyTorch weight 9.3% 11.7% 6.55%
key’)
Data Processing Preprocessing data for model training or logging.info (’Using Dataset Sharding’) 7.5% 10.8% 4.2%
evaluation.
Model Saving Saving a trained model. self.logger.info ('’ Saving checkpoint: ...’ 6.4% 5.0% 7.9%
.format (filename))
Uncertain The model phase cannot be determined. logging.info (f’ TIMER name elapsed’) 4.6% 6.3% 2.8%
Data Collection/Load- Data collection and processing. logger.info(’ loading archive file 2.9% 4.2% 1.4%
ing archive_file’)
Model Deployment The inference code of the model iS logging.info (f’Running with single process. 1.5% 2.5% 0.5%
deployed on the targeted device(s). Device args.device.’)
Model Monitoring The deployed model is continuously logging.debug(’Starting wandb.’) 0.7% 0.8% 0.5%
monitored for errors during execution.
Model Fine-tuning Fine-tuning a pre-trained model. logger.info (’/Next fine-tuning the entire 0.4% 0.8% 0.0%
model...")
Data Saving Saving processed data. logger.info (’ Saved pseudo label data to 0.4% 0.4% 0.5%

pselab_path’)

Krippendorff’s alpha of 0.94 for DL-specific logging and
0.88 for general logging, indicating strong agreement between
both raters. Table III illustrates the details and hierarchical
distribution of these rationales.

Our analysis reveals that monitoring and model information
are the primary rationales behind the studied logging practice
that account for over 40% of all logging rationales in DL sys-
tems. This reflects the computationally intensive and iterative
nature of DL system development, where monitoring long-
running processes and tracking configuration parameters are
crucial for effective development and reproducibility.

The significant presence of “validation” (14.8%) highlights
developers’ concerns about ensuring the correctness of models,
datasets, and configurations throughout the development pro-
cess. Meanwhile, tracing logs (12.8%) help developers follow
execution flows in complex DL pipelines, and checkpoint-
related logging (9.1%) supports the critical practice of saving
and restoring model states during lengthy training processes.
This distribution of logging rationales demonstrates how DL
systems require specialized logging approaches that address
the unique challenges of model training, evaluation, and de-
ployment. The focus on monitoring metrics and model infor-
mation particularly distinguishes DL logging from traditional
software logging practices, which typically emphasize error
reporting and execution flow.

171

Finding 4

Monitoring (22.4%) and model information (18.1%)
are the primary rationales for logging in DL systems,
reflecting the need to track both training progress and
model configuration.

4.3.4 Discussion

Figure 8 shows the distribution of general and DL-specific log-
ging rationales. In general-purpose logging within DL systems,
we observe a notably higher proportion of validation (23.7% vs
8.1%) and tracing (21.1% vs 12.3%) compared to DL-specific
logging statements. This difference highlights that general
logging functions still primarily serve traditional software
engineering needs - validating configurations, dependencies,
and data integrity, as well as tracing execution flow. These
aspects are less directly tied to DL algorithms themselves and
more focused on the surrounding program infrastructure.
Conversely, DL-specific logging shows significantly higher
proportions in categories directly related to model operations,
such as monitoring (30.5% vs 11.6%). This distribution sug-
gests that DL-specific logging focuses more on the unique
aspects of DL processes like model training dynamics and
performance evaluation.

Based on the analysis, we can conclude that DL systems
exhibit distinct logging rationales that reflect their unique

TABLE III: Categorization of logging rationales in DL systems.

