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Abstract—Logs contain a large amount of curated run-time
information about the process of a software. Modern software
systems have become more complex and larger in scale. They
are typically executed in parallel or distributively, resulting in
interleaved software logs and making log analysis challenging.
Despite extensive research on automated logging analysis, none
to our knowledge focuses on the use of logs, and they rarely
augment logs to help with simpler analysis. Software log IDs are
unique identifiers that developers can use to group and filter log
entries. However, we found that, on average, only 21% of logging
statements produce IDs, which can lead to loss of information
in the log file. We propose LTID, a static analysis approach on
log IDs, to remediate the aforementioned issue by extracting a
dependency relation between log statements from source code.
We build a dependency graph using static analysis and compute
the dominance relations of each logging statement. We then
propagate IDs to logs that do not contain them based on the
dependency graph. We studied 21 well-known Java open-source
software subjects and were able to inject IDs on average into 12%
of logs without IDs. Through an open coding process, we also
establish a categorization, which has a Cohen’s Kappa agreement
coefficient of 0.74, of the information gained to better understand
the relations recovered by the ID propagation process.

Index Terms—Log Mining, Software Artifacts

I. INTRODUCTION

Developers rely heavily on software logs to complete their
daily tasks [1]. In addition, software logs keep track of
crucial run-time information that developers commonly use to
facilitate software testing and development activities, including
debugging [2], [3], [4], monitoring software processes [5] and
transferring knowledge [6].

With the evolution of hardware and software over the
last few decades, software applications have become more
complex and large in scale. They are often required to be
executed in parallel or distributively, which results in the
interweaving of software logs. Such software logs may confuse
developers and make the logs more difficult for developers
to analyze. Therefore, grouping software logs are needed to
facilitate log analysis.

Logs are typically filtered or grouped by identifiers (IDs).
A line of software logs consists of static content predefined
by developers and dynamic content generated during software
run-time. Since an ID is usually specific to the execution

context of software logs, it is regarded as dynamic content
derived from a dynamic variable in a logging statement.
Although there have been extensive prior studies[5], [7] that
suggest how to improve logs, to the best of our knowledge,
no one has considered IDs as their unique characteristic when
compared to other variables enclosed in logging statements.
Moreover, a lack of ID or misuse in logging practice could
lead to unexpected problems.

Consider the code snippet in Listing 1. A data read oper-
ation is performed, and the procedure is logged. The logging
statements show that the operation is about a split. When
the operation starts and ends successfully, the split is logged
accordingly. However, if an exception were to be thrown,
the logging statement responsible for logging the error does
not contain any information that links the error to a split.
When multiple of these operations are started in parallel, and
multiple of them fail, it would be hard or even impossible to
correctly attribute the error to a split, as shown in Listing 2. It
is not known which RuntimeException is thrown by the
operation responsible for which split.

To address the aforementioned challenges, we conduct an
empirical study on the IDs in logging statements, which have
never been studied previously. We find that only about 21% of
the logging statements contain IDs. Furthermore, the percent-
age of logs containing IDs diminishes as the logs’ verbosity
level increases. We also find that, although rare, changes to
logs without IDs are more likely throughout historical commits
than changes to logs without.

Based on these findings, we propose a simple yet natural
approach as the first step in mitigating issues caused by miss-
ing IDs. The approach is based on a graph of the relationship
between logging statements derived from control flow graphs
(CFGs). Then, according to the dominance of each node in the
graph, we propagate IDs from logs that contain the IDs to logs
that do not. We evaluate the performance of our approach on
a method level and successfully propagated IDs. We conclude
by categorizing the information gained through propagating
the IDs.

This paper’s contributions are summarized as follows:
1) We conduct an empirical study on the IDs in logging

statements.



Listing 1 An code snippet from Apache Hive, showcasing a logging statement missing an ID.

protected Void performDataRead() throws IOException, InterruptedException {
try {

...
LlapIoImpl.LOG.info("Processing data for {}", split.getPath());
...
LlapIoImpl.LOG.trace("done processing {}", split);

} catch (Throwable e) {
LlapIoImpl.LOG.error("Exception while processing", e);
...

}
}

Listing 2 A simplified hypothetical output of the snippet in Listing 1.

1 Processing data for ’path of a’
2 Processing data for ’path of b’
...
6 Exception while processing RuntimeException: path invalid
...
9 Exception while processing RuntimeException: killed

2) We propose a simple approach to inject IDs in logging
statements to mitigate related issues.

3) We study the information gained by injecting IDs into
logs.

Paper organization. The rest of this paper is organized as fol-
lows. Section II discusses related works. Section III establishes
and presents the projects subject to our study. We detail our
empirical study of the use of IDs in Section IV. Section V
presents our approach to propagate IDs. In Section VI, we
evaluate our approach and take a deeper look at the propagated
IDs. Finally, we discuss threats to the validity of this study in
Section VII and conclude in Section VIII.

