
Where Shall We Log? Studying and Suggesting Logging
Locations in Code Blocks

Zhenhao Li
l_zhenha@encs.concordia.ca

Concordia University
Montreal, Quebec, Canada

Tse-Hsun (Peter) Chen
peterc@encs.concordia.ca
Concordia University

Montreal, Quebec, Canada

Weiyi Shang
shang@encs.concordia.ca
Concordia University

Montreal, Quebec, Canada

ABSTRACT
Developers write logging statements to generate logs and record
system execution behaviors to assist in debugging and software
maintenance. However, deciding where to insert logging statements
is a crucial yet challenging task. On one hand, logging too little
may increase the maintenance difficulty due to missing important
system execution information. On the other hand, logging too much
may introduce excessive logs that mask the real problems and cause
significant performance overhead. Prior studies provide recommen-
dations on logging locations, but such recommendations are only
for limited situations (e.g., exception logging) or at a coarse-grained
level (e.g., method level). Thus, properly helping developers decide
finer-grained logging locations for different situations remains an
unsolved challenge. In this paper, we tackle the challenge by first
conducting a comprehensive manual study on the characteristics
of logging locations in seven open-source systems. We uncover six
categories of logging locations and find that developers usually in-
sert logging statements to record execution information in various
types of code blocks. Based on the observed patterns, we then pro-
pose a deep learning framework to automatically suggest logging
locations at the block level. We model the source code at the code
block level using the syntactic and semantic information. We find
that: 1) our models achieve an average of 80.1% balanced accuracy
when suggesting logging locations in blocks; 2) our cross-system
logging suggestion results reveal that there might be an implicit
logging guideline across systems. Our results show that we may
accurately provide finer-grained suggestions on logging locations,
and such suggestions may be shared across systems.
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1 INTRODUCTION
Logs play an important role in maintaining software systems and
diagnosing issues that happen during runtime. Developers rely
on logs for various maintenance activities, such as debugging [25,
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69, 71], testing [13–15, 47], and system comprehension [50, 51].
Developers insert logging statements in the source code with dif-
ferent verbosity levels (e.g., trace, debug, info, warn, error, and fatal)
to record system execution information and values of dynamic
variables. For example, in the logging statement: log.warn(“Invalid
groupingKey:”, + key), the static text message is “Invalid group-
ingKey:”, and the dynamic message is the value of the variable
key. The logging statement is at the warn level, which is the level
for recording information that may potentially cause system oddi-
ties [3].

The great value of logs results from proper logging decisions
that are made by practitioners during software development [39].
The logging decisions are often made in order to balance the benefit
and cost from logs [39]. On one hand, inserting too few logging
statements may increase the maintenance difficulty due to missing
important system execution information for debugging and analy-
sis [78]. On the other hand, inserting too many logging statements
may increase system performance overhead and produce excessive
trivial logs which increase the difficulty of log analysis [39, 66, 78].
However, such a crucial task of making logging decisions remains
challenging due to the lack of concrete logging specification and
guidelines [25]. As a result, developers have to rely on their in-
tuitions and experiences to compose, review, update and even fix
logging statements in an ad-hoc manner [11, 29, 41, 44, 45, 70].

To address the challenge of making logging decisions, prior
studies [20, 25, 38, 67, 78] provide automated recommendations
on logging locations. However, there exist two main limitations in
prior research: 1) Such recommendations are often only for a very
limited number of situations. Approaches from prior research may
only provide suggestions for exception handling blocks and method
return values [25, 78]. 2) The logging locations are recommended at
a coarse-grained level, e.g., method level [38]; while practitioners
still need to decide the specific location to place a logging statement
inside a method. As a result, in many cases, practitioners often still
face challengeswhenmaking decisions on logging locations, despite
the advance from recent research outcomes.

