
1

Reducing the Length of Field-replay Based
Load Testing

Yuanjie Xia, Lizhi Liao, Jinfu Chen, Heng Li, Weiyi Shang

Abstract—As software systems continuously grow in size and complexity, performance and load related issues have become more
common than functional issues. Load testing is usually performed before software releases to ensure that the software system can still
provide quality service under a certain load. Therefore, one of the common challenges of load testing is to design realistic workloads
that can represent the actual workload in the field. In particular, one of the most widely adopted and intuitive approaches is to directly
replay the field workloads in the load testing environment. However, replaying a lengthy, e.g., 48 hours, field workloads is rather
resource- and time-consuming, and sometimes even infeasible for large-scale software systems that adopt a rapid release cycle. On
the other hand, replaying a short duration of the field workloads may still result in unrealistic load testing. In this work, we propose an
automated approach to reduce the length of load testing that is driven by replaying the field workloads. The intuition of our approach is:
if the measured performance associated with a particular system behaviour is already stable, we can skip subsequent testing of this
system behaviour to reduce the length of the field workloads. In particular, our approach first clusters execution logs that are generated
during the system runtime to identify similar system behaviours during the field workloads. Then, we use statistical methods to
determine whether the measured performance associated with a system behaviour has been stable. We evaluate our approach on
three open-source projects (i.e., OpenMRS, TeaStore, and Apache James). The results show that our approach can significantly
reduce the length of field workloads while the workloads-after-reduction produced by our approach are representative of the original
set of workloads. More importantly, the load testing results obtained by replaying the workloads after the reduction have high
correlation and similar trend with the original set of workloads. Practitioners can leverage our approach to perform realistic field-replay
based load testing while saving the needed resources and time. Our approach sheds light on future research that aims to reduce the
cost of load testing for large-scale software systems.

Index Terms—load testing, workload reduction, workload replay, software performance.

F

1 INTRODUCTION

SOFTWARE performance is an essential measurement in
software quality [61]. Prior studies show that the failures

of large software systems are often due to performance
and load-related issues rather than functional bugs [25],
[71]. Besides the catastrophic field failures, performance and
load-related software issues may also increase the cost of
operations of the system and compromise the user experi-
ence. For example, due to the extraordinarily high load of
online grocery shopping at the beginning of the pandemic in
2020 [26], some online purchasing systems of supermarkets
crashed or had extremely slow responses [13], [63]. Both the
financial and reputational repercussions from these issues
would be detrimental to the success of software systems.

Load testing is one of the major activities for ensuring the
quality of services provided by the system under load [39].
However, due to the complex nature of software systems
and the ever-evolving user behaviours, load testing has
become a challenging task. In particular, practitioners often
aim to design load testing based on realistic workloads
that can reflect the end users’ behaviour while the soft-
ware system is running in the field environment. However,

• Yuanjie Xia, Lizhi Liao, and Weiyi Shang are with the Department of
Electrical and Computer Engineering, University of Waterloo.
E-mail: {y35xia, lizhi.liao, wshang}@uwaterloo.ca

• Jinfu Chen is with the School of Computer Science, Wuhan University.
E-mail: jinfuchen@whu.edu.cn

• Heng Li is with the Department of Computer and Software Engineering
at Polytechnique Montreal, Canada.
E-mail: heng.li@polymtl.ca

these workloads are continuously evolving due to user base
changes, feature changes (additions and removals), and user
preference changes over time [66]. Thus, it is challenging to
maintain the load test cases to reflect realistic workloads in
the field. One of the most intuitive approaches to realistic
load testing is to directly replay the workloads from the
field (i.e., behaviours of real end users) in a load testing
environment [22].

Despite the advantages of load testing that is driven
by field-relay, practitioners still face the dilemma between
realistic load tests and their costs. On the one hand, the
longer the duration of the replay, the more-representative
the tested workloads. For example, a load test can replay a
full day (24 hours) of the field workloads in order to reduce
the bias caused by the variation of workloads within a day
(e.g., peak workloads at a certain time of the day). However,
the needed resources and time for such a lengthy replay
may become an obstacle for the development of large-scale
software systems, especially in a fast-paced release cycle of
the modern software development process [6]. On the other
hand, replaying a short duration of the field workloads may
not suffice the goal of realistic load testing, as a short dura-
tion may not be representative of the actual field workloads.

In this paper, we present our approach that can reduce
the length of field-replay based load testing while preserv-
ing realistic workloads. The intuition of our approach is
that the lengthy field workloads typically contain repetitions
in system behaviours. If we have obtained enough perfor-
mance observations of the same system behaviour, we can

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3408079

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on June 23,2024 at 15:35:41 UTC from IEEE Xplore. Restrictions apply.

2

skip the further replaying of this system behaviour to reduce
the length of the field workloads. We first cluster the system
behaviours, represented by the execution logs generated
during system runtime, in order to identify similar user
behaviours. Afterwards, we consider the stable software
performance associated with similar system behaviour as
an indicator of having enough performance observations.
We apply the Kolmogorov–Smirnov test [62] to determine
whether adding additional testing time would have a sig-
nificant influence on the distribution of the measured per-
formance associated with each system behaviour. A statis-
tically insignificant result of the Kolmogorov–Smirnov test
is used as an indicator of stable performance. Since we only
reduce the workloads if there already exist similar work-
loads with stable performance observations, the workloads-
after-reduction are still representative of both the system
behaviours and their associated performance.

We evaluate our approach on three open-source projects
(i.e., TeaStore, OpenMRS, and Apache James) which are tested
under field-like varying workloads. In particular, our study
aims to answer three research questions (RQs):
RQ1: How effectively can our approach reduce tested workloads?
The field workloads can be drastically reduced by using our
approach. Only 26%, 14% and 18% of the field workloads
in OpenMRS, TeaStore and Apache James, respectively, are
kept after reduction by our approach in the experiment.
By examining the results of our experiments, we find that
while the majority of the system behaviours achieve a stable
performance distribution throughout in a short duration,
there exist system behaviours that require a long testing
time to achieve the stability.
RQ2: How representative are the workloads-after-reduction pro-
duced by our approach?
The workloads-after-reduction are representative of the
original set of workloads. When using the workloads-after-
reduction to build a performance model and use the model
to predict the system performance of the entire workloads,
the predicted system performance is similar to the original
system performance (with a median absolute relative error
lower than 6.51%). The performance model built from the
workloads-after-reduction has similar prediction results to
the performance model built from all the workloads with
negligible effect sizes.
RQ3: How representative are the workloads-after-reduction re-
played in a different environment?
By replaying the workloads-after-reduction, the perfor-
mance of the systems in the replay environment has a high
correlation with the performance of the systems under the
original set of workloads. On the other hand, we encounter
the challenge of using scaling methods to transform work-
loads and their performance data across different environ-
ments.

The evaluation results of our approach highlight the
opportunities of automatically deriving and optimizing load
tests of large-scale systems based on the operational data
from the end users. Our results also illustrate the need
for approaches that scale performance data between the
operational and testing environment to better leverage the
rich knowledge in the field operational data.
Paper organization. The remainder of the paper is orga-
nized as follows. Section 2 introduces the background of

load testing. Section 3 presents our approach to reduce
the length of the testing. Section 4 introduces the subject
systems we used and how we collect the data. Section 5
presents the results of our case study, organized along our
three RQs. Section 7 discusses prior research related to our
work. Section 6 discusses the sensitivity analysis on the
different configurations of our approach. Section 8 discusses
the threads to the validity of our results. Finally, section 9
concludes the paper.

2 BACKGROUND

Load testing is the process of assessing a system’s behaviour
under a workload [39]. Typically, there are three phases in
load testing: 1) defining a workload, 2) running a load test,
and 3) analyzing the results of a load test. Load testing is a
complicated and uncertain, but required process to ensure a
system’s quality under load [31], [44]. Prior studies propose
techniques to design a proper workload [17], [68], [75],
determine test length [6], [34], analyze test results [40], [47],
[58], [66], and detect performance issues [35], [72]. All these
studies illustrate the value and importance of load testing.

One of the common approaches to conducting a load
test is replaying historical field workloads. Although one
may rely on the workloads that are specified in existing
benchmarks for load testing, the benchmarks may not cover
the unique workloads of a specific system. In addition, there
exist special real-world cases where the field workload is
completely different from other workloads. For example,
the throughput of an online shopping system on Black
Friday is much larger than the average daily workload1. To
assess the system behaviour on the next Black Friday, the
simplest approach is to replay the exact user behaviours
from the last year’s Black Friday. However, such replay-
based load testing is extremely time consuming and costly.
For example, replaying the workloads from the previous
year’s Black Friday may cost at least 24 hours and many
testing resources.

Prior research proposes automatic techniques to deter-
mine the length of load testing [38] or when to stop load
testing [6]. Prior approaches are typically based on the
repetitiveness of software logs [14], or the naive compari-
son of raw performance counters [6], [54]. However, prior
approaches that are based on the repetitiveness of logs
may not capture the performance variation of the system
(e.g., caused by the variation of execution experiment) when
producing similar logs. On the other hand, prior approaches
that are based on comparison of raw performance counters
may miss the difference of the system performance under
different workloads (e.g., under spike vs. smooth work-
loads).

The above challenges in load testing motivate our study
to not only reduce the lengthy load testing but also capture
the representative system behaviours, i.e., covering diverse
workloads while maintaining the accuracy of load testing
results. The next section details our approach.

1. https://www.triton.co.uk/black-friday-causes-seasonal-
workload-spikes-how-did-you-cope

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3408079

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on June 23,2024 at 15:35:41 UTC from IEEE Xplore. Restrictions apply.

3

Fig. 1: The overview of our approach.

3 APPROACH

In this section, we present our approach to reducing the
length of load testing. The overview of our approach is
shown in Figure 1. Our approach consists of three steps:
1) characterizing workloads, 2) grouping time periods with
similar workloads, and 3) workload stability analysis.

3.1 Characterizing workloads
In order to reduce the workloads by extracting a representa-
tive subset of workloads, we first characterize workloads
by system runtime behaviours. In particular, we use the
execution logs that are generated during system runtime to
represent the system workloads.

3.1.1 Log abstraction
Software execution logs are produced during software
system execution, which usually record important system
runtime behaviours. Generally, each line of execution logs
contains valuable information, e.g., a log timestamp, a user
event, and a server response message. We refer to the term
user as any type of end user, such as IP address, email
address. Such information can be used to recover workloads
and then design proper load tests [27]. For example, prior
work has found that events in logs are useful sources for
workload recovery [64], [66]. Therefore, in this step, we
parse the system execution logs to extract timestamps, user
events and system responses.

We first extract the log timestamp of each line of execu-
tion logs. Second, we extract the user events. User events
are typically a source of information to recover workloads.
Table 1 is an illustrative example of execution logs and
their corresponding log events. In our experiments, we
use regular expressions to extract log events. However, in
practice, one may adopt various automated log abstraction
techniques [76] for this step.

TABLE 1: Our illustrative running example of execution logs
and the extracted log events.