General Rationale Detailed Rationale Rationale Explanation %
Model Monitoring Metrics Tracking training progress and model behavior (epoch number, learning rate, loss 13.0%
. value)
Monitoring (22.4%) Model Performance Metrics Direct measures of model performance (accuracy, precision, recall, F1 score) 6.9%
Resource Utilization Hardware utilization tracking (CPU, GPU, memory consumption, VRAM usage) 1.5%
Model Validation Metrics Other metadata related to model training (throughput, latency) 1.11%
Model Configuration Non-trainable model parameters and configuration settings 9.3%
Model Information (18.1%) Model Information Basic model metadata (model name, selection) 4.8%
. (2 . .
Model Parameters Trainable parameters that the model learns from training data 3.3%
Model Architecture Details of layers, activation functions, and connections 0.7%
Logging Steps Recording next action or step in execution flow 4.1%
General Information Descriptive natural language information about execution 3.7%
Tracing (16.1%) Time Information Elapsed time for model training (time taken per epoch, per batch, or total time). 3.3%
Data Processing Logging during data processing operations 3.0%
General Configuration Configuration details not directly related to model 2.0%
Configuration Validation Validation of configuration settings and parameters 7.6%
o Data Validation Validation of dataset properties and characteristics 3.0%
Validat 14.8%
alidation (o) Model Validation Validation of model components (weights, encoders, etc.) 2.8%
Dependency Validation Validation of required libraries and dependencies 1.5%
Model Loading Loading model components (model, tokenizers, weights) 5.0%
Model & Data T/O (9.1%) Model Savn}g SaV}ng model components (model, tokenizers, weights) 3.0%
Dataset Saving Saving raw or preprocessed datasets 0.7%
Dataset Loading Loading raw or preprocessed datasets 0.4%
Cross-platform transition Transition b/w Tensorflow and Pytorch, or other pairs of platforms 2.0%
Others (6.1%) Debug ' the l(')g aims to assist in debugging a specific issue 2.0%
Formatting Special characters or (and) words to separate output content 1.3%
Job submission Submitting execution of computational tasks 0.7%
Visualization (5.7%) Metadata logging Log metadata for visualization, such as images, videos, etc. 5.7%

challenges and requirements. The emphasis on monitoring
and model information in DL-specific logging underscores
the need for specialized logging practices that cater to the
complexities of deep learning development.

’—m)

The rationales for logging in DL systems are more
diverse than those in traditional software systems.
General-purpose logging focuses on validation (23.7%)
and tracing (21.1%), while DL-specific logging empha-
sizes monitoring (30.5%). This indicates that DL sys-
tems require specialized logging practices to address
the unique challenges of model training and evaluation.

tion tracking, and validating complex models and
datasets are essential for successful outcomes.
General-purpose logging within DL systems continues
to serve traditional software engineering needs, with
higher emphasis on validation (23.7%) and tracing
(21.1%). DL-specific logging demonstrates a stronger
focus on monitoring (30.5% vs 11.6% in general
logging) and other aspects directly related to DL
processes. These differences highlight the dual nature
of logging in DL systems: maintaining traditional
software engineering practices while incorporating spe-
cialized logging techniques to address the unique chal-
lenges of DL systems.

\ J

’_M)

The primary rationales for logging in DL systems are
monitoring (22.4%) and model information (18.1%),
with validation (14.8%), tracing (12.8%), and check-
point management (9.1%) also playing significant
roles. This distribution reflects the unique challenges
of DL system development, where tracking training
progress, ensuring reproducibility through configura-

172

5.

We present the threats to the validity of our research.

Internal validity We conduct manual investigations of the
model phases and rationales of logging practices. Despite
our rigorous approach with two independent reviewers and
reconciliation discussions, the categorization process may still
be influenced by researchers’ subjective judgments which
may not fully align with developers’ intentions. Additionally,
although we carefully examined the contextual information of
the logging statement, we may not have fully captured the

THREATS TO VALIDITY

(a) Percentage of general logging rationales

(b) Percentage of DL-specific logging rationales

Figure 8: Distribution of general and DL-specific logging rationales

complete execution flow or domain-specific knowledge that
motivated certain logging decisions based on a static code
review.

External validity We conduct a qualitative study on a sampled
subset of logging statements. While it is impractical to cover
all logging usage and scenarios due to the sheer volume, our
findings broadly capture logging practices and rationales in
deep learning system development, offering insights that can
help practitioners build more robust logging infrastructures.
Construct validity Our study focuses on logging practices in
CUDA-based deep learning projects. Other DL frameworks,
such as ROCm, may exhibit different logging behaviors that
are outside the scope of this work. Additionally, our study
of logging usage and deep learning systems focuses primarily
on Python-based open-source projects, as Python is the most
commonly used language for deep learning tasks. Different
programming languages or proprietary deep learning systems
may exhibit different logging practices, and the generalizabil-
ity of our findings may be limited by both the language choice
and the distribution of application domains in our dataset.

6. RELATED WORK

In this section, we introduce the related work.