In this paper, we conduct a study to uncover guidelines and
provide suggestions on logging locations (i.e., where do developers
log) at a finer-grained level (i.e., block level) by analyzing logging
statements and their surrounding code. Through a manual study on
the logging statements from seven open source systems, we find that
the decisions of logging location are often influenced by both the
syntactic and semantic information in the source code. Moreover,
the logging statements often record execution information related
to the block in which they reside. Driven by our manual study
results, we extract syntactic (e.g., nodes in abstract syntax trees)
and semantic (e.g., variable names) information from the source
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code and propose an automated deep learning based approach to
suggest logging locations at the block level. We find that our deep
learning models outperform the baseline, and the syntactic block
feature achieves the best results (an average balanced accuracy of
80.1%) compared to semantic and fused (a fusion of syntactic and
semantic) features. Moreover, syntactic information of blocks may
be leveraged to provide general logging guidelines across different
software systems. In summary, this paper makes the following
contributions:

• We uncover six categories of logging locations, which are
exception logging in catch blocks, branch logging in blocks
associated with decision-making statements, program itera-
tion logging, logging the start or the end of a method, and
function logging in domain-specific methods. We also dis-
cuss the common types of information that is recorded in
each category.

• We propose a deep learning based approach to suggesting
logging locations at the block level by leveraging syntactic,
semantic and fused block features extracted from the source
code1. We find that models trained using the syntactic fea-
tures have the highest balanced accuracy (80.1%) among the
three types of features. Although there are some differences
in the suggestion results among the three features, syntactic
features can capture around 80% of all the suggested true
positives. Our finding shows that most logging decisions
may be related to the syntactic structure of the code.

• The cross-system suggestion results achieve an average bal-
anced accuracy of 67.3%.We also find that there is a moderate
to substantial agreement among the cross-system models
trained using the syntactic features, which shows that de-
velopers of different systems may follow certain implicit
guidelines on deciding logging locations.

Paper organization Section 2 discusses the background and re-
lated work of our study. Section 3 describes the setup of our manual
study and the categories of logging locations we find. Section 4
discusses how do we extract block-level features and describes
our deep-learning based approach. Section 5 presents the evalua-
tion metrics and the results by answering two research questions.
Section 6 discusses the False Positives and False Negatives in our
suggestion results. Section 7 discusses the threats to validity of our
study. Section 8 concludes the paper.

2 BACKGROUND AND RELATEDWORK
Developers insert logging statements into the source code to record
system runtime information and use the generated logs to assist
in software debugging and maintenance. For example, as shown
in the simplified code snippet from Zookeeper below, the logging
statement is at the error level, contains the static message “Missing
count node for stat”, and records the dynamic value of the variable
statNode.
DataNode node = nodes.get(statNode);

if (node == null) {

// should not happen

LOG.error("Missing count node for stat {}", statNode);

return;

}

1We share the replication package of this paper at: https://github.com/SPEAR-SE/
ASE2020_Logging_Location_Data.

The logging statement is closely related to the specific value
of the DataNode object and records an unexpected execution be-
havior in an if block when the value of the node is null . Helping
developers decide where to log is an on-going research problem.
Fu et al. [25] studied where do Microsoft developers add logging
statements in their projects written in C# and focused on studying
the characeristics of logging in some specific code snippets (i.e.,
catch blocks and return value checks). They found that develop-
ers often add logging statements to check the returned value of
a method and record exceptions. Zhu et al. [78] further extended
the work by providing a tool for suggesting log placement in the
two above-mentioned cases. Li et al. [38, 41] provide suggestions
on whether a method or commit requires a logging statement. In
short, prior studies either only target a limited number of logging
locations or provide a coarse-grained suggestion. Therefore, in this
paper, we explore the potential of providing a finer-grained support
on deciding general logging locations through a manual study (Sec-
tion 3) and propose an automated deep-learning based approach to
suggest logging locations at the code block level (Section 4).