II. RELATED WORK

In this section, we present the prior research related to this
paper.
Use of IDs in log analysis. As opposed to log IDs that appear
in the log content, prior studies use log event IDs (also known
as log pattern IDs in some research) to aid in log analysis.
According to Debnath et al. [8], each log is given a unique ID
that includes the log pattern ID and the sequence number of
this log compared to other logs in the same pattern. The event
log ID is one of the resources used to represent software logs
by Liu et al. [9], while He et al. [10] assign a number to each
log as its ID for further software log grouping. Nagappan et
al. [11] propose an approach to abstract log lines and assign
each log line a number in accordance with abstraction, in
which the number is similar to the log event ID mentioned in
the aforementioned papers. Lin et al. [12] propose an approach
for grouping logs and argue that using logs with log event IDs
could help them save time and resources. This argument is
supported by He et al. [13], who contend that including event
IDs in logs is a good logging practice that will aid in future
log analysis.

To the best of our knowledge, there are no studies that foster
log grouping using software log IDs that appear in log content,
which are more direct than event log IDs.

Suggestion or improvement on logging statements. Work
that suggests or improves logging statements typically seeks
to answer three research questions: where to log, what to log,
and how to log. To address the issue of where-to-log, Fu et
al. [14] conduct an empirical study on logging practices in
the industry to help with a better understanding, and Zhu
et al. [15] propose a tool to assist developers in deciding
logging position. The resolution of the what-to-log issue aims
to improve log content. Yuan et al. [5] alleviate this issue
by including additional software diagnostic information in
logging statements. Ding et al. [7] propose an approach to
automatically generate logging texts using a neural machine,
which helps minimize developers’ effort to consider what to
log. Attempts at answering the question of how to log have
the goal of aiding developers in developing and maintaining
logging statements more effectively [16]. Chen et al. [16]
characterize and detect anti-patterns in logging statements to
provide developers with a logging guide. Li et al. [17] offer
advice on choosing the log level for a new logging statement,
while Tang et al. [18] suggest rejuvenating log levels for
existing logging statements. Despite extensive work aiming at
improving or suggesting logging statements, none have taken
the software log IDs into account to improve software log
grouping.
General empirical study on logging. Over the last decade,
several empirical studies on software logging have emerged.
The first empirical study [19] on software logging was per-
formed in 2012 to understand the situation of logging practice
and how developers modify software logs. Since then, a bunch
of research has been conducted on logging practices in partic-
ular domains. For example, the logging practice was examined
in Java-based open-source software projects [20], test code [3],
mobile apps [21] and Linux kernel [22], respectively. Further-
more, some empirical studies have emerged using developers’
standpoints to examine software logging. For example, Shang
et al. [6] conduct an empirical study on email and web
search inquiries about software logs to identify development
knowledge types that developers frequently seek from the logs,



TABLE I: Summary of studied subjects. The columns Files,
SLOC, Commits denote the number of files, number of source
lines of code, and number of commits of each repository,
respectively.

Subjects Files SLOC Commits

hadoop 14,265 3,981K 26,227
hive 9,913 2,253K 16,404
hbase 5,402 992K 19,466
lucene 5,561 858K 36,203
tomcat 3,358 466K 24,531
activemq 4,892 463K 11,242
pig 2,054 408K 3,711
xmlgraphics-fop 3,055 331K 8,459
logging-log4j2 3,177 253K 12,358
ant 2,139 245K 14,897
struts 2,813 243K 6,406
jmeter 1,793 231K 17,766
karaf 2,250 182K 9,220
zookeeper 1,221 178K 2,435
mahout 1,920 166K 4,506
openmeetings 1,030 138K 3,531
maven 1,915 134K 11,639
pivot 1,219 127K 4,660
empire-db 466 51K 1,474
mina 345 25K 2,401
creadur-rat 244 14K 1,335

and Li et al. [1] study the benefits and costs of logging from
developers’ perspectives. Along with the aforementioned, an
empirical study has been conducted to study logging library
migrations for the Apache Software Foundation projects [23]
and to study the stability of logging statements [24]. Although
there are numerous empirical studies on software logging,
none have studied software log IDs to facilitate log grouping,
which raises our concern.

III. STUDY SETUP

Our study1 involves well-known open-source subjects taken
from [3] ranging across many domains. They are summarized
in Table I.

Each repository is obtained by cloning its source code on
GitHub using git. The number of files and source lines
of code (SLOC) are found using the tool cloc[25]. In
total, we analyzed 21 projects, all different in scale. The
list of projects includes libraries, notably Hadoop, Log4j2
and ActiveMQ, software toolings such as Ant, JMeter and
Maven, and applications such as OpenMeetings, HBase and
XMLGraphics-Fop. Across all projects, the number of source
lines of code ranges from 14K to 3,981K SLOC, for a total
of more than 11M SLOC. All projects have a long history of
commits, the shortest at 1K from the head commit and the
longest at 26K.

We use srcML [26] to parse the java source files. SrcML
is an XML format representing source code and a toolkit to
convert source code to the srcML format. This allows us to
perform queries on the structure of the code easily.

1The replication package is available at https://github.com/senseconcordia/
logtracker

IV. IDENTIFIERS IN LOGS

Log entries often refer to a specific object, such as tasks and
threads, or a piece of data. A simpler relation can be estab-
lished between entries if they can be grouped. Log groupings
help filter logs to reduce the complexity of understanding the
process in a running instance that generates logs. Traditionally,
this grouping is performed by following a simple rule: entries
containing the same value of a specific identifier are related
and should be grouped.