Timestamp Logs Log events
00:02:00 update value a from 0 to 1 success update success
00:05:04 search value t=“jack” success search success
00:06:17 add new value s1=“hot” fail add fail
00:07:16 add new value s2=”cold” success add success
00:11:31 update value b from 5 to ”O” fail update fail
00:59:57 update value c from 1 to 0 success update success

3.1.2 Generating workload signatures
Workload signatures represent user behaviours in terms
of their feature usage. Traditionally, one can represent a
workload signature as the behaviour of one end user, or the
behaviour of all aggregated users in a short period of time,
e.g., 120 seconds [17]. Since the performance of a system is
mainly dependent on the workloads of aggregated users, in
our study, we generate workload signatures by aggregating
the log events from all users during the short period of
time. A workload signature for each time period can be
represented by an n-dimensional vector (i.e., each element
value in the vector represents the number of appearances of
a unique log event during that time period).

Then, we specify the length of the time period. We
find that the setting of the time period should be long
enough to differentiate the workload signatures and create
a representative and reliable clustering result. On the other
hand, a too-long time period may contain a mixture of
different types of workload behaviors (i.e., behaviors that
do not belong to the same cluster), which can degrade
the performance of our approach that leverages clustering
to reduce workloads. Intuitively, the workload behaviors
within a time period or a cluster should present a similar
pattern to allow effective clustering. In this paper, we opt to
use 10 minutes as the length of our time periods in order
to capture more diverse workloads. Comparing to prior
research [65] where 90 seconds to 150 seconds are chosen
for the length of time periods, the conservative choice of a
10 minutes time period is due to: 1) the field workloads are
often longer than an in-house load testing, and 2) we want
to provide a conservative evaluation result of our approach
to ease its adoption in practice.

By setting the length of time periods and generating a
workload signature for each time period, the entire field
workloads are transformed into a time series, where each
data point in the time series is an n-dimensional space.
Table 2 is an illustrative example where each workload sig-
nature is a vector of 5 dimensions. The workload signature
of the time period from the beginning (0 sec) to the 600th

second is < 1, 1, 1, 1, 0 >. The entire set of workloads are
represented by a time series of 6 data points.

3.2 Grouping time periods with similar workloads
To study the performance stability of the workloads in
different time periods, in this step, we apply a clustering

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3408079

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on June 23,2024 at 15:35:41 UTC from IEEE Xplore. Restrictions apply.

4

TABLE 2: Workload signatures of our running example.
Log events

Time periods update
success

update
fail

search
success

add
success

add
fail

0 sec-600 sec 1 1 1 1 0
601 sec-1200 sec 1 2 1 2 3
1201 sec-1800 sec 2 1 2 1 1
1801 sec- 2400 sec 4 4 4 4 4
2401 sec- 3000 sec 4 4 5 5 5
3001 sec- 3601 sec 3 3 3 3 4

algorithm on the time periods based on their workload
signatures. Based on the clusters, we can group time periods
with similar workload signatures.

3.2.1 Distance calculation.
The first step of the clustering is to calculate the distance
between two time periods. We choose to use the Pearson
distance [28] to calculate the cluster distance since the Pear-
son distance often produces a clustering that is a close match
to the manually assigned clusters [55]. The equations (1) and
(2) present the calculation of the Pearson distance.

ρ =
n
∑n
i xi × yi −

∑n
i xi ×

∑n
i yi√

(n
∑n
i x

2
i − (

∑n
i xi)

2)× (n
∑n
i y

2
i − (

∑n
i yi)

2)
(1)

distance =

{
1− ρ (ρ ≥ 0)

|ρ| (ρ < 0)
(2)

xi and yi in Equation (1) are the ith elements in the two
vectors between which the distance is calculated. n is the
length of the vectors.

3.2.2 Hierarchical clustering.
We apply an agglomerative hierarchical clustering to group
workload signatures using a distance metrics based on the
Pearson distance. We choose hierarchical clustering for the
following reasons: 1) there is no need to determine the
number of cluster beforehand; and 2) the hierarchical cluster
result is intuitive and understandable.

Hierarchical clustering starts by defining each sample
as one cluster, so at the beginning we have a cluster set
X = {X1, X2, ..., Xn}, which n represents the number of
samples. By using the distance calculation that we defined
in section 3.2.1 (Equation (1) and (2)), we can obtain the
distance between two clusters, which is the linkage distance
∆(Xi, Xj). Thus, we could start to build a binary merge
tree [51] by merging the pair of clusters that are closest to
each other. The merge does not stop until the binary merge
tree covers all samples and merges to one single cluster at
the top. Finally, the resulting binary merge tree represents
the hierarchical relationships between the clusters.

3.2.3 Dendrogram cutting.
The result of a hierarchical clustering can be visualized
using a dendrogram. Such a dendrogram must be cut at
some height with a horizontal line. Each workload signature
will be assigned to a cluster after cutting the dendrogram.
To avoid human bias and make the cluster results more
reliable, we use the Calinski-Harabasz stopping rule [16]
to cut the dendrogram. The Calinski-Harabasz index is a
measure of the quality of a partition of a set of data. The

Calinski-Harabasz stopping rule can often cut the den-
drogram into the correct number of clusters [49]. Prior
research also reported that the Calinski-Harabasz stopping
rule outperforms other stop rules when clustering workload
signatures [66].

Applying the clustering method to our running example,
we can obtain a clustering result for the workload signatures
in Table 2. The time periods are divided into three clusters:
X, Y, and Z. The time periods 0 seconds - 600 seconds, 1201
seconds - 1800 seconds and 2401 seconds - 3000 seconds
belong to cluster X; the time periods 601 seconds - 1200
seconds and 3001 seconds - 3601 seconds are grouped into
cluster Y. The time period 1801 seconds - 2400 seconds forms
cluster Z.

3.3 Workload stability analysis

In the final step, we analyze each group of workloads from
the last step to reduce the workloads with stable perfor-
mance distributions.

3.3.1 Generating the performance vector set of each clus-
ter

After clustering the workloads, the next step is to ana-
lyze the stability of the performance distributions of the
workloads in each cluster. Firstly, we sort and group the
performance data P in each time period tx according to
the timestamp to a vector Ptx=< px1, px2, ... , pxn >,
where each data point pxi is the ith recorded performance
measurement in the time period. Table 3 shows the vector
of performance data for each time period in our running
example. After this step, we can obtain a performance vector
for each time period S = < Pt1, Pt2, ..., Ptn > from t1 to tn.
Then, based on the clustering result, we merge the set of the
time periods belonging to each cluster. The time periods
belonging to cluster x can be defined as Cx= { tx1, tx2,
... , txn }. The corresponding performance vector is SCx=
< Ptx1 , Ptx2 , ..., Ptxn >.

3.3.2 Statistical analysis of performance stability

To check the stability of each cluster’s performance SCx,
we start from the first two time periods of each clus-
ter. We form two performance distributions from the set
SCx, which is vector V1= < Ptxi > and vector V2=
< Ptxi , Ptx(i+1)

>, where i starts from 1. After that, we
apply the Kolmogorov–Smirnov statistical test and employ
a statistical threshold of 0.05 for statistical test. The reason
why we use Kolmogorov–Smirnov statistical test [62] is that
we would like to examine whether the two distributions
of the performance values are statistically different. A p-
value lower than 0.05 means that V1 and V2 have different
distributions in performance. In other words, Ptx(i+1)

brings
extra information to Ptxi . Therefore, the performance of the
corresponding cluster Cx is not stable. In contrast, if the p-
value of the Kolmogorov–Smirnov test between V1 and V2
is larger than 0.05, the distributions of the vectors V1 and
V2 do not have a statistically significant difference. In other
words, the performance of the cluster is stable.

If the performance of the workloads of Cx are not yet
stable, we increase the value i and append another time

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3408079

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on June 23,2024 at 15:35:41 UTC from IEEE Xplore. Restrictions apply.

5

period into the vectors V1 and V2. As an example, if the p-
value from comparing V1=< Ptx1 > and V2=< Ptx1 , Ptx2 >
is smaller than 0.05, we will further compare between V1=
< Ptx1 , Ptx2 > and V2= < Ptx1 , Ptx2 , Ptx3 >. We keep
increasing the value i until we observe a stable cluster of
workloads, i.e., the p-value bigger than 0.05, or until all the
data in Ptx has been included in the comparison. We only
keep the time periods in V1 in the load tests for cluster Cx,
while the rest time periods in the cluster will be excluded
from the load tests.

We repeat the above process for every cluster. Finally, for
all the time periods that are kept in all the clusters for load
testing, we merge them together and sort them by their time
stamps, to make the final workloads for the load testing.
For example, we used the data from Table 3 to perform
the workload stability analysis, and the result is shown in
Table 4. For cluster X, the performance distribution is not
stable in the first comparison and it becomes stable in the
second comparison. Cluster Y achieves a stable performance
in the first comparison. For cluster Z, because it only has
one time period, it does not have a stable performance. As
a result, the first two time periods of cluster X, the first time
period of cluster Y, and the only time period of cluster Z are
included in our load testing after reduction. In our practice,
we chose to monitor performance every ten seconds. Since
we mentioned that the length of the time period is 600
seconds above (cf. Section 3.1), the performance vector in
each time period has 60 elements.

As we describe above, we compare the performance vec-
tors in the time period set Cx , in which all the time periods
share the similar workload behaviors and are grouped into
cluster x. Without injecting performance bugs or adding
new features, we can ensure the stability of performance of
the workload behaviors in each cluster. In another word,
after we confirm the stability of a workload cluster, the
performance of the workloads belonging to this cluster are
predictable, and the measured performance at different time
periods can converge after a limited number of measure-
ments.

TABLE 3: Performance vectors for the time periods in our
running example (based on Table 2).

Time periods (Cluster) CPU utilization
t1 t2 t3 t4

0 sec-600 sec (X) 2% 1% 1% 1%
601 sec-1200 sec (Y) 33% 37% 41% 46%
1201 sec-1800 sec (X) 25% 20% 24% 34%
1801 sec-2400 sec (Z) 56% 47% 58% 23%
2401 sec-3000 sec (X) 23% 27% 2% 30%
3001 sec-3600 sec (Y) 34% 37% 43% 45%

Note: t1 to t4 indicate the recorded performance data during the
600-second time period, i.e., one recorded performance data per 150

seconds.

TABLE 4: The workload stability analysis for the workload
clusters in our running example (based on Table 3).

Cluster Time period A Time period B p-value Stable?

X

0 sec-600 sec 0 sec-600 sec, 0.04 False1201 sec-1800 sec

0 sec-600 sec,
0 sec-600 sec,

1201 sec-1800 sec
1201 sec-1800 sec, 0.99 True
2401 sec-3000 sec

Y 601 sec-1200 sec 601 sec-1200 sec, 0.99 True3001 sec-3600 sec
Z 1801 sec-2400 sec N/A N/A False

TABLE 5: Overview of our subject systems.
Subjects Version SLOC (K) # Users # Lines of logs (K)

Apache James 2.3.2.1 37.6 2000 458
OpenMRS 2.0.5 67.3 1000 3019
TeaStore 1.3.4 29.7 99 4502

4 CASE STUDY SETUP

In this section, we present the setup of our case study.

4.1 Subject systems

We choose three open-source systems including OpenMRS,
Apache James, and TeaStore as our subject systems. OpenMRS
is a web system designed to support customized medical
health care. Apache James is a Java-based mail system devel-
oped by the Apache Foundation. TeaStore [69] is a basic web
store for tea and tea supplies, which is a microservice-based
test and reference application. All our subject systems have
been studied in prior research [17], [18], [29]. The overview
of the three subject systems is shown in Table 5.

In our experiments, for a more precise evaluation, we
should clarify that we make sure that the database of our
subject systems runs in normal conditions without satura-
tion, and we assume that the database of the subjects only
has a negligible effect on the subject system’s performance.