Below, we further discuss the related works of this paper.
Studies on Logging Practices. There are several studies on char-
acterizing the logging practices in software systems. Yuan et al. [70],
Chen et al. [9], and Zeng et al. [72] conducted quantitative charac-
teristics studies on log messages in large-scale open source C/C++,
Java systems, and mobile applications. Chen et al. [12] studied the
logging utilities, and Zhi et al. [77] studied the logging configura-
tions in Java. They found that logs are essential for debugging and
maintenance.

Given the importance of logs, other studies try to help developers
improve logging practices. Chen et al. [10] found that developers
commonly make some mistakes when writing logging statements
(e.g., logging objects whose values may be null) and concluded five
categories of logging anti-patterns from code changes. Hassani et
al. [29] identified seven root-causes of the log-related issues from
log-related bug reports and found that inappropriate log messages
and missing log statements are the most common issues. Li et
al. [43, 46] uncovered potential problems with logging statements
that have the same text message and developed an automated tool to
detect the problems. Yuan et al. [71] proposed an approach that can
automatically insert additional variables into logging statements
to enhance the error diagnostic information. Li et al. [40] propose
the use of prediction models to suggest the log level of a newly
added logging statement. Liu et al. [48] proposed a deep learning
framework to suggest the variables that should be recorded in
logging statements.

Different from prior studies, this paper focuses on studying log-
ging locations in the purpose of providing suggestions and guide-
lines on the decisions of logging locations. The findings and ap-
proaches in this paper can complement prior studies in providing
more comprehensive logging supports to developers.
ApplyingDeepLearning in Software EngineeringTasks. Due
to the advances in deep learning, recent research starts to inves-
tigate source code representation and apply deep learning mod-
els in software engineering tasks. Zhang et al. [74] proposed an
AST-based neural network for source code representation. They
evaluated their approach on several software engineering tasks,
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Table 1: An overview of the studied systems.

System Version LOC NOL #LB #NLB %LB
Cassandra 3.11.4 432K 1.3K 1.0K 25.0K 3.8%
ElasticSearch 7.4.0 1.50M 2.5K 1.9K 54.0K 3.4%
Flink 1.8.2 177K 2.5K 2.4K 27.5K 8.0%
HBase 2.2.1 1.26M 5.5K 4.1K 81.1K 4.8%
Kafka 2.3.0 267K 1.5K 1.0K 9.0K 10.0%
Wicket 8.6.1 216K 0.4K 0.3K 9.1K 3.2%
Zookeeper 3.5.6 97K 1.2K 0.9K 5.2K 14.8%

Note: LOC refers to the lines of code, NOL refers to the number of logging statements, #LB and #NLB refers to the
number of logged and non-logged blocks respectively, %LB refers to the percentage of logged blocks over all the blocks.

such as source code classification and code clone detection, and
the results outperformed existing approaches. Tufano et al. [58]
evaluated different representation of source code (e.g., abstract syn-
tax tree and control flow graph) and their effect on applying deep
learning models in SE tasks. Hu et al. [32] proposed a deep learn-
ing based approach to automatically generate comments for Java
methods. Nghi et al. [52] applied deep learning models to identify
the programming language used in an algorithm. Different from
prior studies, we focus on extracting source code features to suggest
which blocks need to be logged. We conduct a comprehensive man-
ual study on the characteristics of logging locations and propose a
deep learning based approach to provide automated suggestions.