In this section, we discuss identifiers found in logging
statements. We first establish our definition of identifiers and
a heuristic to distinguish them from other variables in Sec-
tion IV-A. Then, we study their presence in source codes and
changes affecting them in historical commits in Section IV-C.

A. Establishing Identifiers

We define an identifier as a variable that can uniquely
identify an object. An object could be a resource, a unit of data,
a process, etc. Identifiers can be produced by default by the
logging framework used by the program. An example of such
identifiers is thread ID. The thread ID is particularly useful
in analyzing logs of multi-threaded applications: grouping by
thread ID can reduce the complexity of a log sequence and
allows for the analysis of critical paths. Logs of finer and
coarser execution units can also be grouped using identifiers
referring to tasks, jobs, processes, etc.

After investigating the 21 Java projects, we found that
objects referred to by IDs in logging statements can be
classified into the following two categories:
Resources are units of data that the program processes. They

can be obtained as inputs or computed at runtime. A unit
of data can be, for example, rows of tables in a database,
network packets, files, results of other data transfor-
mations, etc. Resources can also be resource handles,
that is, indirect references to a resource indicating the
location where the resource can be found and accessed.
For example, sockets, virtual filesystem objects, network
sessions, etc. Identifiers of these resources are used not
only to keep track of them but also to relate them to
each other to produce new data. Identifiers of resources
are included in logs to record the data flow and to join
information. Identifiers in this category can be location
indicators such as URLs, IP addresses and indices, or a
representative part of the data, such as hashes and names.

Computation Units are actors that produce and consume
resources. Examples of computation units are threads,
coroutines, and processes. Computation units can also
be an abstract representation of actions such as jobs and
tasks. Indirect references to external computation units,
such as web jobs and requests. Identifiers of computation
units are names or integers that can be encoded into other
representations. Sometimes, the identifier is part of the
computation, such as when it is used to determine a run-
time behaviour. Thus they are essential in keeping track
of the progress and the behaviour of the computation.



Although different, objects of these categories often refer
to each other. For example, a network request is often related
to a resource being accessed. We also note that they can be
nested and heterogenous, thus adding layers of complexity to
their relationships. Piecing together information from objects
of both categories is essential in software analysis, and the
persistence of that information is the ultimate goal of logging.

Because objects referenced by IDs are so different from
each other but also interrelated, it is almost impossible to
provide an accurate template to distinguish IDs just from the
nature of what the variable reference and without data flow
analysis.

Instead, to distinguish identifiers from normal variables, we
use a heuristic about the name of the variables. Variable names
can be easily accessed while reading the source code, but
we note that, as with all heuristics, it comes at a cost to the
accuracy. To formulate this heuristic, we sample the logging
statements that contain variables via a traversal of the abstract
syntax tree (AST) of source code and extract every logging
statement. Similarly to the method used in prior research [3],
we employ the following set of rules to pick out logging
statements from the AST:

1) The AST element must be an invocation statement. This
rule follows the fact that logging is necessarily performed
via a function call.

2) The qualified name of the target of the invocation must
contain the word “log”. This rule follows that logging
functions are usually instance methods in a dedicated
class that handles related logging logic. The instances
of that class are usually in a similarly named variable
that refers semantically to logging. This is necessary
to distinguish invocations of methods that have similar
signatures to logging methods but do not log, such as
Math.log(). In this last example, the qualified name
of the target is Math and thus is not considered a logging
statement.

3) The method invoked by the statement must have as a
name either “info”, “warning”, “error”, “fatal”, “debug”,
“trace” or “log”. This rule follows that they are the most
common names for logging methods.

Then, after extracting all logging statements and sampling a
subset of them, two authors manually and separately labelled
all variable access and method call used as arguments in each
logging statement of the sample to determine whether the
values they could take could uniquely identify an object. We
focused on the semantics of the names. Based on this labelling,
we formulate the following heuristic applicable to the names
found in the arguments: if a part of a name contains a keyword,
then the logging statement is considered to have an identifier.
The keywords are chosen such that it matches our labelling
while also keeping the list short. The list of keywords we end
up with is “ID”, “IP”, “name”, “path”, “URL”, “URI”. This
is a very conservative list, but it ensures that the results are
consistent across projects.

TABLE II: Number of log statements found in the studied Java
projects, and the fraction of which containing IDs.

Subject # Log # Log w/ IDs (%)

hadoop 18,962 5,076 (27%)
hive 10,854 2,454 (23%)
hbase 10,223 2,524 (25%)
lucene 6 1 (17%)
tomcat 2,830 1,095 (39%)
activemq 6,341 1,099 (17%)
pig 1,079 127 (12%)
xmlgraphics-fop 1,104 135 (12%)
logging-log4j2 2,902 504 (17%)
ant 32 6 (19%)
struts 1,332 388 (29%)
jmeter 2,221 537 (24%)
karaf 652 147 (23%)
zookeeper 2,226 484 (22%)
mahout 588 68 (12%)
openmeetings 658 148 (22%)
maven 331 67 (20%)
pivot 0 0
empire-db 762 290 (38%)
mina 227 5 (2%)
creadur-rat 13 0 (0%)

B. Finding Identifiers in Source Code

An example of an identifier commonly used in groupings
is “request ID”, where a developer might be interested in
the process started by a specific client request to a server.
The developer can then interpolate the events that occurred
in response to the request from the log group. However,
identifiers are not always included in logging statements,
intentionally or not. In response to the request, a server might
initiate tasks whose logging statements do not include the
request’s ID. Then, the developer needs to perform additional
operations to navigate the log file. Worst, subtasks might
also be started from the main tasks and logs in log files
become interleaved. In this scenario, it becomes difficult for a
developer or even automated methods to relate the events of
different tasks initiated by the same request.