4.2 Data collection

In this subsection, we describe our approaches for collect-
ing system execution logs and performance data from the
studied systems. In this work, we focus on the CPU usage
performance, as the studied systems are CPU-intensive. In
particular, we first deployed the systems in our experimen-
tal environment and conducted load tests to exercise the
systems for an extended period of time. All the subject
systems we studied are deployed on the Google Cloud
Platform Compute Engine [1] with three separate virtual
machines. Afterwards, we collected system execution logs
and performance data during the system execution. For
the system performance (i.e., CPU usage), we use the tool
Pidstat [4] to monitor the process of the system every ten
seconds.Because we mainly focus on the performance of the
host servers in the experiment, we reduce the influence of
the database (i.e., avoid rapid growth of the database size)
by the design of our workload. We detail our workload
design for each of our subject systems below. The details
of our data can be found in our replication package2.

OpenMRS: We setup our OpenMRS system with the
OpenMRS demo database version 2.2.1 [3] in our load tests.
The demo database contains various data for 5,000 patients.
OpenMRS contains four typical requests: addition, deletion,
search, and editing. We designed our load tests that are
composed of various searches of patients, concepts, and
observations, as well as addition, deletion, and edition of
patient records. Because we have both POST and DELETE
test events at the ratio near 1:1 dynamically, the influence of
the database size is not significant.

We deployed OpenMRS on two virtual machines, each
with 4-core vCPU, 16GB RAM, and 24GB persistent disk.
One machine is deployed as the application server, and the

2. https://zenodo.org/record/5593380#.YXMCq9mZNTY

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3408079

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on June 23,2024 at 15:35:41 UTC from IEEE Xplore. Restrictions apply.

6

other machine is the MySQL server with the demo data.
OpenMRS provides RESTFul services. Therefore, we used
the RESTFul API of OpenMRS to simulate users sending
requests to the application server. In particular, we used
JMeter to perform a twenty-six hours duration of workloads
to collect the system execution logs. The execution log in
OpenMRS is well structured, so we do not need to use log
parser tools in our paper.

Apache James: We used JMeter to create load tests to
exercise the Apache James server. We replicate the similar
workloads as a prior study [29]. In detail, we simulated
2,000 email users who send and receive different sizes of
emails, with or without small and large sizes of attachments.
In addition, we simulated the scenarios of users reading the
email header or loading the entire email. We also periodi-
cally delete the emails to reduce the influence on the growth
of the database size.

We deployed Apache James in a server machine with 8-
core vCPU, 32 GB memory on a 2 TB persistent disk. We run
JMeter on another machine with 4-core vCPU, 8GB memory
and 24GB persistent disk. Finally, we execute one-day-long
workloads to load test the Apache James server using JMeter.
We obtain the web request logs automatically generated by
JMeter.

TeaStore: TeaStore has a few quintessential use cases,
including login system, browsing the store, browsing user’s
profile, browsing products, shopping products, and logging
out the system. Although we have POST test events like
adding products to the cart, it is not a long workload and we
have limited the number of users and categories of products
to avoid the rapid growth of the database size.

The experiments on TeaStore are performed with three
separate virtual machines. These virtual machines have the
same hardware configurations, including 4-core vCPU, 8GB
memory, and 24GB persistent disks. We deployed the Tea-
Store web application and database on the first and second
machines, respectively, while the third machine is used to
run JMeter load driver with varying workloads to simulate
users accessing the system with the above-mentioned use
cases. Then, we obtained the execution logs from the Tomcat
server execution logs, which are well-structured logs.

Workload diversity. To have more realistic workloads
and avoid generating time-homogeneous workloads, we
apply a 2-day-long real-world workload trend from World-
Cup98 access logs [9], which is widely used for workload
designs in prior work [11], [19]. We simulate the workload
time series in our workloads based on real-world workload
features. We calculate the frequency of each type of request
and the number of users every half hour. Then, to closely
mirror actual user behaviour, we sort the frequency of the
request type and link the WorldCup98 behaviour with the
request type in our subjects. For example, we link one GET
image request in WorldCup98 to the GET person data re-
quest in OpenMRS. Finally, we set up the number of threads
and frequency of the workloads based on the calculated fea-
tures. The vastly different workloads between different time
periods can provide the maximum support for simulating
most customer activities. To have a more comprehensive
view of the diversity in the workloads, we apply Pettitt’s
test [53] to verify if the workload is time-homogeneous.
Pettitt’s test is a statistical test used to detect any abrupt

change point in the time series in Prior works [30], [46].
Table 6 presents the statistical results on the workloads
in subject systems. We use the classical threshold of 0.05
for statistical tests to determine the statistical significance.
When p-value smaller than 0.05, we can confirm that the
change points exist in the time series of the workloads.
Therefore, there are moments in time when the workload
characteristics have significant changes, which proves that
the workloads are not time-homogeneous.

TABLE 6: Petitt’s test results in our subjects.
Subjects p-value Num of change points

OpenMRS � 0.001 5039
TeaStore � 0.001 4987

Apache James � 0.001 5029

5 CASE STUDY RESULTS

In this section, we present the case study results by answer-
ing our three research questions (RQs).

RQ1: How effectively can our approach reduce tested
workloads?
Motivation

In order to achieve realistic workloads in load testing,
practitioners often conduct load tests by simply replaying
the field workloads that are obtained from the real usage
scenarios of end users. However, as discussed in Section 2,
determining the length of the field workloads is challenging.
A set of workloads with a too-small size may not contain
representative workloads, while a too-large set of workloads
would cause the load testing to be very expensive and may
delay the release schedule of the software system, especially
in a fast-paced release cycle [39]. Therefore, in this RQ, we
would like to examine how effective our proposed approach
is in reducing the length of the load tests.
Approach

We apply our approach (cf. Section 3) to the three
datasets obtained from our experiments on the studied
subject systems. In particular, the datasets contain the logs
and the performance metrics (CPU usage) that are collected
when the subject systems are executed under random and
varying workloads. We consider these three datasets as the
source of the system replay, i.e., the input of our approach.
After applying our approach, we generate a new set of
workloads, which reduces the length of the original set
of workloads. Therefore, we first measure the size of the
reduction, i.e., how much shorter (in minutes) the new set of
workloads is compared with the original set of workloads.

To further understand the effectiveness of our approach,
we calculate three numbers: the total number of clusters of
workloads, the number of workloads that achieve stable
results after applying our approach, and the number of
workloads that cannot achieve stable results. The more
workloads that can achieve stable results, the more promis-
ing our approach is in practice.
Results
Our approach can effectively reduce the length of the
original load testing workloads. Table 7 shows the re-
sults of our approach for reducing the performance testing
workloads on our studied subject systems. By applying our

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3408079

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on June 23,2024 at 15:35:41 UTC from IEEE Xplore. Restrictions apply.

7

approach, we find that the length of the load testing of
our studied subject systems can be significantly reduced
compared to the original set of workloads. In particular,
for TeaStore, the time length of the workloads after being
reduced by our approach is only 370 minutes, whereas the
original set of load testing workloads requires two days
(2880 minutes) of execution (i.e., the reduction rate is 87%).
When we compare the total number of clusters of workloads
with the number of workloads that achieve stable results
after applying our approach, we observe that our approach
can reduce the majority of the clusters of workloads. For
example, for Apache James, 91% of the clusters of workloads
can be further reduced by our approach. For those clusters
that cannot be reduced in our approach, we consider the
reason being the size of those clusters, i.e., there are only
one or two time periods in those clusters, which are difficult
to reduce further. For example, for TeaStore, all the clusters
that cannot be reduced only have one or two time periods.
When the system is under random and varying workloads,
simply reducing the length of load test workloads by
time can miss representative workloads. Figure 2 presents
the convergent speed of each cluster when applying our
approach for reducing performance testing workloads on
our studied subject systems. Each line in the figure shows
p-values of each cluster of workloads during workload
stability analysis (cf. Section 3.3), where dot above the red
line (the threshold of p-value at 0.05) indicates that per-
formance of the cluster of workloads is stable. From those
figures, we observe that some of the lines have quite low
slopes, which means that the workloads cannot achieve a
stable performance distribution throughout. Moreover, the
distribution of lines with low slopes does not concentrate on
a part of the time periods. For example, for OpenMRS, lines
with low slopes exist around the 500th and 1600th minute
in the figures. Such results also indicate that the length of
the load testing workloads cannot be simply reduced by
cutting down the time of the original set of workloads.
If we simply reduce the length of the original set of load
testing workloads by time, for example, only keeping a few
hours at the beginning, some important field workloads
would be missing, and it would be hard to achieve stable
performance.

TABLE 7: Workload reduction results for our studied sys-
tems.

Project
Time length (minutes) # clusters
Before
reduction

After
reduction

total
clusters

stable
clusters

OpenMRS 2,880 470 23 21
TeaStore 2,880 370 21 11

Apache James 2,880 450 22 20

RQ2: How representative are the workloads-after-
reduction produced by our approach?

Motivation
RQ1 shows that our approach can effectively reduce the

field workloads into much shorter versions. However, if a
workloads-after-reduction is not representative of the orig-
inal set of workloads, the reduction from our approach is
meaningless, since it would lead to unrealistic load tests, i.e.,

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000 2500

minute

p−
va

lu
e

Stability
No
Yes

Cluster
1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18
19
20
21
22
23

(a) OpenMRS

0.00

0.25

0.50

0.75

1.00

0 1000 2000

minute

p−
va

lu
e

Stability
No
Yes

Cluster
1
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19
20
21

(b) TeaStore

0.00

0.25

0.50

0.75

1.00

0 1000 2000

minute

p−
va

lu
e

Stability
No
Yes

Cluster
1
2
3
4
5
6
7
8
9
10
11

12
13
14
15
16
17
18
19
20
21
22

(c) Apache James

Fig. 2: The convergence speed of the workloads clusters. The
red horizontal lines indicate the threshold of p-value (0.05)
for determining statistical significance.

the testing workloads cannot represent the actual workloads
from the end users in the field. Thus, the goal of this RQ
is to assess the representativeness of the workloads-after-
reduction that are generated by our approach.
Approach In order to assess the representativeness of the
workloads-after-reduction, we examine whether we can use
the workloads-after-reduction to extrapolate the original set
of workloads before reduction. In particular, we build a
performance model using only the data from the workloads-
after-reduction that are generated by our approach, and use
the model to predict the performance of the system under
the original set of workloads. We call this model Mr in the
rest of this section.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3408079

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on June 23,2024 at 15:35:41 UTC from IEEE Xplore. Restrictions apply.

8

We apply the random forest learning method to build the
model [45]. Random forest is a learning method widely used
for classification and regression. The random forest model
uses the workload signature every ten seconds as indepen-
dent variables and performance metrics (i.e., the CPU usage
data every ten seconds) as its dependent variables. After
training, we obtain a random decision forest consisting of
many individual decision trees that operate as an ensemble.
Given the workload signatures in a ten-second period as the
input, the composing decision trees make their individual
predictions of the performance metric and then cast a vote
on the final predicted result.

Using a random forest model that takes the workload
information in a time period as input and predicts the
associated performance, we assume that our systems (more
specifically, how the systems react to the requests) are state-
less. From one point of view, we observed that the process-
ing time of the requests of the systems is very short, with the
maximum processing time below 400 ms and average pro-
cessing time below 100 ms. From another point of view, we
conducted experiments to compare the performance of the
system in two different phases of execution under the same
workload. We observed that there is no significant difference
in processing between the two phases of execution (results
are added in our replication package). Therefore, we could
not reject our assumption that the performance behaviour
of our studied systems is not negligibly impacted by their
states.