3 STUDYING THE CHARACTERISTICS OF
LOGGING LOCATION IN CODE BLOCKS

To better understand developers’ logging decisions and provide
more concrete logging suggestions, in this section, we manually
inspect the logging statements and their surrounding code. We
examine if there exist finer-grained (e.g., at code block levels) im-
plicit or explicit common characteristics of the locations where
developers insert logging statements.
Studied Systems.We conduct a manual study on seven large-scale
open source Java systems: Cassandra, Elasticsearch, Flink, HBase,
Kafka, Wicket, and ZooKeeper. Table 1 shows an overview of the
systems. The studied systems cover different domains (e.g., message
broker, search engine, and database), have high quality logging code,
and are commonly used in prior log-related studies [10, 11, 38, 46].
The size of the studied systems ranges from 97K to 1.5M LOC, and
they contain from 0.4K to 5.5K logging statements.
Manual Study Setup. Our goal is to manually inspect the logging
statements and their surrounding code to study the characteristics
of logging locations. To prepare the data for our manual study,
we extract the logging statements from the source code by imple-
menting a static code parser. Our parser identifies every logging
statement that invokes common logging libraries (e.g., Log4j [3]
and SLF4J [5]) in the code. Then, for each logging statement, we
extract its static message and dynamic variables, its verbosity level,
its location (i.e., the file and method that contains the logging state-
ment), and its surrounding code (i.e., the method that contains the
logging statement). After getting all the logging statements and
the extracted information, we randomly sample 375 out of 14.9K
logging statements based on a 95% confidence level and 5% confi-
dence interval [8]. For each sampled logging statement, we study
its structural information and data flow of the surrounding code,
in order to see the potential factors taking part in the decision of
inserting the logging statements in a block. Specifically, the first

two authors of this paper (i.e., A1 and A2) follow an open coding-
like process similar to prior studies [21, 36, 46, 73], and involve in
the following three phases to conduct the manual study:

Phase I : A1 studies 100 randomly sampled logging statements
and their extracted information, and record the characteristics of
their data flow, structural, and semantic information (e.g., the de-
pendency of variables, control flow, and the business logic of the
code). A1 further derives a draft list of categories of logging loca-
tions based on the information recorded. Then A1 and A2 follow
the draft list to label the 100 samples collaboratively. During this
phase, the categories are revised and refined.

Phase II : A1 and A2 independently assign the categories derived
in Phase I to the rest of the 375 sampled logging statements. There
is no new category derived in this phase.

Phase III : A1 and A2 compare the assigned categories in Phase II.
Any disagreement of the categorization is discussed until reaching a
consensus. No new categories are introduced during the discussion.
The results in this phase have a Cohen’s Kappa of 0.86, which is a
substantial-level of agreement [56].
Categories of Logging Locations. In our manual study, we un-
cover six categories of logging locations that are associated with
four different types of blocks (i.e., try-catch, branching, looping,
and method declaration). In particular, we find that three categories
are associated with try-catch, branching, and looping blocks; and
three categories are associated with method declaration blocks
that record method execution information. Below, we discuss each
category in detail with an example.
Category 1 (Try-Catch Block): Exception information logging in catch
blocks (122/375, 32.5%). Exceptions are widely used to capture er-
rors. Developers rely on logs for debugging and error diagnostics
when exceptions occur [25, 68]. The code snippet below shows
an example of logging statements in this category. Similar to a
prior study [25], we find that a large number of sampled logging
statements reside in catch blocks. Most of them are at error (52/122,
42.6%) or warn (46/122, 37.7%) level. The logging statements often
record messages or execution information related to the prior try
block.
try {

listener.onCache(shardId, fieldName, fieldData);

} catch (Exception e) {

logger.error("Failed to call listener on atomic field data loading", e);

}

Category 2 (Branching Block): Branch logging in blocks associated
with decision-making statements (139/375, 37.1%).We find that many
sampled logging statements reside in blocks associatedwith decision-
making statements [4] (e.g., if-else and switch) to record the execu-
tion information in different branches. The variable or the invoked
method in the condition of the decision-making statement (e.g., the
arguments in the if statement) are processed or defined in the prior
code. Among the logging statements in this category, around half
of them (68/139, 48.9%) record the occurrence of an unexpected
execution behavior (e.g., an error or a failure) with a warn level or
above (e.g. error), as shown in the code snippet below. The remain-
ing cases record the occurrence of a normal execution behavior
with an info, debug, or trace level for system comprehension or
debugging purposes.
final TaskId id = partitionsToTaskId.get(tp);

...
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if (id != null) {

taskIds.add(id);