Table II concretizes the problem. Using the previously
defined heuristic in Section IV-A, we filtered and count the
logging statements with IDs and without IDs. In all analyzed
projects, we found that, on average, only 21% of the logging
statements contain IDs. In Tomcat, 39% are logging statements
with ID, the highest fraction across all projects. The projects
with the least number of logging statements with IDs, without
counting the outliers, are Mahout and XMLGraphics-Fop, at
12%. There are three outliers, Pivot, Mina and Creadur-Rat.
No logs were found for Pivot, and no logs with IDs were
found for Creadur-Rat. Mina has an exceptionally low count
of logs with IDs. For these Creadur-Rat and Mina, most
variable names used for their internal objects are shorter than
descriptive and are not prefixed nor suffixed with any modifier
keywords, in which case our heuristics fail. In the case of
Tomcat, a large portion of the project failed to compile using
our tooling.

We also observe low correlation between the number of logs
and the fraction containing IDs. The Pearson product-moment



TABLE III: Number of log statements and log statements with
IDs in each verbosity level.

Level # logs # logs w/ ID (%)

other 299 30 (10%)
trace 2,578 757 (29%)
debug 1,633 4,687 (29%)
into 23,167 5,459 (24%)
warn 9,306 2,336 (25%)
error 11,572 1,891 (16%)
fatal 105 4 (4%)

correlation coefficient between them is only a little over 0.3.
This could be problematic for larger projects, such as Hadoop,
Hive and HBase. As the number of logging statements in
a project grows, more information is recorded in log files.
However, since the ratio of logs with ID does not grow, the
information contained in the log files becomes hard to parse:
logs could be separated by longer sequences of unrelated logs,
and more interleaving could happen.

Table III shows the proportion of logging statements with
IDs in each verbosity level. The largest percentage is in the
trace level, and the lowest is in the fatal level. We notice
that as the verbosity increases, the percentage drops. This is
confirmed by a Pearson correlation coefficient of -0.9. This is
problematic in debugging situations where high-verbosity logs
are usually looked at first to identify problems. The other
level includes logging statements where we couldn’t find the
appropriate level.

Finding 1: On average, only 21% of logging statements
contain IDs. Furthermore, as the verbosity of the logging
statement increases, this percentage diminishes. Com-
bined, this could result in log files that are hard to follow.

C. Changes in Logs in Historical Commits

As with any other source code, logging statements evolve
as a project grows. We look at the historical commits to
understand how IDs in logging statements change.

Table IV shows the average number of logging statements
that changes per commit. Old changes are deletions of a
logging statement, new changes are additions, and revision
changes are modifications. Modifications can split a single
logging statement into multiple or merge a multiple into a
single logging statement. Hadoop has the most changes to
logging statements per commit, with 2.92 deletions, 1.69
additions and 0.36 modifications per commit. We note that
the percentages of changes to logs with ID in commits are
lower than the percentages of logs with ID, shown in Table II,
which suggests that logs with IDs are more likely than changes
to those without. Those changes could mean a high variability
in log files: IDs could be in some versions and not in others.

There are even fewer logs with more than one ID. Table V
shows that the average number of logs with more than one
ID is only 2.39%, and the average number of logs with more
than two IDs is only 0.36%.

Table VI shows the number of commits that contain at least
one change to logs with an ID compared to those that also
have changes to logs without IDs. We observe that only 4%
of commits actually change logs with IDs. We also observe
that in between those commits, many others do not affect logs
at all, thus indicating that changes to logs with IDs rarely
occur.

Finding 2: Changes to logging statements containing
IDs are less common than changes to logging statements
without ID. On average, only 17% of changed logging
statements contain IDs.

V. LTID: ATTACHING IDENTIFIERS TO LOGGING
STATEMENTS

We propose LTID, an approach to extract the dependency
relations of logging statements, with which we construct a log
graph used to propagate IDs from logs that contain them to
those that do not.

A. Overview

Our approach (Figure 1) leverages log graphs, i.e. pruned
CFGs, and ID variables in log templates to identify the
dependency relation between pairs of log entries. It first takes
the source files as input to extract the corresponding log
templates and variables (step 1) and build CFGs (step 3). It
then generates log graphs derived from CFGs by eliminating
irrelevant and non-logging nodes (step 4) and computes for
each the dominance between pairs of nodes (step 5). Finally, to
concretize the dependencies between pairs of log entries, based
on the log graph and the computed dominance, it employs a set
of ID variable names obtained by applying a heuristic (step 2)
to propagate the ID variables of each logging statement (step
5).