Measuring the performance model fit. We first eval-
uate the quality of Mr using the model fit. If Mr has a
poor model fit, we cannot trust the data produced by this
model, i.e., the workloads-after-reduction by our approach
do not have the capability to model the performance of the
software system. In particular, we construct Mr by training
on the data that is in the workloads-after-reduction by our
approach. To evaluate the model fit of Mr , we first apply
Mr on the data that is in the original set of workloads but
not in the workloads-after-reduction, and then calculate the
median absolute relative error (MARE), which is used as a
measurement for the model fit. Smaller values of MARE
indicate better prediction accuracy.

Comparing the predicted and the actual system per-
formance. In addition, we compare the system performance
predicted by Mr with the actual observed system perfor-
mance. Similarly, we applyMr on the data in the original set
of workloads but not in the workloads-after-reduction. If the
workloads-after-reduction are representative of the original
set of workloads, Mr should be able to predict the system
performance based on the workloads in the original set of
workloads. We perform statistical analysis to examine the
deviation between the predicted and observed performance
in terms of CPU usage. Specifically, we calculate the Pear-
son correlation [28] to measure the relationship between
the predicted values generated by Mr and the observed
performance.

Comparing the prediction error with a baseline. To fur-
ther understand the representativeness of the performance
model that is built from the workloads-after-reduction (Mr),
we compare its prediction error with a baseline, i.e., a
performance model that is built using all the original set
of workloads, i.e., Mo. Our intuition is that if Mr is as

good as Mo, we can consider that the workloads-after-
reduction have the same capability of modeling system
performance as the original set of workloads. Therefore, the
workloads-after-reduction can be considered representative.
To comprehend the difference between the two models
(i.e., the model of baseline and Mr), we use the Kol-
mogorov–Smirnov test [62] to determine if there exists a sta-
tistically significant difference (i.e., p-value <0.05) between
the prediction performance of baseline and Mr. We choose
the Kolmogorov–Smirnov test because it does not enforce
any assumptions on the distributions of the data. Reporting
only the statistical significance may lead to erroneous results
(i.e. if the sample size is very large, p-value can be small even
if the difference is trivial). Thus, we further use Cohen’s
D [21] to quantify the effect size between the predictions
of the two models. Through the statistical analysis, we
can have a clear view of the differences between the error
distributions of the two models.

In particular, for Mr , we train this model using the
workloads-after-reduction, and apply the model on the data
of workloads that is removed by our approach, i.e., data in
the original set of workloads but not in the workloads-after-
reduction. However, for Mo, we cannot directly calculate
the prediction error since applying a model to its training
data leads to biased (overly optimized) results. To address
this issue, we apply the throw-one approach used in prior
research [45]. For each time period in the original set of
workloads, we remove its data from the training data to
rebuild the model and apply the rebuilt model to the time
period. We repeat the process until all time periods are used
as test data once.
Results
The workloads after our approach’s reduction can effec-
tively represent the original set of workloads in terms
of the corresponding performance. Table 8 presents the
median relative error of the model built on workloads-after-
reduction and the Pearson correlation between the original
performance data and the predicted values. We find that
for all the subject systems, after applying our approach,
the model Mr built on the data from the workloads-after-
reduction are of high quality, which achieves a median
relative error of 11.45%, 10.45%, and 10.24%, respectively,
for system performance prediction. Moreover, the relatively
high Pearson correlations (0.88, 0.92, and 0.63) between
the predicted values generated by Mr and the original
performance data also show the representativeness of the
workloads-after-reduction generated by our approach.

The comparison results of the prediction error dis-
tributions between the performance model built on the
workloads-after-reduction and the baseline model (i.e.,
model built using the original set of workloads) are shown
in Table 9. The prediction errors of all three subject systems
have either statistically insignificant or negligible differences
between the two models (i.e., Mo and Mr), indicating that
the workloads-after-reduction generated by our approach
has the same capability of modeling system performance as
the original set of workloads.

In addition, Figure 3 presents the trends of both the
original and predicted performance data over time, in which
we can clearly see how representative the workloads-after-
reduction are. In particular, the shaded region represents the

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3408079

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on June 23,2024 at 15:35:41 UTC from IEEE Xplore. Restrictions apply.

9

TABLE 8: Comparing the original performance data and
the performance predicted by the models built from the
workloads-after-reduction.

Project MARE Correlation
OpenMRS 11.45% 0.88
TeaStore 10.45% 0.92

Apache James 10.24% 0.63

TABLE 9: Comparing the performance predicted by the
models that are built from the workloads-after-reduction
and the original set of workloads (i.e., the baseline).

Project p-value Cohen’s D
OpenMRS � 0.001 0.38(small)
TeaStore � 0.001 0.12(negligible)

Apache James 0.42 0.02(negligible)

predicted performance data. At the same time, the unshaded
area shows the performance data used to build models,
which is also during the period of the workloads-after-
reduction. The graph shows that the trends of the original
performance data and the prediction data are similar. For
the purpose of comparing the prediction effects, we present
two lines representing two prediction methods, i.e., Mr and
the baseline. Although the baseline method is closer to the
original data, the trend of predicted performance between
the baseline method and Mr is similar. Such results also
indicate the strong representativeness of the workloads-
after-reduction generated by our approach for the original
set of workloads. Due to space limitations, we only provide
the example of one system, i.e., TeaStore. The run charts of
the other two subject systems are included in our replication
package.

0

20

40

60

0 1000 2000 3000

minute

C
P

U
 u

til
iz

at
io

n

Type
Original
After−reduction
Baseline

Fig. 3: Prediction performance of TeaStore. The shaded
region represents the predicted performance data while the
un-shaded area shows the performance data that are used
to build the models (the workloads that are kept after the
reduction).

RQ3: How representative are the workloads-after-
reduction replayed in a different environment?
Motivation

In the previous RQ, we find that, with our approach, we
can effectively use the workloads-after-reduction generated
by our approach to extrapolate the original varying work-
loads. Such results could show that the workloads-after-
reduction represent the original varying workloads cap-
tured in the same field environment. However, in practice,

end users’ original workloads are typically extracted from
the field environments. In contrast, the load tests that replay
the workloads are often conducted in a testing environ-
ment. If the workloads-after-reduction by our approach are
sensitive to the runtime environment configuration, it may
not be suitable to replace the original performance testing
workloads in practice.

To simulate the change of runtime environment config-
urations, it is necessary to test both the change of hardware
configurations and software configurations. As the load of
servers increases, developers tend to upgrade the hardware
to a higher configuration to improve the performance of
the services. In contrast, developers may downgrade the
hardware to a lower configuration if the default hardware
configuration is too high to utilize. Since the various JDKs
made by different publishers have been used in reality, the
experiments on different JDKs are important. In addition,
updating the database version is also a critical change in
software. For example, since the security and performance
of MySQL 8.0 is better than 5.7, developers would migrate
MySQL to version 8.0 if necessary. As a result, testing all
these configurations is necessary to evaluate the effective-
ness of our approach.

Therefore, this RQ aims to examine whether the replay-
ing results using the workloads-after-reduction generated
by our approach in a different environment are still repre-
sentative of the original workloads from the original field
environment.
Approach

To answer this research question, we redeploy our stud-
ied subject systems in a new environment to be the replay
environment. To minimize potential noise factors, we keep
the server configurations consistent (e.g., operating system
version, maven version), except for the variables that must
be changed (e.g., vCPU numbers and Java source). Ad-
ditionally, we employ workloads that are identical to the
workload-after-reduction to test the system. We test the
higher or lower hardware configuration with OpenJDK and
MySQL 5.7. The details of the different hardware config-
urations between the replay environment and the original
environment are shown in TABLE 10. For each system,
we consider upgrading and downgrading the hardware
configurations. For example, for the OpenMRS system, while
the original environment has 4vCPU and 16G memory, we
consider a replay environment with 8vCPU and 32G mem-
ory as well as another replay environment with 2vCPU and
8G memory. To understand the performance of the subject
systems when they reach their saturation, we also deploy
the systems in extremely basic replay environments, such
as using 0.5vCPU for OpenMRS and 1vCPU for TeaStore.
Since the minimum configuration of CPU is 2vCPU, we use
the cpulimit [2] tool to simulate the hardware environment
under 2vCPU by limiting the maximum usage of the CPUs.
Moreover, we choose Oracle-JDK and Zulu-JDK to test the
different JDK publisher conditions and MySQL 5.7 and 8.0
to simulate the database update across different versions.
In particular, because Apache James 2.X directly stores data
on disk (i.e., without a database), we cannot change the
database version of Apache James. As a solution, we choose
a different version (Apache James 2.2) for a comparison. The
details of the different software configurations between the

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3408079

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on June 23,2024 at 15:35:41 UTC from IEEE Xplore. Restrictions apply.

10

TABLE 10: The hardware configurations of the original and
the replay environments.

Project
Hardware configuration

(Using Openjdk and MySQL 5.7)
Original Replay

OpenMRS 4vCPU, 16GB memory
8vCPU, 32GB memory
2vCPU, 8GB memory

0.5vCPU, 4GB memory

TeaStore 4vCPU, 16GB memory
8vCPU, 32GB memory
2vCPU, 4GB memory
1vCPU, 4GB memory

Apache James 8vCPU, 32GB memory
16vCPU, 64GB memory
4vCPU, 16GB memory
2vCPU, 4GB memory

TABLE 11: The software configurations of the original and
the replay environments.

Project
Software configuration

(Using Original hardware configuration)
Original Replay

OpenMRS OpenJDK, MySQL 5.7
Oracle-JDK, MySQL 5.7
Zulu-JDK, MySQL 5.7
OpenJDK, MySQL 8.0

TeaStore OpenJDK, MySQL 5.7
Oracle-JDK, MySQL 5.7
Zulu-JDK, MySQL 5.7
OpenJDK, MySQL 8.0

Apache James OpenJDK, version 2.3
Oracle-JDK, version 2.3
Zulu-JDK, version 2.3
OpenJDK, version 2.2

replay environment and the original environment are shown
in TABLE 11.

We generate load tests based on the workloads-after-
reduction and use JMeter load test driver to replay the
workloads-after-reduction. While testing, we collect the per-
formance metrics (e.g., CPU) for every ten seconds by Pidstat
[4]. When replaying the workloads-after-reduction finished,
we retrieve the execution logs from the web servers (e.g.,
Tomcat), which are used to provide the web server environ-
ment.

Similar to RQ2, we build performance models based
on the replay of the workloads-after-reduction in the re-
play environment. We name this performance model Mer .
We use Mer to predict the performance of the original
workloads in the original environment without reduction.
By calculating the deviance of the predicted values and
the actual performance at runtime, we can have a clear
view of how our approach performs when replaying the
workloads-after-reduction in a new environment. However,
since differences exist between the hardware configurations
of the replay environment and the original environment,
we would not directly compare the predicted performance
metrics and the measured performance metrics. To better
compare the two performance data distributions generated
under different environments, we leverage the following
scaling approaches:

• Max-Min scaling approach is a normalization
method bringing all values into [0, 1] as the ratio of
the value in the range between maximum and min-
imum. The formula of the approach is Pxscaled =

Px−Min(P)
Max(P)−Min(P) , which the Px is the xth value in the
P is the vector needed to scale.