6.1 Empirical study on software logging

Many studies have been conducted to understand logging prac-
tices. For example, Yuan et al. [10] analyze the logging prac-
tice in some open-source C/C++ projects. Shang et al. [2] char-
acterize the logging statements in two Java projects to uncover
the relationship between the logging practices and the code
quality. Fu et al. [12] uncover developers’ logging practices
in two large industrial systems. Chen and Jiang [11] perform

173

a replication study in many Java applications and compare
the logging practice in Java with that in C/C++ [10]. Zeng
et al. [13] study the logging practice in mobile application
and compare it with that in server and desktop applications. He
et al. [28] study the topics in the natural language description
in the logging statements. Kabinna et al. [29] study the stability
of the logging statements and the log files. Li et al. [8] perform
a qualitative study to understand developers’ opinions about
software logging. Tang et al. [30] study the logging practice
related to the logging levels. More recently, Zhang et al. [31]
study the logging practice in test code and Foalem et al.
[16] study the logging practice in machine learning-based
applications. Despite the high volume of studies performed
regarding the logging practice, they are primarily concerned
with the general logging practice without considering domain-
specific characteristics, such as those specific to DL systems.
Although Foalem et al. [16] provide an initial investigation into
logging practices in DL applications, their analysis is limited
to projects that utilize DL-specific logging libraries and does
not consider DL projects that rely solely on general-purpose
logging frameworks. To address this gap, our study inves-
tigates logging practices in DL systems by examining both
general-purpose and DL-specific logging across projects that
utilize CUDA-related libraries. Our findings reveal logging
behaviors specific to DL systems and provide a foundation
for designing more effective and targeted logging solutions.

6.2 Improving logging practice

The studies for improving the logging practice are primarily
about where to log and what to log [31]. Research about
where to log mainly focuses on where to place the logging
statements. Zhu et al. [21] introduce a tool to help developers

make informed decisions about where to place the logging
statements. Ding et al. [32] and Zhao et al. [33] propose
a logging framework respectively that take the overhead
and effectiveness of logging into consideration. Yao et al.
[34, 35] present an automated logging tool that can suggest
the logging locations for monitoring the software performance.
Moreover, Li et al. [36] suggest where to log by using a DL
model. Studies about what to log are mostly concerned with
the static and dynamic information in the logging content and
logging levels. Shang et al. [23] study what knowledge to
incorporate into software logging. Liu et al. [24] propose a tool
that helps developers to choose which variable to log. Ding
et al. [37] introduce a tool that can automatically generate
logging content based on the context information. Li et al.
[38] present a tool to help developers decide which logging
level to choose. Unlike prior studies that target general-purpose
software systems, our research investigates logging practices
and scenarios specific to DL systems.

7. CONCLUSION

In this paper, we provide an in-depth empirical analysis of
logging practice in CUDA-based deep learning projects. By
examining logging statements across 33 open-source projects,
we find that the majority of logging activity occurs during the
model training phase, with substantial logging also observed
during the phases of model loading, model evaluation, and
model validation. We also find that general logging and DL-
specific logging often complement each other. These findings
reveal the current logging practices in CUDA-based deep
learning projects and can provide insights to developers to
make informed decisions when logging with general-purpose
logging libraries and DL-specific logging libraries. Future
work can further investigate how to use general logging
and DL-specific logging to assist software development and
maintenance.

REFERENCES

[1] Brian W. Kernighan and Rob Pike.
Programming. Addison-Wesley, 1999.
[2] Weiyi Shang, Meiyappan Nagappan, and Ahmed E.
Hassan. Studying the relationship between logging
characteristics and the code quality of platform software.
Empirical Software Engineering, 20(1):1-27, 2015.
Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. Exe-
cution anomaly detection in distributed systems through
unstructured log analysis. In 2009 Ninth IEEE Interna-
tional Conference on Data Mining, pages 149-158, 2009.
Jian-Guang Lou, Qiang Fu, Shengqi Yang, Ye Xu, and
Jiang Li. Mining invariants from console logs for system
problem detection. In Proceedings of the 2010 USENIX
Conference on USENIX Annual Technical Conference,
USENIXATC’10, page 24, USA, 2010. USENIX Asso-
ciation.
Kirk Glerum, Kinshuman Kinshumann, Steve Greenberg,
Gabriel Aul, Vince Orgovan, Greg Nichols, David Grant,
Gretchen Loihle, and Galen Hunt. Debugging in the

The Practice of

(3]

(4]

(5]

174

(very) large: Ten years of implementation and experience.