B. Log Graph Construction

a) Extracting Logging Templates: Given source code
files, our approach traverses the abstract syntax tree (AST)
of each method to identify all logging statements using a key-
word based search strategy commonly used in prior studies
[3], [20]. We extract logging statements as described in Sec-
tion IV-A. Specifically, logging statements are chosen based
on the following rules: the statement is an invocation whose
target’s qualified name contains the word “log” or words
associated with the logging level, such as “info”, “error” and
“warning”. We also require that all chosen logging statements
have an argument of String type, which could improve
search strategy accuracy by filtering out some methods with
names that include “log” but are not logging statements, such
as Math.log(Double double).

Once logging statements are given, we can extract log
templates and variables from their arguments. Log templates
are texts with generated variable names inserted in place of the
dynamic content. The variable names are used to find variables
that are IDs for identifying the dependency relations between
log entries in a log file, while log templates are used to match



TABLE IV: Average number of logging statement changes per commit, and the proportion of which contain IDs. "Old" is
deletion, "New" is addition and "Rev" is a modification of logging statements.

Subject Old Old w/ ID (%) New New w/ ID (%) Revision Rev w/ ID (%)

hadoop 2.92 0.45 (15.29%) 1.69 0.26 (15.42%) 0.36 0.12 (34.46%)
hive 3.30 0.31 (9.26%) 1.37 0.12 (9.10%) 0.20 0.05 (25.18%)
hbase 1.74 0.18 (10.19%) 1.17 0.12 (10.29%) 0.26 0.05 (20.25%)
lucene 0.60 0.08 (13.37%) 0.56 0.07 (12.10%) 0.03 0.01 (22.43%)
tomcat 0.18 0.03 (14.86%) 0.15 0.02 (14.10%) 0.04 0.01 (27.95%)
activemq 1.52 0.20 (13.26%) 0.90 0.12 (13.33%) 0.05 0.02 (37.08%)
pig 0.65 0.03 (5.30%) 0.33 0.01 (4.00%) 0.03 0.00 (11.82%)
xmlgraphics-fop 0.87 0.11 (12.81%) 0.74 0.10 (13.02%) 0.06 0.01 (17.99%)
logging-log4j2 0.77 0.09 (12.30%) 0.48 0.06 (13.53%) 0.02 0.01 (39.87%)
ant 0.03 0.00 (12.29%) 0.01 0.00 (37.67%) 0.01 0.00 (13.19%)
struts 1.09 0.14 (12.50%) 0.85 0.10 (11.43%) 0.02 0.01 (31.41%)
jmeter 0.50 0.06 (12.27%) 0.40 0.05 (12.29%) 0.02 0.00 (16.71%)
karaf 0.24 0.04 (16.41%) 0.17 0.03 (18.22%) 0.01 0.00 (55.24%)
zookeeper 2.66 0.45 (16.78%) 1.99 0.33 (16.74%) 0.21 0.09 (41.63%)
mahout 1.01 0.08 (7.61%) 0.93 0.07 (7.52%) 0.06 0.01 (17.83%)
openmeetings 0.50 0.10 (19.72%) 0.64 0.09 (13.40%) 0.04 0.03 (68.82%)
maven 0.10 0.01 (7.58%) 0.09 0.01 (8.85%) 0.01 0.00 (3.45%)
pivot 0.00 0.00 0.00 0.00 0.00 0.00
empire-db 1.20 0.10 (8.10%) 0.79 0.06 (8.07%) 0.00 0.00
mina 0.78 0.03 (3.86%) 0.69 0.02 (3.54%) 0.07 0.01 (18.99%)
creadur-rat 0.02 0.00 (0.00%) 0.01 0.00 (0.00%) 0.00 0.00

TABLE V: Average percentage of logs with at least one, two
and three IDs.

logs w/ ≥ 1 ID logs w/ ≥ 2 ID logs w/ ≥ 3 ID

20% 2.39% 0.36%

TABLE VI: Number of commits with changes to logs.

# commits # commits w/ ID (%)

238,775 9,449 (4%)

the log entries with nodes in the log graph. Both log templates
and variables could be directly extracted from the arguments
of logging statements.

b) ID Identification: IDs in software logs are unique
identifiers that can be used to group software logs. The
software logs with identical IDs are related to one another and
are commonly specific to a single system control flow, which
suggests that the same system execution typically produces
logs with Identical IDs. Therefore, learning about software IDs
can aid developers in comprehending the relationships between
log entries.

From the extracted logging variables, we identify variables
that represent IDs by establishing a heuristic which we define
in Section IV-A.

c) CFG Construction: Traditionally, CFGs are con-
structed using specific intermediate representation (IR) or
compiled binaries, such as JVM’s .class files, which lay
emphasis on storing and representing the flow relationships in
programs. According to a prior study, [27], CFG construction
could be accomplished using static, dynamic, or hybrid strate-
gies. However, as they grow in size and complexity, modern
software systems typically result in large and complicated
CFGs that require significant time and resources to construct

using dynamic or hybrid strategies. Furthermore, CFGs may
contain a lot of low-level information [28] in which we have
no interest in this study. Therefore, in this study, we build
CFGs using ASTs that store higher-level information without
executing programs.

The goal of constructing CFGs is to determine the control
flow relations between logging statements. To this effect, we
present the CFG nodes using AST nodes at the statement level
rather than the block level since using the block level would
require additional work to locate the logging statements. We
construct the CFG of each method using Spoon [29].