• Median scaling approach is used in prior research [8]
to reduce the bias caused by different environment

configurations. The result of the scaling is the ratio
between the distance to the median and the value of
the median absolute deviation. In particular, the scal-
ing follows the formula Pxscaled = Px−Median(P)

MAD(P) ,
where the MAD is the median absolute deviation of
vectors.

• Scaling by modeling utilizes linear regression mod-
els to model the relationship between each log
event’s frequency and the system performance. We
hypothesize that the Rα and Rβ are the same depen-
dent variable (i.e., CPU utilization) in two different
datasets (i.e., the set of workloads in the original en-
vironment and replay environment) while the α and
β is the independent metrics. Then, the coefficient
kα, kβ and intercept hα, hβ from Rα = kα · α + hα
and Rβ = kβ · β + hβ . Finally, the normalize metric
will be αNormalize =

kα·α+hα−hβ
kβ

. By transforming
each independent metrics dimension, we can finally
obtain values of the dependent variable with the
same dimension. This approach is adopted from the
work of Nguyen et al. [50].

• Robust scaling method is an advanced version of the
median scaling method. The median absolute devia-
tion is replaced by the inter-quartile range (i.e., IQR),
which is Pxscaled = Px−Median(P)

IQR(P) . IQR can be ex-
plained as the differences between the 25th percentile
and the 75th percentile. The formula shows that the
method receives less influence from the outlier and
may ignore more information.

• Quantile scaling method uses the rank of the value in
each metric. Firstly, through ranking, we can obtain
the ranks of the values. Secondly, we can calculate
the average value of the values that have the same
rank in all vectors. Finally, the original value will
be replaced by the average calculated. This method
is widely used in cross-project modeling in software
engineering [74].

• Transfer learning is used to improve a learner for
one domain by transferring information from a re-
lated domain [70]. In this field, Krishna et al. [42]
propose a framework called BEETLE for finding
the best source of transfer learning. Several previ-
ous studies [48], [52] extend the configuration space
for transferring learning. Also, Jamshidi et al. [37]
focus on the performance of the transfer learning
method under different configuration change scenar-
ios, which are highly related to the scaling problems
we will discuss below. For the generalizability of
our approach and ease of the experiment, we adopt
a convolutional neural network (i.e., CNN) widely
used in prior work [5] as the architecture for training
our deep learning model. Specifically, we use the
log sequences in the workload signatures and the
corresponding performance data of the workload-
after-reduction as the features and the response vari-
able, respectively, to train the CNN model. To apply
transfer learning, we fine-tune the trained model
using the replay data to obtain another model. This
model can be later used in this RQ to understand
the representativeness of the reduced workloads for

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3408079

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on June 23,2024 at 15:35:41 UTC from IEEE Xplore. Restrictions apply.

11

workload replay.

The implementation details of the scaling methods are in-
cluded in our replication package.

We scale the prediction data based on Mer by applying
the scaling approaches. Based on the scaled data, we mea-
sure the median relative error of Mer, which is calculated
as the difference between the predicted performance and
the measured performance, normalized by the measured
performance. For example, by using the Max-Min scaling
method, we scale both two performance vectors (i.e., orig-
inal performance, predicted performance based on model
Mer). Then, we can obtain the scaled data of these two
vectors from zero to one. Also, we calculate the Pearson
correlation of the original performance and predicted per-
formance value generated by model Mer to further capture
the relationship of the original set of workloads and the
replayed workloads after reduced by our approach in the
different environments.
Results
The performance data from the replayed workloads is
representative of the original set of workloads. Table 12
presents the median relative error of the performance mod-
els based on the re-playing the workloads-after-reduction
in the new load testing environment and the Pearson
correlation between predicted performance value and ac-
tual performance during the original execution. Figure 4
presents the trend of scaled original performance data and
predicted data over time for OpenMRS. If we exclude the
saturated condition of the system, we can observe signif-
icant correlations, ranging from 0.34 to 0.92, between the
predicted performance value generated by model Mer and
the measured performance data. The results indicate that
the replaying results using the workloads-after-reduction
generated by our approach from a different environment
are still representative of the original workloads from the
original field environment. However, we notice that when
the system reaches its performance bottleneck, the degrada-
tion of the replay’s representativeness would be significant.
Table 12 shows that when using the weakest configurations,
the correlation between the original and the replayed sys-
tem performance is much lower than when using other
configurations. As the subjects reach the bottleneck, the
systems cannot respond to requests in a common efficiency,
which causes the latency of the workloads to be higher than
usual. Such results show that with the saturation and slow
response of the system, the behaviour of the system under
the workload will be different from its behaviour under a
normal workload. Our results suggest that our proposed
approach for testing length reduction and replay is more
appropriate for the scenarios when the system is tested
under normal workloads. Further, the results inspire us to
be careful of the side effects of changing configuration when
having a replay.
Future work on scaling the performance data from differ-
ent environments is needed. Table 12 shows how the dif-
ferent scaling methods affect the quality of the performance
model in terms of the median absolute relative prediction
error. We find that, when re-playing the reduced workloads
under a different environment, using all the selected scaling
approaches, the performance model still has a relatively

high MARE, while under the same environment, the maxi-
mum MARE is only 11.45% (cf. Table 8).

Such results indicate the limitations of the current scaling
approaches for analyzing performance data from different
environments. From the empirical results from Jamshidi et
al. [37], some non-linear correlation may exist during some
configuration changes. However, it is also encouraging to
see that the prediction errors become similar to others
when scaling methods are applied. Such results signify the
importance of advanced scaling methods for future perfor-
mance engineering tasks that are conducted across different
environments. Although Iqbal et al. [41] have developed a
debugging tool for fixing misconfiguration on CPU latency,
this tool may not address all configuration changes across
environments. Among all the scaling methods we used, we
also cannot find one that has stable performance. Model
scaling, Quantile scaling, and transfer learning methods
have a relatively better performance on scaling in different
software environments. For example, for Oracle-JDK con-
figuration in Apache James, the transfer learning method can
have a MARE as low as 13.86%.

As performance data generated in the field contains
valuable information about how the system behaves in
production, many field performance data are being ana-
lyzed by performance engineers to understand the system
performance, e.g., detecting performance regressions [45].
However, in these cases, the testing environment is often
not completely identical to the production one. If there is no
optimal scaling approach to eliminate the bias from different
environment configurations, performance data obtained in
the field may be difficult to use properly and reasonably.
Therefore, our findings also advocate the need for future
research on better scaling the performance data from differ-
ent environments to reduce the bias caused by configuration
differences.
The challenge of Apache James The less-promising results
for the Apache James system might be due to its nature of
being a mail server application. In particular, we designed
multiple JMeter scripts to simulate the user operations on
the system, e.g., reading and receiving different sizes of
mail. When processing an email with a relatively large size,
such workloads are likely to influence system I/O more
than CPU. As a result, after we increase the cores of the
CPU for testing, the usage of the CPU tends to have no
change because of the low load on the CPU. Since the CPU
variance of Apache James under different workloads is low,
the results in a trained model optimized in the low variance
CPU range perform poorly in unseen CPU usages (e.g.,
when the number of CPU cores is doubled). This explains
the relatively poor performance of the model trained for
Apache James in a 16vCPU environment in RQ3.

6 SENSITIVITY ANALYSIS

In this section, we perform a sensitivity analysis on three pa-
rameters in our approach, including the distance measure-
ment, the time period size and the frequency of collecting
performance data.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3408079

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on June 23,2024 at 15:35:41 UTC from IEEE Xplore. Restrictions apply.

12

TABLE 12: Comparison between the performance data from
replaying the workloads-after-reduction in the replay en-
vironment and the original performance data. Bold font
indicates the best scaling methods.

Project Configuration Correlation MARE after scaling
Max-Min Median Model Robust Quantile TL∗

OpenMRS

8vCPU 0.91 92.99% 123.99% 33.23% 41.22% 19.94% 47.53%
2vCPU 0.87 467.57% 1315.11% 247.26% 49.24% 22.26% 764.36%

0.5vCPU 0.78 603.73% 128.65% 681.37% 63.57% 29.19% 481.71%
Oracle-JDK 0.91 43.08% 139.74% 16.19% 42.98% 20.49% 15.68%
Zulu-JDK 0.90 75.04% 274.11% 57.94% 42.94% 20.29% 434.58%

MySQL 8.0 0.91 57.21% 148.83% 12.50% 43.86% 20.64% 36.70%

Teastore

8vCPU 0.91 45.12% 130.31% 69.58% 48.52% 22.78% 87.17%
2vCPU 0.88 58.01% 139.97% 14.42% 100.16% 49.38% 36.40
1vCPU 0.61 56.22% 159.60% 23.54% 107.93% 49.17% 37.13%

Oracle-JDK 0.92 70.82% 201.17% 28.53% 124.86% 55.04% 65.61%
Zulu-JDK 0.71 54.89% 147.64% 26.27% 84.50% 40.91% 64.58%

MySQL 8.0 0.76 70.55% 164.92% 30.26% 64.06% 30.83% 69.62%

Apache James

16vCPU 0.45 63.26% 88.23% 74.80% 106.32% 44.07% 70.79%
4vcpu 0.52 152.95% 81.79% 14.90% 100.75% 41.87% 24.68%
2vcpu 0.29 190.25% 92.78% 54.08% 116.36% 50.22% 168.85%

Oracle-JDK 0.76 66.58% 90.62% 33.67% 71.94% 29.59% 13.86%
Zulu-JDK 0.89 40.58% 98.99% 36.43% 108.48% 46.80% 22.06%
Version2.2 0.97 98.23% 110.94% 20.86% 137.63% 60.42% 23.13%

∗ TL: Transfer Learning

0.2

0.3

0.4

0.5

0.6

0 1000 2000 3000

minute

C
P

U
 u

til
iz

at
io

n

Type
Original
Replay Predicted

Fig. 4: Comparison of the original performance and the
predicted performance based on the replay data (after the
Max-Min scaling) for TeaStore.

6.1 Impact of the distance measurement in workload
clustering

In our study, we use Pearson distance to measure the differ-
ence between different workload signatures. To understand
the impact of choosing different distance measurements,
we also cluster our workload signatures using two other
distance metrics that are commonly used in data clustering,
including Cosine distance and Euclidean distance.

We find that using Cosine distance on all subjects can
only lead to two clusters of workloads. The low number of
clusters is caused by the bias from the Euclidean distance,
where one dimension (i.e., representing a log event) with
large variances in the data may dominate other dimensions.
Similarly, using Cosine distance also leads to a very small
number of clusters. In particular, the data from Apache James
can only be clustered into two groups using Euclidean
distance. However, we can obtain ten clusters for TeaStore
using Euclidean distance since we have a wider range of
values(i.e., ten times larger on range due to downstream re-
quest). This extensive range in the data causes the Euclidean
distances to be more dispersed compared to other subjects,
leading to a greater number of identifiable clusters. This is
because the relative difference in the performance data may
be small, and the Cosine distance cannot distinguish the

differences between workloads. The low number of clusters
would lead to difficulty in obtaining stable performance
data in the same cluster of workloads. In fact, we observe
that the prediction results from the TABLE 13 that using Eu-
clidean distance and Cosine distance obtain a worse MARE
while the number of clusters decreases since the cluster
results cannot contain all the features of the workloads.

TABLE 13: The clustering results using different distance
metrics.