} else {

log.error("Failed to lookup taskId for partition {}", tp);

}

Category 3 (Looping Block): Program iteration logging (25/375, 6.7%).
We find that some sampled logging statements reside in blocks that
are associated with looping statements [4, 65] (e.g., code blocks
that are associated with for, while, and do-while statements). These
logging statements often record the execution state during iterating
(e.g., recording the ith execution inside a for block) or variables
that are processed or defined in prior blocks. We also find that no
logging statements under this category are at error or fatal level.
All logging statements are at the level of info (13/25, 52.0%), debug
(6/25, 24.0%), or trace (6/25, 24.0%). In short, developers are more
likely to add logging statements in such blocks for debugging and
recording program execution.
IndexStatistics[] stats = getIndexStatistics(total);

...

for (IndexStatistics s : stats) {

LOG.info(" Object size " + s.itemSize() + " used=" + s.usedCount());

}

Category 4 (Method Declaration Block): Logging the start of amethod
(33/375, 8.8%).We find that some sampled logging statements reside
at the beginning of a method, mostly for recording the program
execution state or debugging purposes. These logging statements
record the start of the method execution (e.g., “Start to build the pro-
gram from JAR file.”) at the info (21/33, 63.6%), debug (8/33, 24.3%),
or trace (4/33, 12.1%) level. Different from other categories, we do
not find the location of logging statements in this category depend
on prior code in the method. However, we find that these logging
statements record the execution of some methods of which the
process is important to know and with some specific semantics in
the code (e.g., recovery(), perform(), and queue()), as shown in the
code snippet below.
public void perform() throws Exception

{

LOG.info(String.format("Performing action: Rolling batch restarting {} of

region servers", (int)(ratio * 100)));

List<ServerName> selectedServers = selectServers();

Queue<ServerName> serversToBeKilled = new LinkedList<>(selectedServers);

...

//code for performing server-killing related tasks

...

}

Category 5 (Method Declaration Block): Logging the end of a method
(27/375, 7.2%). In this category, the logging statements reside at
the end of a method, recording the successful method execution
(e.g., “Removed job graph from ZooKeeper”, as shown in the code
snippet below). We find that most of them (22/27, 81.5%) are at
the info level, and the rest are in debug (3/27, 11.1%), trace (1/27,
3.7%) and warn (1/27, 3.7%) level, which may show that such logs
are mostly for debugging and recording program execution. The
logging statement may record variable values that are declared
or modified in prior blocks when the method execution finishes.
Similar to Category 5, we find that the logging statements in this
category might reside in semantically similar methods of which the
execution is important to be recorded (e.g., shutdown(), delete(),
and remove()).
public void removeJobGraph(JobID jobId) throws Exception

{

checkNotNull(jobId, "Job ID");

String path = getPathForJob(jobId);

...

addedJobGraphs.remove(jobId);

//code for removing ZooKeeper job graph

...

LOG.info("Removed job graph {} from ZooKeeper.", jobId);

}

Category 6 (Method Declaration Block): Function logging in domain-
specific methods (29/375, 7.7%).We find that developers sometimes
insert logging statements in some domain-specific methods (e.g.,
handling a specific request) to record the execution of this method.
We also find that these methods are usually very short (i.e., within
10 lines of code). As shown in the example below, in the method
handleResponse() in Elasticsearch’s JoinHelper.java, there are only a
few lines of functional code statements but has a logging statement
recording the execution behavior of this method. Among the log-
ging statements in this category, 21/29 (72.4%) are at the info level
or below (i.e., debug or trace level) to record the methods handling
normal requests, and the rest 8/29 (27.6%) logging statements are
at the warn or error level to record the methods handling abnormal
situations (e.g., onFailure()). We also find that these short methods
might be semantically similar based on our manual observation
(e.g., share many common words such as handle and execute).
public void handleResponse(Empty response) {

pendingOutgoingJoins.remove(dedupKey);

logger.debug("successfully joined {} with {}", destination, joinRequest);

lastFailedJoinAttempt.set(null);