Although not used in this study, it is possible to con-
nect the CFGs of every method to form an interprocedural
CFG (ICFG). While preserving the various method invocation
contexts, we substitute the CFG node for each invocation
statement we encounter during the construction by a copy of
the CFG of the invoked method. Because of dynamic dis-
patches, constructing this ICFG requires a data flow analysis
to resolve the types and method invocations. Sometimes it
is not easy to get a proper resolution. For example, when
the method Object.equals(Object other) is invoked
recursively; it is close to impossible to resolve the type of the
other object since this method is used often and invoked in
many places in the code base. Recursion also needs to be taken
into account. Determining if the recursion depth using static
analysis is non-deterministic. It requires symbolic execution of
the program, which might never halt. If recursion occurs, we
can replace the recursive invocation node with an edge to the
previous instance of this invocation, effectively approximating
the recursive behaviours with a loop. Furthermore, to facilitate
the construction process and conserve resources, this construc-
tion can be done lazily only to take up as much memory as
required.
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Fig. 1: Process of building a log graph.

d) Reducing the CFGs: Given that we are only interested
in the control flow relationships between logging statements,
the CFG now encompasses logging statement nodes and non-
logging nodes, so we need to filter those unrelated nodes out.
For each node we are not interested in, we remove it by
discarding its incoming edges from its predecessors; we then
make an edge from each predecessor to each of the removed
node’s successors. Extra care is taken when eliminating nodes
that have self-edges due to loops and recursion by removing
empty cycles that might arise in the process.

We call this resulting reduced CFG the log graph. Each
vertex in the graph represents a logging statement. In addi-
tion, each directed edge indicates a dependency relationship
between the log entries at the ends of the edge. In other words,
a log at the destination end of an edge depends on the log at
the origin end of the edge.

Formally, let T := {t1, t2, ..., tk} be the set of all log entry
types appearing in a log file F , and ti and tj be two log entry
types in T . There is a dependency relation between ti and
tj , if ti must always appear before tj . We assume that when
testing the order of ti and tj , they are put into the log file
synchronously. We denote this relation as ti > tj . The log
graph is the graph G = (T,R) where R := {(ti, tj) ∈ T 2 :

Algorithm 1 Algorithm to propagate logs using the dominator
tree as described in prior research [30]

procedure FINDIDENTIFIERS(v)
x← VARIABLES(v)
x← HEURISTIC(x)
if DOMINATOR(v) exists then

u← DOMINATOR(v)
y ← FINDIDENTIFIERS(u)
x← x ∪ y
return x

else
return x

ti > tj}.
e) Computing Dominance: Dominance is then computed

using the method described in [30]. Finally, we compute the
dominator tree from the CFG. Algorithm 1 shows how the
algorithm is used.

We then define the dependency relation between log entries
using the computed dominance. Let T = {t1, t2, . . . , tk} be
the set of log entry types. Let s1, s2, . . . , sk be the logging
statement nodes in the log graph, with each generating type



t1, t2, . . . , tk respectively. If si strictly dominates sj for some
integer i and j between 0 and k, then all entries of type tj
depends on ti. We denote this relation as ti > tj .

We use Algorithm 1 to find identifiers given a log statement
v. It first checks if v has itself some variables x that are IDs,
using the procedure VARIABLES and HEURISTIC. Then, it
uses the dominator u or not. If it does, then it recurses to
find the identifiers y of u and returns the union of x and y.
This procedure recurses until the root is reached, which has no
dominators. In our case, it is the first statement of the method.

At the end of the procedure, the returned state x contains
both v’s and its dominators’ IDs. If the log statement v does
not have IDs, then x will be empty. Thus, the procedure returns
only the results of finding IDs in its dominator.

VI. STUDYING THE ADDED ID BY LTID

There are many reasons why a logging statement might not
contain an ID: it might not be practical due to the logging
statement being reused in different contexts, it might not make
sense in the semantic context of the logging statement for it
to have an ID, or simply the developer did not think it was
necessary. However, including an ID is important to ensure
that no information is lost in a log file.

To alleviate the lack of IDs, we use the log graph described
in Section V. Given logging statements with ID, we can
propagate their IDs to statements without ID. This propagation
is performed for all pairs of logging statements in the log graph
that are neighbors. That is, for any pair of log event types si
and sj in the same log graph and their corresponding types
ti and tj , if ti > tj then we append all IDs of si to sj if
it is not already present in sj . Similarly, although not in the
scope of this study, IDs can also be propagated between log
event instances in log files. In that case, the log graph can be
approximated using temporal dependencies, e.g., using similar
methods to the one proposed in [31].

We first evaluate our approach in Section VI-A. Then
we propose categorizing the information gained through the
propagation of IDs in Section VI-C.

A. Evaluating the Static Log Graph

Table VII presents the number of logs with successful ID
injections compared to the number of logs without any ID.
Aside from the Lucene, Ant, and Pivot, where no injections
could be made, and Karaf and Logging-Log4j2, where they
have an exceedingly high number of injections, the lowest
percentage of successful injections is 2% in Tomcat, and the
highest is 13% in Pig. On average, only 12% of logging
statements were successfully injected with an ID.