Distance metrics Project Cluster number MARE

Euclidean
OpenMRS 2 51.52%
TeaStore 10 11.02%

Apache James 2 18.39%

Cosine
OpenMRS 3 42.03%
TeaStore 2 18.28%

Apache James 2 16.17%

Pearson
OpenMRS 23 11.45%
TeaStore 21 10.45%

Apache James 22 10.24%

6.2 Impact of the time period size
In order to understand the impact of choosing different sizes
of time periods, we chose a relatively larger time period
size, i.e., 1200 seconds and a relatively smaller one, i.e., 90
seconds, as comparisons with our original 600-second time
period size.

With 1200 seconds as the size of the time periods, we
obtain similar stable clusters as our original results with a
600-second time period size. For example, we produce 10
stable clusters for OpenMRS using 1200-second time period
sizes(compared to the original 23 clusters). Based on the
decreased cluster number, the length of the workload-after-
reduction decreases from 470 to 300 minutes. However,
using the workload-after-reduction, the MARE increases
from 11.45% to 16.58%.

When using a 90-second time period, we end up with
numerous clusters. Since the target of the stopping rule
applied is to search the highest value of the ratio between
the dispersion between clusters (i.e., using assumed cluster
numbers for calculating the ratio) and the dispersion of
the elements in the clusters, the exaggerated differences
between clusters would dominate the correlation inside the
clusters. The consequence of the domination would tend
to split lots of single sample clusters. For example, the
workload is split into 37 clusters for OpenMRS. There are
two reasons that we avoid generating too many clusters.
Firstly, the large number of clusters may not be suitable
for developers to analyze. Secondly, the shorter time period
would contain a small amount of performance data in each
time period, which may not be suitable for statistical testing,
such as the Kolmogorov–Smirnov statistical tests used in
our approach. Without enough sample size, the result of the
Kolmogorov–Smirnov statistical test is not reliable [43].

6.3 Impact of the frequency of collecting performance
data
In our approach, we collect performance data every ten
seconds. However, we would like to study the impact of
changing the frequency of collecting performance data to
every 30 seconds.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3408079

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on June 23,2024 at 15:35:41 UTC from IEEE Xplore. Restrictions apply.

13

With a 30-second sampling frequency, we can obtain a
shorter length of workload-after-reduction (i.e., 330 min-
utes) for OpenMRS. Similar to our above discussion on
the time period sizes, the Kolmogorov–Smirnov statistical
test is biased with falsely reported significant results [43]
due to the lower number of samples from the 30 seconds
sampling frequency. The MARE of the prediction based on
a shorter length of workload-after-reduction increases to
13.21%, which confirms that with a lower frequency at 30
seconds, our approach may not perform as well as using a
higher frequency of performance data.

Therefore, based on our findings from both the time pe-
riod size and the frequency of collecting performance data,
practitioners who would like to adopt our approach should
ensure that the sample of performance data from each time
period is large enough to avoid bias from statistical analyses.

6.4 Impact of high utilization of the systems

In our RQ1 and RQ2, we control the workload of the systems
under normal operation of the system (i.e., without satu-
ration) to prevent errors or performance regressions from
occurring under high system stress. Thus, the performance
of our method in a saturation condition is unknown. To
verify the validity of our performance prediction model
in this condition, we deployed a 1vCPU, 4GB memory
instance for simulation. We ran a 24-hour-long workload
for testing in TeaStore and grouped the workload into 10
stable clusters. Using our workload reduction approach, the
workload is grouped into 8 stable clusters and reduced to
a 190-minute version. Using the workload-after-reduction,
we could get an 11.1% MARE and a correlation of 0.94
between the prediction results and the original performance.
The promising result of the test shows the compatibility of
our approach to working under a high-pressure system en-
vironment. However, the validation of the prediction model
working under a different environment may have a large
influence according to the result from Table 12.

7 RELATED WORK

In this section, we present the prior research related to our
work.

7.1 Load test reduction

Several prior studies [6], [34], [56] share a similar goal to
our work. He et al. [34] applied a statistics-based approach
to investigate whether the distribution of a performance
metric varies after the execution of one part of testing.
Hammam et al. [6] focused on searching the stop point
of the performance testing. They used statistical methods
to measure whether the performance metrics are repetitive
during the testing. Jain [36] proposed to find the stop point
of performance testing through applying a 5% threshold of
the variance in response time. Daly et al. [24] apply the Q
statistic to detect changing point in testing for acknowledge
the performance of the system. Busany et al. [14] and Jiang et
al. [38] presented approaches of how to reduce the execution
time of tests by tracking repetitive log traces. Approaches
are also proposed to dynamically adapt the execution time

of the load testing time [10], [60], [67]. Apte et al. [7] ar-
ranged load testing by building a queueing model to achieve
a higher effectiveness. These prior studies either consider
the performance of the systems or their workloads without
building an association between the workloads and the
performance. In our paper, we consider both the workloads
and the performance of various workloads to reduce the
length of load testing.

There are several prior studies in load testing field
that aim to reducing the system resources during testing
a given workload. Shariff et al. [59] demonstrated how they
optimize system resources by running a browser-based load
test with Selenium3. In their approach, the simulated users
could share the browser instance, so that the total number
of the browser instances decreased, which can improve
the efficiency of load testing. Grano et al. [32] focused on
generating performance-sensitive functional test suite with
high coverage and low requirements on system resources.
These approaches mainly tackle the problem about reducing
the testing resources of load testing, while our approach
focuses on producing reduced workloads that are represen-
tative of the original workloads in terms of performance
measurements.

7.2 User workload characterization
The prior research from Cohen et al. [20] emphasized the de-
mand for considering varieties in system workload recovery.
Specifically, they observed that it is inefficient to detect and
identify system issues only by using the general recording
of raw system metrics and to tackle such problem. Cohen et
al. proposed an approach by clustering the system signature
and the results show that the efficiency of issue detection can
be improved by utilizing the clustering results. Later work
followed Cohen et al.’s approach and applied it to large-
scale systems. For example, Syer et al. [65] clustered the high
viability users in a large software system to obtain the sys-
tem workloads by counting the frequency of the log events
associated with each user. In addition, instead of focusing
on execution logs of the system, Shang et al. [58] utilized
the physical performance metrics, like CPU and memory
usage. In particular, Shang et al. clustered the performance
metrics directly to capture the diversity and complexity in
system workloads of large-scale systems. Motivated by prior
work, our study also utilize clustering algorithms on system
workload signatures. However, our approach is different as
we do not distinguish users in execution logs so that we can
have a high-level view of the system performance.

To obtain a further understanding of the usage of system
resources, workload recovery is a necessary step in load
testing. Alireza et al. [33] implemented an I/O workloads
replay tool named hfplayer and it aims to infer I/O depen-
dencies and assist I/O performance evaluation. Neeraja et
al. [73] proposed to use the Profile Hidden Markov Models
to analyze system workloads. Based on the patterns in
the traces, this approach can classify workload patterns in
a long sequence of NFS trace. Axel et al. [15] proposed
an automatic workload characterization approach for I/O-
intensive software in a virtual environment. Bumjoon et
al. [57] defined twenty I/O related metrics to generate I/O

3. https://www.selenium.dev

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3408079

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on June 23,2024 at 15:35:41 UTC from IEEE Xplore. Restrictions apply.

14

workload signatures and clustered the I/O workloads. Eli
et al. [23] characterized Microsoft Azure’s VMS workloads
based on the VMs’ size and lifetime.

Prior research mainly analyze physical performance met-
rics to recover workloads. In comparison, in our work, we
consider the system performance metrics that are associated
with the detailed events from users that are extracted from
system execution logs. Our approach can complement ex-
isting approaches by combining user behaviours and the
system performance to improve the effectiveness of system
workload recovery. As a result, our approach are easier to
be integrated into Dev-Ops [12].

8 THREATS TO VALIDITY

In this section, we discuss the threats to the validity of our
findings.
External Validity. The subject systems used in our case
study are three prevalent open-source systems (OpenMRS,
Apache James, and TeaStore). These systems all have a long
development history and have been studied in prior re-
search [17], [45]. However, our subject systems may not
represent all the software domains, and our approach and
results may not be directly applied to other systems. Future
work may investigate the applicability in different systems.
Internal Validity. In our study, we build a prediction model
to capture the relationship between the workloads and the
system performance. The source of the workloads is the
system’s execution logs. However, some runtime activities
that have an impact on the system performance may not
be recorded in the execution logs. Therefore, under such
circumstances, the prediction accuracy of the performance
model would be impaired. Furthermore, since we apply a
random forest method to learn our prediction model, the
requests are assumed to be stateless. We have added an
experiment to analyze if the performance distribution of
each type has a difference. Through the analysis, we can
confirm that the state of request types we used has negli-
gible effect in our experiments. Although we can confirm
that the state of request types we used have negligible
effect in our experiments based on the conclusion shown
in Section 5 RQ2, it is still a threat for future work that
applies our approach in scenarios where requests are highly
influenced by their states. In those scenarios, the prediction
model using random forest may not be suitable.

Moreover, although we consider different workloads in
our study, the impact of the intensity influences our pre-
diction result. We calculate the Pearson correlation between
MARE and intensity in each time period for our subject
systems. We find that OpenMRS, TeaStore and Apache James
have a low correlation, with values of only 0.12, -0.13, and
-0.09, respectively. In order to reduce the impact of the
intensity of the workloads, we will consider the intensity
of the workloads in our future work.

In addition, we do not consider the sequence of the
actions during the workload signature generation, which
may cause different workloads to be sorted into the same
cluster. The design of the workload signatures is a direction
of our future research.
Construct Validity. We use a traditional performance mon-
itoring tool, pidstat, to collect the system runtime perfor-

mance instead of using a modern performance monitor-
ing tool (e.g., application performance monitoring tools).
Applying those tools may enhance the accuracy of the
performance measurement. However, such systems may
introduce more overhead to the monitored system. In our
study, we only consider the CPU usage aspect of the system
performance. Although CPU usage is the main performance
metric that reflects the system’s performance, other physical
metrics (e.g., memory usage) are also important. Neverthe-
less, our approach can also apply to other performance met-
rics. Future work may extend our evaluation by considering
other performance metrics.

In this work, we assume that our approach is applied to
CPU-intensive systems and uses CPU usage as our focused
performance metric. Under such an assumption, we reduce
the interference of other performance-related resources,
such as the effect of databases on our experiments. For
example, if the system reaches the performance bottleneck
of the database, the saturation of the database may cause a
long response time and different response codes, which are
highly different from the performance behaviours in a nor-
mal situation. The unstable condition of the database would
cause the same workloads to act in different performance
behaviours, making it difficult for our approach to obtain
stable performance from different workload periods belong-
ing to the same clusters (i.e., impairing the effectiveness of
workload reduction). Therefore, applying our approach in
a different scenario that violates our assumption may lead
to different results and conclusions. Nevertheless, the main
methods (e.g., clustering-based workload reduction) of our
approach can be conveniently applied to other performance
metrics (e.g., network usage) and other types of systems
(e.g., memory-intensive systems). We leave such evaluation
as the future work.

9 CONCLUSION

In this paper, we propose an automated approach to reduc-
ing the length of the field workloads that are used to drive
load testing. By examining the stability of the system per-
formance that is associated with similar system behaviours,
our approach skips the execution of the workloads if the cor-
responding performance achieves a stable distribution. By
evaluating our approach on three open-source systems, we
find that our approach can significantly reduce the length of
workloads for load testing while preserving the workloads
that are representative of the entire original workloads. By
replaying the workloads-after-reduction in a different load
testing environment, we observe that the performance of
the system has a high correlation to the performance from
the original execution. This paper provides the following
contributions:

• We propose an approach that can automatically re-
duce the length of field-replay based load testing by
skipping similar workloads with stable performance.