}

In summary, our findings show that there may be an implicit log-
ging guideline that developers follow in the studied systems. Both
syntactic and semantic information are important considerations
in such logging guidelines. In particular, we find that 76.3% (286/375,
combining Category 1, Category 2 and Category 3) of the sampled
logging statements are related to recording information in blocks
associated with syntactic information of the source code (e.g., try-
catch, branching, or looping blocks). These logging statements also
often record information (e.g., variable values or execution states)
that is related to prior blocks. We find that 23.7% (89/375, combin-
ing Category 4, Category 5 and Category 6) of the sampled logging
statements may be inserted based on the semantic information
(i.e., business logic) of the method inside the method declaration
block. These logging statements often record the start and end of
method execution, or record the execution of some domain-specific
methods (e.g., request handling or task execution).

By uncovering six categories of logging locations, we find that
both syntactic and semantic information are important con-
siderations in such logging guidelines. 76% of the sampled
logging statements are related to recording exception, branch-
ing, and program iteration; while 24% are related to recording
the start, end, or execution of certain methods.

4 AUTOMATICALLY SUGGESTING LOGGING
LOCATIONS AT THE CODE BLOCK LEVEL

Aswe find in Section 3, developers usually insert logging statements
to record the behavior or state of the program in blocks (e.g., excep-
tion handling in catch blocks or branch logging in if/else blocks).
We also find that some logging locations may be related to the
semantics of a method (e.g., recording the start of a certain method
execution). Hence, such syntactic and semantic information may
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compose implicit logging guidelines that developers follow when
deciding on logging locations. In this section, we seek to explore the
potential of automatically suggesting logging locations at the block
level. Such an automated approach might further assist developers
in making logging decisions and improving logging practice. Below,
we describe our approaches that extract block features and build a
deep learning model to suggesting logging locations.

4.1 Extracting Block Features
Identifying Logged Blocks. Our goal is to provide suggestions
on deciding blocks that require logging statements. We choose to
provide a suggestion at the block level because as we find in Sec-
tion 3 that many logging statements are recording the behaviour
or state of the program in blocks. In addition, blocks provide a
finer-grand suggestion which may be more actionable compared
to coarse-grand suggestions (e.g., method or file level) [61, 62]. We
analyze the source code by parsing the abstract syntax tree (AST)
of every method in the studied systems. Then, we identify the AST
nodes in a method that represent blocks, such as the block nodes
that are associated with if, for, and catch. Hence, each method may
contain multiple blocks. For the block nodes that we identified, we
then label them as either logged block or non-logged block by analyz-
ing if the block contains at least one logging statement. Specifically,
only the block that directly contains a logging statement is labelled
as a logged block. For example, as shown in Figure 1, block B0 (line 3
- 6) is labelled as a logged block because there is a logging statement
in line 4. Block B1 is labelled as a non-logged block, because the
logging statement in line 4 is not directly contained by block B1.
Table 1 shows the statistics of blocks in the studied systems. #LB
refers to the number of logged blocks, #NLB refers to the number of
non-logged blocks, and %LB is the percentage of logged blocks over
all the blocks. Note that there might be multiple logging statements
in a block, so the number of logged block is smaller than the number
of logging statements in each system. In general, we find that only
a small portion, i.e., 3.2% to 14.8% of the blocks contain logging
statements. Hence, accurately suggesting logging locations at
the block level is a challenging task.

As we find in Section 3, the locations of logging statements
may be influenced by either the syntactic, semantic, or both types
of information in source code. In order to obtain the features for
training deep learning models and to further study the effectiveness
of these features in suggesting logging locations, we then extract
the syntactic, semantic, and fused block-level features when we are
analyzing the source code of each block.
Extracting Block Features. In our manual study, we find that
logging statements often have dependencies with the preceding
code in the same method. For example, the arguments in the if
statement are processed or defined in the prior code (as shown in
Section 3). As also found in prior studies [25, 54], developers may
insert logging statements based on the execution flow prior to the
logging point.