We note that there is little to no correlation between the
number of logging statements without IDs and the percentage
with IDs. The correlation coefficient is 0.4, which is not
significant enough to indicate any correlation.

Table VIII shows a different view of the number of logs
with successful ID injections compared to the number of logs
without any ID. Considering all projects, logs of the other
and fatal levels had the highest percentage of logs with

TABLE VII: Number of logging statements in each project
without any IDs compared with those of which an ID can be
injected.

Subjects # logs w/o IDs # injections (%)

hadoop 13,886 968 (7%)
hive 8,400 546 (7%)
hbase 7,699 468 (6%)
lucene 5 0 (0%)
tomcat 1,735 39 (2%)
activemq 5,242 247 (5%)
pig 952 127 (13%)
xmlgraphics-fop 969 20 (2%)
logging-log4j2 2,398 2,084 (87%)
ant 26 0 (0%)
struts 944 72 (8%)
jmeter 1,684 96 (6%)
karaf 505 485 (96%)
zookeeper 1,742 167 (10%)
mahout 520 15 (3%)
openmeetings 510 30 (6%)
maven 264 12 (5%)
pivot 0 0
empire-db 472 27 (6%)
mina 222 0 (0%)
creadur-rat 13 0 (0%)

TABLE VIII: Number of logging statements of different log
levels without ID compared with those of which an ID can be
injected.

Level # logs w/o IDs # injections (%)

other 269 205 (76%)
trace 1,821 266 (14%)
debug 11,646 1,484 (13%)
info 17,717 1,623 (9%)
warn 6,970 773 (11%)
error 9,681 922 (10%)
fatal 101 48 (47%)

successful injections, with 76% and 47%, respectively. In
contrast to the low percentage of logs with IDs of the fatal
level, we find that almost half of them can have IDs injected.
For other log levels, the percentage of injected logs is lower.
Excluding fatal and other, we find that, on average, 11%
of logs can have injected IDs. In the most common level,
info, the percentage is lowest, at only 9%.

There is a significant variation from 0 to 96% across all
projects. This is largely due to how projects fit into the scope
of LTID. Since the analysis is performed at a method level,
differing logging practices of the projects may cause varying
results. For example, in Hadoop, many methods only contain
one logging statement, in which case our method can not inject
any IDs. In contrast, in Log4j2, many methods with logging
statements have one at the beginning and another further down
the control flow in an error-handling block.

B. Example Propagation of ID

Listing 3 shows an example of where injection of IDs can
happen and might be helpful. There are two logging statements
in the code snippet. The first one logs an action on some data
identified using the variables hsa and hri defined earlier in



Listing 3 Code snippet is taken from HBase. An ID is propagated from the first logging statement to the second.

ServerName hsa = metaLocation.getServerName();
RegionInfo hri = metaLocation.getRegion();
...
LOG.info("deleting hdfs data: " + hri.toString() + hsa.toString());
...
Path p = new Path(rootDir + "/" + TableName.META_TABLE_NAME.getNameAsString(),

hri.getEncodedName());
boolean success = fs.delete(p, true);
...
LOG.info("Deleted " + p + " sucessfully? " + success); // ‘hsa‘ can be injected here.

the program. The second one logs the result of the previous
action. This time, it is only identified by the hri variable,
included indirectly through the p variable. If we consider a
grouping by the server name indicated by the hsa variable, the
second log would not be included in the group. Furthermore,
in cases where this code is executed by many parallel tasks
acting on data from the same region, indicated by the hri
variable, it becomes hard or even impossible to attribute the
result of the action to the data on which it’s acting.

In the same snippet, our approach successfully detects the
potentially missing ID. Then, based on this detection, it can
inject the ID into the logging statement. For demonstration,
a comment is injected instead. The processed second log
contains enough information to be related to the first one, and
the relationship is preserved in log files. Even if executed by
multiple parallel tasks, each result is correctly attributed to the
action.

Finding 3: Using our approach, we were able to inject
IDs into logs that had no IDs. We find that, on average,
12% of logs without IDs can have injected IDs.

C. Categorizing the Information Gain

By injecting IDs into the logging statements, we are essen-
tially concretizing their dependency relation. In log filtering
and grouping tasks, more logs are included. To better un-
derstand this informational gain, we propose a categorization
based on a manual study. We sampled 378 instances of
injection of IDs in logging statements across all twenty-one
studied projects. Then all of the authors of this paper followed
an open coding process to identify the categories.

The manual study was completed by four professional
computer science researchers: two with Ph.D. degrees, one
pursuing a Ph.D., and one visiting senior computer science
student. The process is twofold. First, we each analyze the
methods in the sample individually and consolidate our find-
ings into a common set of categories. Second, we perform
again, individually, two rounds of labelling the methods while
considering the propagations of IDs into the established cat-
egories from the first step. In this second process, we have
achieved a reasonably strong agreement with Cohen’s kappa
coefficient of 0.74.

The categories we identified are as follows. We present a
short example of each category to help explain their differ-
ences.

Sequence (Listing 4) describes a linear relationship between
two or more logs. Unlike branches, information gained
in this category indicates the progress of a process. This
kind of relationship does not implicitly reveal any runtime
values, that is, those that are not explicitly added to the
logging statement. However, they contain evidence that
no error has happened in between.