• Our approach can be leveraged in the replay of field
workloads in a testing environment while signifi-
cantly reducing the costs of such replay-based load
tests.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3408079

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on June 23,2024 at 15:35:41 UTC from IEEE Xplore. Restrictions apply.

15

• Our work sheds light on future work that leverages
and optimizes the field workloads for cost-effective
performance testing.

• We highlight the challenges of applying existing
scaling methods to normalize the performance data
produced in different environments (e.g., field vs.
testing environments) and call for future work to
address such challenges.

REFERENCES

[1] “Compute engine: Virtual machines (vms) — google cloud,” https:
//cloud.google.com/compute, (Accessed on 9/3/2020).

[2] “cpulimit – limits the cpu usage of a process,” https://manpages.
ubuntu.com/manpages/trusty/man1/cpulimit.1.html, (Accessed
on 08/01/2022).

[3] “Demo data - resources - openmrs wiki,” https://wiki.openmrs.
org/display/RES/Demo+Data, (Accessed on 10/3/2020).

[4] “pidstat(1): Report statistics for tasks - linux man page,” https:
//linux.die.net/man/1/pidstat, (Accessed on 02/26/2020).

[5] “Text classification from scratch,” https://keras.io/examples/
nlp/text classification from scratch/, (Accessed on 10/15/2021).

[6] H. M. Alghmadi, M. D. Syer, W. Shang, and A. E. Hassan, “An au-
tomated approach for recommending when to stop performance
tests,” in 2016 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2016, Raleigh, NC, USA, October 2-7, 2016.
IEEE Computer Society, 2016, pp. 279–289.

[7] V. Apte, T. V. S. Viswanath, D. Gawali, A. Kommireddy, and
A. Gupta, “Autoperf: Automated load testing and resource usage
profiling of multi-tier internet applications,” in Proceedings of the
8th ACM/SPEC on International Conference on Performance Engineer-
ing, ICPE 2017, L’Aquila, Italy, April 22-26, 2017. ACM, 2017, pp.
115–126.

[8] M. M. Arif, W. Shang, and E. Shihab, “Empirical study on the
discrepancy between performance testing results from virtual and
physical environments,” in Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018. ACM, 2018, p. 822.

[9] M. Arlitt and T. Jin, “1998 world cup web site access logs,” http:
//www.acm.org/sigcomm/ITA/, Aug 1998.

[10] V. Ayala-Rivera, M. Kaczmarski, J. Murphy, A. Darisa, and A. O.
Portillo-Dominguez, “One size does not fit all: In-test workload
adaptation for performance testing of enterprise applications,”
in Proceedings of the 2018 ACM/SPEC International Conference on
Performance Engineering, ICPE 2018, Berlin, Germany, April 09-13,
2018. ACM, 2018, pp. 211–222.

[11] A. Bauer, N. Herbst, S. Spinner, A. Ali-Eldin, and S. Kounev,
“Chameleon: A hybrid, proactive auto-scaling mechanism on a
level-playing field,” IEEE Trans. Parallel Distributed Syst., vol. 30,
no. 4, pp. 800–813, 2019.

[12] C. Bezemer, S. Eismann, V. Ferme, J. Grohmann, R. Heinrich,
P. Jamshidi, W. Shang, A. van Hoorn, M. Villavicencio, J. Walter,
and F. Willnecker, “How is performance addressed in devops?”
in Proceedings of the 2019 ACM/SPEC International Conference on
Performance Engineering, ICPE 2019, Mumbai, India, April 7-11, 2019.
ACM, 2019, pp. 45–50.

[13] E. Bureau, BigBasket app, site crash on high
demand, 2020 (accessed October 21, 2020). [Online].
Available: https://economictimes.indiatimes.com/small-
biz/startups/newsbuzz/bigbasket-app-site-crash-on-
high-demand/articleshow/74784753.cms?utm source=
contentofinterest&utm medium=text&utm campaign=cppst

[14] N. Busany and S. Maoz, “Behavioral log analysis with statistical
guarantees,” in Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016,
L. K. Dillon, W. Visser, and L. A. Williams, Eds. ACM, 2016, pp.
877–887.

[15] A. Busch, Q. Noorshams, S. Kounev, A. Koziolek, R. H. Reussner,
and E. Amrehn, “Automated workload characterization for I/O
performance analysis in virtualized environments,” in Proceedings
of the 6th ACM/SPEC International Conference on Performance Engi-
neering, Austin, TX, USA, January 31 - February 4, 2015. ACM,
2015, pp. 265–276.

[16] T. Caliński and J. Harabasz, “A dendrite method for cluster
analysis,” Communications in Statistics-theory and Methods, vol. 3,
no. 1, pp. 1–27, 1974.

[17] J. Chen, W. Shang, A. E. Hassan, Y. Wang, and J. Lin, “An experi-
ence report of generating load tests using log-recovered workloads
at varying granularities of user behaviour,” in 34th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2019, San Diego, CA, USA, November 11-15, 2019. IEEE, 2019, pp.
669–681.

[18] T. Chen, W. Shang, A. E. Hassan, M. N. Nasser, and P. Flora,
“Cacheoptimizer: helping developers configure caching frame-
works for hibernate-based database-centric web applications,” in
Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, Seattle, WA, USA,
November 13-18, 2016. ACM, 2016, pp. 666–677.

[19] Z. Chen and W. Jiao, “A proactive self-adaptation approach for
software systems based on environment-aware model predictive
control,” in QRS. IEEE, 2022, pp. 992–1003.

[20] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and
A. Fox, “Capturing, indexing, clustering, and retrieving system
history,” in Proceedings of the 20th ACM Symposium on Operating
Systems Principles 2005, SOSP 2005, Brighton, UK, October 23-26,
2005. ACM, 2005, pp. 105–118.

[21] J. Cohen, Statistical power analysis for the behavioral sciences. Psy-
chology Press, 2009.

[22] R. Colle, L. Galanis, Y. Wang, S. Buranawatanachoke, and S. Pa-
padomanolakis, “Oracle database replay,” Proc. VLDB Endow.,
vol. 2, no. 2, pp. 1542–1545, 2009.

[23] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting
workloads for improved resource management in large cloud plat-
forms,” in Proceedings of the 26th Symposium on Operating Systems
Principles, Shanghai, China, October 28-31, 2017. ACM, 2017, pp.
153–167.

[24] D. Daly, W. Brown, H. Ingo, J. O’Leary, and D. Bradford, “The use
of change point detection to identify software performance regres-
sions in a continuous integration system,” in ICPE ’20: ACM/SPEC
International Conference on Performance Engineering, Edmonton, AB,
Canada, April 20-24, 2020. ACM, 2020, pp. 67–75.

[25] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM,
vol. 56, no. 2, pp. 74–80, 2013.

[26] B. Droesch, Five Charts: How Coronavirus Has Impacted
Digital Grocery, 2020 (accessed October 21, 2020).
[Online]. Available: https://www.emarketer.com/content/five-
charts-how-coronavirus-has-impacted-digital-grocery

[27] S. Elnaffar and P. Martin, “Characterizing computer systems’
workloads,” 2002.

[28] M. H. Fulekar, Bioinformatics: applications in life and environmental
sciences. Springer, 2010.

[29] R. Gao, Z. M. Jiang, C. Barna, and M. Litoiu, “A framework to
evaluate the effectiveness of different load testing analysis tech-
niques,” in 2016 IEEE International Conference on Software Testing,
Verification and Validation, ICST 2016, Chicago, IL, USA, April 11-15,
2016. IEEE Computer Society, 2016, pp. 22–32.

[30] J. Garcia, “Change point evaluation in networking logs with
periodicity filtering and bootstrapping,” in NOMS. IEEE, 2022,
pp. 1–7.

[31] D. Gesvindr and B. Buhnova, “Performance challenges, current
bad practices, and hints in paas cloud application design,” SIG-
METRICS Perform. Evaluation Rev., vol. 43, no. 4, pp. 3–12, 2016.

[32] G. Grano, C. Laaber, A. Panichella, and S. Panichella, “Testing with
fewer resources: An adaptive approach to performance-aware test
case generation,” CoRR, vol. abs/1907.08578, 2019.

[33] A. Haghdoost, W. He, J. Fredin, and D. H. C. Du, “On the accuracy
and scalability of intensive I/O workload replay,” in 15th USENIX
Conference on File and Storage Technologies, FAST 2017, Santa Clara,
CA, USA, February 27 - March 2, 2017. USENIX Association, 2017,
pp. 315–328.

[34] S. He, G. Manns, J. Saunders, W. Wang, L. L. Pollock, and
M. L. Soffa, “A statistics-based performance testing methodology
for cloud applications,” in Proceedings of the ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019,
Tallinn, Estonia, August 26-30, 2019. ACM, 2019, pp. 188–199.

[35] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth, “Per-
formance anomaly detection and bottleneck identification,” ACM
Comput. Surv., vol. 48, no. 1, pp. 4:1–4:35, 2015.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3408079

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on June 23,2024 at 15:35:41 UTC from IEEE Xplore. Restrictions apply.

16

[36] R. Jain, The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling.
John Wiley and Sons, 1991.

[37] P. Jamshidi, N. Siegmund, M. Velez, C. Kästner, A. Patel,
and Y. Agarwal, “Transfer learning for performance modeling
of configurable systems: An exploratory analysis,” CoRR, vol.
abs/1709.02280, 2017.

[38] Z. M. Jiang, A. Avritzer, E. Shihab, A. E. Hassan, and P. Flora,
“An industrial case study on speeding up user acceptance testing
by mining execution logs,” in Fourth International Conference on
Secure Software Integration and Reliability Improvement, SSIRI 2010,
Singapore, June 9-11, 2010. IEEE Computer Society, 2010, pp. 131–
140.

[39] Z. M. Jiang and A. E. Hassan, “A survey on load testing of large-
scale software systems,” IEEE Trans. Software Eng., vol. 41, no. 11,
pp. 1091–1118, 2015.

[40] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Automated
performance analysis of load tests,” in 25th IEEE International
Conference on Software Maintenance (ICSM 2009), September 20-26,
2009, Edmonton, Alberta, Canada. IEEE Computer Society, 2009,
pp. 125–134.

[41] R. Krishna, M. S. Iqbal, M. Javidian, B. Ray, and P. Jamshidi,
“Cadet: A systematic method for debugging misconfigurations
using counterfactual reasoning,” 10 2020.

[42] R. Krishna, V. Nair, P. Jamshidi, and T. Menzies, “Whence to learn?
transferring knowledge in configurable systems using BEETLE,”
IEEE Trans. Software Eng., vol. 47, no. 12, pp. 2956–2972, 2021.

[43] T. Lazariv and C. Lehmann, “Goodness-of-fit tests for large
datasets,” 2018.

[44] P. Leitner and J. Cito, “Patterns in the chaos - A study of perfor-
mance variation and predictability in public iaas clouds,” ACM
Trans. Internet Techn., vol. 16, no. 3, pp. 15:1–15:23, 2016.