In Proceedings of the ACM SIGOPS 22nd Symposium on

Operating Systems Principles, SOSP °09, page 103-116,

New York, NY, USA, 2009. Association for Computing

Machinery.

Karthik Nagaraj, Charles Killian, and Jennifer Neville.

Structured comparative analysis of systems logs to di-

agnose performance problems. In Proceedings of the

9th USENIX Conference on Networked Systems Design

and Implementation, NSDI’12, page 26, USA, 2012.

USENIX Association.

Qiang Fu, Jian-Guang Lou, Qingwei Lin, Rui Ding,

Dongmei Zhang, and Tao Xie. Contextual analysis of

program logs for understanding system behaviors. In

Proceedings of the 10th Working Conference on Mining

Software Repositories, MSR 13, page 397-400. IEEE

Press, 2013.

Heng Li, Weiyi Shang, Bram Adams, Mohammed

Sayagh, and Ahmed E. Hassan. A qualitative study of

the benefits and costs of logging from developers’ per-

spectives. IEEE Transactions on Software Engineering,

pages 1-1, 2020.

Boyuan Chen, Jian Song, Peng Xu, Xing Hu, and Zhen

Ming (Jack) Jiang. An automated approach to estimating

code coverage measures via execution logs. In Proceed-

ings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ASE 2018, page

305-316, New York, NY, USA, 2018. Association for

Computing Machinery.

Ding Yuan, Soyeon Park, and Yuanyuan Zhou. Character-

izing logging practices in open-source software. In 2012

34th International Conference on Software Engineering

(ICSE), pages 102-112, 2012.

Boyuan Chen and Zhen Ming (Jack) Jiang. Characteriz-

ing logging practices in Java-based open source software

projects — a replication study in Apache Software Foun-
dation. Empirical Software Engineering, 22(1):330-374,

2017.

Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou,

Rui Ding, Qingwei Lin, Dongmei Zhang, and Tao Xie.

Where do developers log? an empirical study on logging

practices in industry. ICSE Companion 2014, page

24-33, 2014.

Yi Zeng, Jinfu Chen, Weiyi Shang, and Tse-Hsun Peter

Chen. Studying the characteristics of logging practices

in mobile apps: a case study on F-Droid. Empirical

Software Engineering, 24, 12 2019.

[14] Nvidia. What is cuda? URL https://blogs.nvidia.com/
blog/what-is-cuda-2/.

[15] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri,
Franco Turini, Fosca Giannotti, and Dino Pedreschi. A
survey of methods for explaining black box models. ACM
Comput. Surv., 51(5), August 2018. ISSN 0360-0300.

[16] Patrick Loic Foalem, Foutse Khomh, and Heng Li.
Studying logging practice in machine learning-based
applications. Inf. Softw. Technol., 170:107450, 2024.

(6]

(71

(8]

(9]

(10]

(11

[12]

[13]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]
(27]

(28]

Saleema Amershi, Andrew Begel, Christian Bird, Robert
DeLine, Harald Gall, Ece Kamar, Nachiappan Nagappan,
Besmira Nushi, and Thomas Zimmermann. Software
engineering for machine learning: A case study. In 2079
IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-
SEIP), pages 291-300, 2019.

Python Software Foundation. logging — logging fa-
cility for python. URL https://docs.python.org/3/library/
logging.html.

Alberto Bacchelli and Christian Bird. Expectations, out-
comes, and challenges of modern code review. In 2013
35th International Conference on Software Engineering
(ICSE), pages 712-721, 2013.

Boyuan Chen and Zhen Ming (Jack) Jiang. Study-
ing the use of java logging utilities in the wild. In
Gregg Rothermel and Doo-Hwan Bae, editors, ICSE °20:
42nd International Conference on Software Engineering,
Seoul, South Korea, 27 June - 19 July, 2020, pages 397—
408. ACM, 2020.

Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang,
Michael R. Lyu, and Dongmei Zhang. Learning to log:
Helping developers make informed logging decisions.
In Proceedings of the 37th International Conference
on Software Engineering - Volume 1, ICSE ’15, page
415-425. IEEE Press, 2015.