Listing 4 Example of a sequence

Log.info(’started task {}’, id)
...
// inject id
Log.info(’task completed’)

Branch (Listing 5) describes a change in the runtime state
about the branching of the control flow of a process. The
conveyed relationship is nonlinear and non-deterministic.
The log that will be produced to the logfile will depend
on some runtime conditions. Like the sequence, it can
reveal whether an exception has happened.

Listing 5 Example of a branch.

Log.info(’started task {}’, id)
...
if (condition) {

// inject id
Log.info(’started subtask {}’, sub_id)

}

Exception (Listing 6) describes an exceptional branching of
an otherwise linear flow. It differs from branches in that it
conveys unexpected behaviour. Although the exception is
a form of control flow, we differentiate exceptions from
branching because it informs that there is a shift in the
state of the program into a different flow in an attempt
to recover from an error. In the example in Listing 6, we
remark that an exception relationship does not require the
use of a try catch statement.

Listing 6 Example of an exception.

Log.info(’started task {}’, id)
...
switch (result) {

case SUCCESS: ...
case ERROR

// inject id
Log.error(’got {}’, result)
throw new RuntimeException()

}



We also notice that in some cases, multiple logging state-
ments are used in succession to record closely related infor-
mation. In those cases, we can also classify them as follow:
Elaboration (Listing 7) describes an addition of optional

details. The information contained in the first log is
sufficient by itself, and the second is not, contains only
auxiliary information on the runtime state and serves as
a supplement to the first.

Listing 7 Example of an elaboration.

Log.info(’started task {}’, id)
// inject id
Log.info(’might take a long time’)

Explanation (Listing 8) describes the addition of ancillary
details to the information contained in the first log.
Usually, it explains the subject of the first log. The second
log, which adds information, is necessary to convey the
information correctly.

Listing 8 Example of an explanation.

Log.error(’task {} failed’, id)
// inject id
Log.debug(’task received {}’, signal)

Complement (Listing 9) describes a pairing of two different
sufficient pieces of related information that are not about
the same subject. The two logs can be seen as two
different events that happen simultaneously, whereas, in
elaborations and explanations, only one event is de-
scribed.

Listing 9 Example of a complement.

Log.info(’started task {}’, id)
// inject id
Log.debug(’using threads {}’, thread_count)

Finding 4: We identified six categories of the de-
pendency relations between logging statements without
IDs and their referential logging statements with IDs:
Sequence, Branch, Exception, Elaboration, Explanation,
and Complement.

VII. THREAT TO VALIDITY

A. External Validity

The 21 subjects studied are all open-source Java projects
developed under the Apache Software Foundation. Our results
could be biased towards software in the writing style found in
Apache software and might not apply to projects maintained
by other organizations. Differences in logging practices can
be different.

The subjects are all written in Java. For this reason, the tools
we have developed, the techniques we used and our results
may not apply to projects using other languages such as C++,
Python, Go etc.

However, even if we only considered Java projects, our
results are still significant and may serve as a basis for
future work. Java is a well-understood simple language and
have overlapping features with many other popular languages.
These projects are well-established and have been maintained
by professional teams. Furthermore, they have been studied
extensively in previous research [3], [20].

B. Internal Validity
To differentiate IDs from normal variables, we used a

heuristic defined after a preliminary round of manual labelling.
Our heuristic is a generalization of the results of the manual
labelling and might impact the accuracy of finding IDs. IDs
might be missed, or non-IDs might be erroneously considered
as IDs. However, the preliminary labelling is performed by
two developers to avoid ambiguities and uncertainty. We chose
many keywords closely related to our subjects to reduce the
chances of mislabelling the variables.

To find the dependency relations of logs using CFGs,
sometimes approximations are required due to the dynamic
behaviour of a program. Common language features that make
static analysis difficult are dynamic dispatch, introspection,
and runtime exceptions. To workaround these issues, we scope
our analysis at the method level, where the construction of
CFGs is simple and does not require data flow analysis. This
method gets us close to the ground truth and allows us to set
a baseline for future work.

C. Construct Validity
Our approach only aims to complement logging statements

by preserving dependency relations in between. Thus, an
evaluation of the approach can only be subjective.

However, although we find that the added information is
useful, it might not always be the case, depending on the
differing contexts in real-world scenarios. A large user study
can be conducted to investigate the usefulness and quality of
the gained information.

VIII. CONCLUSION

We conducted an empirical study on the IDs in logging
statements of 21 Java open-source projects. To our knowledge,
this is the first study that focuses on the uses of IDs in logs. We
found that only a limited amount of logging statements contain
IDs and that their proportion is even lower in high-verbosity
logs. We then proposed a simple approach to injecting IDs
in logging statements to mitigate this issue. The approach is
based on control flow graphs obtained through static analysis
of the source code. We found that although capable of prop-
agating IDs to logs that do not contain any, our results only
establish a baseline. We also study the information gained by
injecting IDs which could prove helpful in future studies.

Our approach is based on static analysis, which is highly
dependent on the language and tools available. It does not
make use of the rich information produced at runtime. In future
work, we aim to improve the performance and generalizability
of our approach by mining log dependencies directly from log
files.
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