[45] L. Liao, J. Chen, H. Li, Y. Zeng, W. Shang, J. Guo, C. Sporea,
A. Toma, and S. Sajedi, “Using black-box performance models
to detect performance regressions under varying workloads: an
empirical study,” Empir. Softw. Eng., vol. 25, no. 5, pp. 4130–4160,
2020.

[46] M. Ma, Z. Yin, S. Zhang, S. Wang, C. Zheng, X. Jiang, H. Hu,
C. Luo, Y. Li, N. Qiu, F. Li, C. Chen, and D. Pei, “Diagnosing root
causes of intermittent slow queries in large-scale cloud databases,”
Proc. VLDB Endow., vol. 13, no. 8, pp. 1176–1189, 2020.

[47] H. Malik, Z. M. Jiang, B. Adams, A. E. Hassan, P. Flora, and
G. Hamann, “Automatic comparison of load tests to support the
performance analysis of large enterprise systems,” in 14th Euro-
pean Conference on Software Maintenance and Reengineering, CSMR
2010, 15-18 March 2010, Madrid, Spain. IEEE Computer Society,
2010, pp. 222–231.

[48] H. Martin, M. Acher, L. Lesoil, J. M. Jezequel, D. E. Khelladi, and
J. A. Pereira, “Transfer learning across variants and versions : The
case of linux kernel size,” IEEE Transactions on Software Engineering,
pp. 1–1, 2021.

[49] G. W. Milligan and M. C. Cooper, “An examination of procedures
for determining the number of clusters in a data set,” Psychome-
trika, vol. 50, no. 2, pp. 159–179, 1985.

[50] T. H. D. Nguyen, B. Adams, Z. M. Jiang, A. E. Hassan, M. N.
Nasser, and P. Flora, “Automated detection of performance regres-
sions using statistical process control techniques,” in Third Joint
WOSP/SIPEW International Conference on Performance Engineering,
ICPE’12, Boston, MA, USA - April 22 - 25, 2012. ACM, 2012, pp.
299–310.

[51] F. Nielsen, Hierarchical Clustering, 02 2016, pp. 195–211.
[52] J. A. Pereira, M. Acher, H. Martin, J.-M. Jézéquel, G. Botterweck,

and A. Ventresque, “Learning software configuration spaces: A
systematic literature review,” Journal of Systems and Software, vol.
182, p. 111044, 2021.

[53] A. N. Pettitt, “A non-parametric approach to the change point
problem,” Journal of the Royal Statistical Society: Series C (Applied
Statistics), vol. 28, pp. 126–135, 1979.

[54] T. Raz, “The art of computer systems performance analysis: Tech-
niques for experimental design, measurement, simulation, and
modeling (raj jain),” SIAM Review, vol. 34, no. 3, pp. 518–519, 1992.

[55] N. Sandhya and A. Govardhan, “Analysis of similarity measures
with wordnet based text document clustering,” in Proceedings of the
International Conference on Information Systems Design and Intelligent
Applications 2012 (INDIA 2012) held in Visakhapatnam, India, January
2012, 2012, pp. 703–714.

[56] H. Schulz, T. Angerstein, and A. van Hoorn, “Towards automating
representative load testing in continuous software engineering,”
in Companion of the 2018 ACM/SPEC International Conference on
Performance Engineering, ICPE 2018, Berlin, Germany, April 09-13,
2018. ACM, 2018, pp. 123–126.

[57] B. Seo, S. Kang, J. Choi, J. Cha, Y. Won, and S. Yoon, “IO workload
characterization revisited: A data-mining approach,” IEEE Trans.
Computers, vol. 63, no. 12, pp. 3026–3038, 2014.

[58] W. Shang, A. E. Hassan, M. N. Nasser, and P. Flora, “Proceedings
of the 6th ACM/SPEC international conference on performance
engineering, austin, tx, usa, january 31 - february 4, 2015,” in ICPE.
ACM, 2015, pp. 15–26.

[59] S. M. Shariff, H. Li, C. Bezemer, A. E. Hassan, T. H. D. Nguyen,
and P. Flora, “Improving the testing efficiency of selenium-based
load tests,” in Proceedings of the 14th International Workshop on Au-
tomation of Software Test, AST@ICSE 2019, May 27, 2019, Montreal,
QC, Canada. IEEE / ACM, 2019, pp. 14–20.

[60] P. Shivam, V. Marupadi, J. S. Chase, T. Subramaniam, and S. Babu,
“Cutting corners: Workbench automation for server benchmark-
ing,” in Proceedings of the 2008 USENIX Annual Technical Conference,
Boston, MA, USA, June 22-27,2008. USENIX Association, 2008, pp.
241–254.

[61] C. Smith, Software performance engineering, 04 2006, pp. 509–536.
[62] J. H. Stapleton, Models for probability and statistical inference: theory

and applications. Wiley-Interscience, 2008, vol. 277.
[63] B. Stevens, Ocado is relaunching its app after being

forced to scrap it in March due to 1000% jump in
traffic, 2020 (accessed October 21, 2020). [Online].
Available: https://www.chargedretail.co.uk/2020/07/09/ocado-
is-relaunching-its-app-after-being-forced-to-scrap-it-in-march-
due-to-1000-jump-in-traffic/

[64] J. Summers, T. Brecht, D. L. Eager, and A. Gutarin, “Characterizing
the workload of a netflix streaming video server,” in 2016 IEEE
International Symposium on Workload Characterization, IISWC 2016,
Providence, RI, USA, September 25-27, 2016. IEEE Computer
Society, 2016, pp. 43–54.

[65] M. D. Syer, Z. M. Jiang, M. Nagappan, A. E. Hassan, M. N. Nasser,
and P. Flora, “Leveraging performance counters and execution
logs to diagnose memory-related performance issues,” in ICSM.
IEEE Computer Society, 2013, pp. 110–119.

[66] M. D. Syer, W. Shang, Z. M. Jiang, and A. E. Hassan, “Continuous
validation of performance test workloads,” Autom. Softw. Eng.,
vol. 24, no. 1, pp. 189–231, 2017.

[67] A. Tchana, B. Dillenseger, N. D. Palma, X. Etchevers, J. Vincent,
N. Salmi, and A. Harbaoui, “Self-scalable benchmarking as a
service with automatic saturation detection,” in Middleware, ser.
Lecture Notes in Computer Science, vol. 8275. Springer, 2013, pp.
389–404.

[68] C. Vögele, A. van Hoorn, E. Schulz, W. Hasselbring, and H. Kr-
cmar, “WESSBAS: extraction of probabilistic workload specifi-
cations for load testing and performance prediction - a model-
driven approach for session-based application systems,” Software
and Systems Modeling, vol. 17, no. 2, pp. 443–477, 2018.

[69] J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann,
and S. Kounev, “Teastore: A micro-service reference application
for benchmarking, modeling and resource management research,”
in 26th IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, MASCOTS
2018, Milwaukee, WI, USA, September 25-28, 2018. IEEE Computer
Society, 2018, pp. 223–236.

[70] K. R. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of
transfer learning,” J. Big Data, vol. 3, p. 9, 2016.

[71] E. J. Weyuker and F. I. Vokolos, “Experience with performance
testing of software systems: Issues, an approach, and case study,”
IEEE Trans. Software Eng., vol. 26, no. 12, pp. 1147–1156, 2000.

[72] X. Xiao, S. Han, D. Zhang, and T. Xie, “Context-sensitive delta
inference for identifying workload-dependent performance bottle-
necks,” in International Symposium on Software Testing and Analysis,
ISSTA ’13, Lugano, Switzerland, July 15-20, 2013, M. Pezzè and
M. Harman, Eds. ACM, 2013, pp. 90–100.

[73] N. J. Yadwadkar, C. Bhattacharyya, K. Gopinath, T. Niranjan, and
S. Susarla, “Discovery of application workloads from network file
traces,” in 8th USENIX Conference on File and Storage Technologies,
San Jose, CA, USA, February 23-26, 2010. USENIX, 2010, pp. 183–
196.

[74] F. Zhang, I. Keivanloo, and Y. Zou, “Data transformation in cross-

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3408079

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on June 23,2024 at 15:35:41 UTC from IEEE Xplore. Restrictions apply.

17

project defect prediction,” Empir. Softw. Eng., vol. 22, no. 6, pp.
3186–3218, 2017.

[75] P. Zhang, S. G. Elbaum, and M. B. Dwyer, “Automatic genera-
tion of load tests,” in 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011), Lawrence, KS, USA,
November 6-10, 2011, P. Alexander, C. S. Pasareanu, and J. G.
Hosking, Eds. IEEE Computer Society, 2011, pp. 43–52.

[76] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu,
“Tools and benchmarks for automated log parsing,” in Proceedings
of the 41st International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada,
May 25-31, 2019. IEEE / ACM, 2019, pp. 121–130.

Yuanjie Xia is a Ph.D. student in the Department
of Electrical and Computer Engineering at the
University of Waterloo, Canada. He obtains a
Master’s degree from Concordia University. Soft-
ware performance testing is the main focus of his
research. Contact him at y35xia@uwaterloo.ca.

Lizhi Liao is a Ph.D. student in the Department
of Electrical and Computer Engineering at the
University of Waterloo, Canada, supervised by
Weiyi Shang. He received his M.Eng. degree
from Concordia University, and he obtained a
B.Eng. from Chongqing University of Posts and
Telecommunications. His research interests in-
clude software performance engineering, soft-
ware log mining and mining software reposito-
ries. Contact him at lizhi.liao@uwaterloo.ca.

Jinfu Chen is an Associate Professor at the
School of Computer Science, Wuhan University.
He received his Ph.D. from Concordia Univer-
sity in Canada and his M.Sc. degree from the
Chinese Academy of Sciences. His research
interest lies in empirical software engineering,
software performance engineering, performance
testing, and software log mining. Contact him at
https://jinfuchen.github.io/jinfu.

Heng Li is an assistant professor in the De-
partment of Computer and Software Engineering
at Polytechnique Montreal. He holds a Ph.D. in
Computing from Queen’s University (Canada),
an M.Sc. from Fudan University (China), and
a B.Eng. from Sun Yat-sen University (China).
Before his academic career, he worked in the
industry for years as a software engineer at Syn-
opsys and a software performance engineer at
BlackBerry. He and his students’ research in the
MOOSE lab (moose.polymtl.ca) address prac-

tical challenges in software monitoring, performance engineering, log
analysis, intelligent operations of software systems (AIOps), software
analytics, and quality engineering of traditional and emerging systems
(e.g., AI-based and quantum systems).

Weiyi Shang is an Associate Professor in the
Department of Electrical and Computer Engi-
neering at the University of Waterloo. He has
received his Ph.D. and M.Sc. degrees from
Queens University (Canada) and he obtained
B.Eng. from Harbin Institute of Technology. His
research interests include big data software en-
gineering, software engineering for Ultra-large-
scale systems, software log mining, empirical
software engineering, and software performance
engineering. His work has been published at

premier venues such as ICSE, FSE, ASE, ICSME, MSR and WCRE, as
well as in major journals such as TSE, EMSE, JSS, JSEP and SCP. His
work has won premium awards, such as two SIGSOFT Distinguished
paper award at ICSE 2020 and 2013. His industrial experience includes
helping improve the quality and performance of ultra-large-scale sys-
tems in BlackBerry. Early tools and techniques developed by him are
already integrated into products used by millions of users worldwide.
Contact him at wshang@uwaterloo.ca.

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3408079

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on June 23,2024 at 15:35:41 UTC from IEEE Xplore. Restrictions apply.