Marco Alves and Hugo Paula. Identifying logging
practices in open source python containerized application
projects. In Proceedings of the XXXV Brazilian Sympo-
sium on Software Engineering, SBES 21, page 16-20,
New York, NY, USA, 2021. Association for Computing
Machinery.

Weiyi Shang, Meiyappan Nagappan, Ahmed E. Hassan,
and Zhen Ming Jiang. Understanding log lines using
development knowledge. In 2014 IEEE International
Conference on Software Maintenance and Evolution,
pages 21-30, 2014.

Zhongxin Liu, Xin Xia, David Lo, Zhenchang Xing,
Ahmed E. Hassan, and Shanping Li. Which variables
should I log? IEEE Transactions on Software Engineer-
ing, pages 1-1, 2019.

Zhenhao Li, An Ran Chen, Xing Hu, Xin Xia, Tse-
Hsun Chen, and Weiyi Shang. Are they all good?
studying practitioners’ expectations on the readability
of log messages. In 38th IEEE/ACM International
Conference on Automated Software Engineering, ASE
2023, Luxembourg, September 11-15, 2023, pages 129—
140. IEEE, 2023.

Mary L McHugh. Interrater reliability: the kappa statis-
tic. Biochemia medica, 22(3):276-282, 2012.

Klaus Krippendorff and Joseph L Fleiss. Reliability of
binary attribute data, 1978.

Pinjia He, Zhuangbin Chen, Shilin He, and Michael R.
Lyu. Characterizing the natural language descriptions in
software logging statements. ASE 2018, page 178-189,
2018.

175

[29]

[30]

[31]

(32]

(33]

(34]

(35]

(36]

[371]

(38]

Suhas Kabinna, Cor-Paul Bezemer, Weiyi Shang,
Mark D. Syer, and Ahmed E. Hassan. Examining the
stability of logging statements. Empirical Softw. Engg.,
23(1):290-333, February 2018. ISSN 1382-3256.
Yiming Tang, Allan Spektor, Raffi Khatchadourian, and
Mehdi Bagherzadeh. Automated evolution of feature
logging statement levels using git histories and degree
of interest. Science of Computer Programming, 2022.
ISSN 0167-6423.

Haonan Zhang, Yiming Tang, Maxime Lamothe, Heng
Li, and Weiyi Shang. Studying logging practice in test
code. Empir. Softw. Eng., 27(4):83, 2022.

Rui Ding, Hucheng Zhou, Jian-Guang Lou, Hongyu
Zhang, Qingwei Lin, Qiang Fu, Dongmei Zhang, and
Tao Xie. Log2: A cost-aware logging mechanism for per-
formance diagnosis. USENIX ATC ’15, page 139-150,
USA, 2015. USENIX Association.

Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding
Yuan, and Yuanyuan Zhou. Log20: Fully automated opti-
mal placement of log printing statements under specified
overhead threshold. SOSP *17, page 565-581, New York,
NY, USA, 2017. Association for Computing Machinery.
Kundi Yao, Guilherme B. de Pddua, Weiyi Shang, Steve
Sporea, Andrei Toma, and Sarah Sajedi. Log4perf:
Suggesting logging locations for web-based systems’
performance monitoring. In Proceedings of the 2018
ACM/SPEC International Conference on Performance
Engineering, pages 127-138, 03 2018.

Kundi Yao, Guilherme B. de Padua, Weiyi Shang, Catalin
Sporea, Andrei Toma, and Sarah Sajedi. Log4perf:
suggesting and updating logging locations for web-based
systems’ performance monitoring. Empir. Softw. Eng., 25
(1):488-531, 2020.

Zhenhao Li, Tse-Hsun Chen, and Weiyi Shang. Where
shall we log? studying and suggesting logging locations
in code blocks. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE),
pages 361-372, 2020.

Zishuo Ding, Heng Li, and Weiyi Shang. LoGenText:
Automatically generating logging texts using neural ma-
chine translation. In SANER. IEEE, 2022.

Heng Li, Weiyi Shang, and Ahmed E. Hassan. Which
log level should developers choose for a new logging
statement? Empirical Software Engineering, 22, 2017b.