Therefore, for each identified block, we analyze the source code
from the start of the method, in which the code block is located, to
the end of the block. This could also reflect developers’ sequential
workflow by suggesting whether or not a block needs a logging
statement when developers finish implementing the block [23]. For

Figure 1: An example of how we label code blocks and ex-
tract the tokens for generating the features. We illustrate
the tokens extracted from Code Block B0.
example, in Figure 1, for block B0, we consider the code statements
from line 1 to line 6. Similarly, for block B1, we consider the code
statements from line 1 to line 8. Specifically, for each code block
in a studied system, we find all the AST nodes from the start of
the method to the end of this block. Then for each AST node, we
record its type (e.g., MethodInvocation, VariableDeclaration, or
CatchClause), the associated semantic information (e.g., the name
of the variable declared in the VariableDeclaration node) as well
as the location (i.e., class and method, and the start line and end
line). We then extract three types of code block features using the
above-mentioned information from these AST nodes.

Below, we discuss the approaches that we use to extract syntactic,
semantic, and fused block features, respectively.

Syntactic Block Features: We extract the syntactic features that
represent the structural information from the AST nodes in code
blocks. We capture the syntactic information by extracting the
AST nodes that are related to the control flow of the code. We
exclude AST nodes, such as SimpleName (i.e., identifier name) and
SimpleType (i.e., identifier type), which do not contain structural
information of the code. For each block, we count the occurrence
of each AST node in the block and all preceding code in the same
method. At the end of the syntactic feature extraction, for each
block, we obtain a vector that represents the occurrence of each
structural AST node in the block and its preceding code. We call
each element in the vector as a token. Figure 1 shows an example
of the syntactic features for the B0 block, where we extract the AST
nodes from the feature scope.

Semantic Block Features: We extract the semantic features from
the textual information inside the code blocks. Prior studies found
that information such as variable names may capture the semantic
information of the code [16, 17, 33, 78]. Therefore, we process
variable names and invoked methods in the block as plain text.
For each block, we consider all the semantic information in the
block and in the preceding code in the same method. Note that we
exclude all reserved keywords in the programming languages, such
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Figure 2: The overall architecture of our approach.
as if, else, and for, to avoid capturing structural information. We
follow common source code preprocessing techniques: splitting
the words using camel case, converting all words to lower case,
and applying stemming [16, 48]. Figure 1 shows an example of the
semantic block features of the B0 block.

Fused Block Features: Developers may add logging statements
based on both the syntactic and semantic of the code. Therefore, in
addition to building separate models using the above-mentioned
syntactic and semantic features, we also combine both types of
information together (i.e., fused features). To obtain fused features
of code blocks, we build an unified corpus containing both syntactic
and semantic information of the source code by following a prior
study [42]. Specifically, we merge the syntactic and semantic fea-
tures in a block together, while keeping the original orders of those
AST nodes in the source code. Then, for each fused code block, we
obtain the vector representation similar to the process discussed
in other types of features. Figure 1 shows an example of the fused
code block features of the B0 block.

4.2 Deep Learning Framework and
Implementation

We formulate the process of suggesting logging locations as a bi-
nary classification problem. Given a block, we apply deep learning
models to suggest whether or not the block should contain a logging
statement. In this subsection, we discuss the overall architecture
and implementation of our deep learning model.
Overall Architecture. Figure 2 shows the overall architecture
of our approach. We first map our input vectors (i.e., syntactic,
semantic, and fused features) through an embedded layer. The
embedded layer learns the relationship and similarity among the
vectors in each block feature and processes each vector based on
integer encoding to probabilistically distributed representations.
We then employ a recurrent neural network (RNN) layer to model
the relationship between the logging decision of a block and the
vectors returned from the embedding layer. Finally, the output layer
of our deep learning model is a one-dimension dense layer with
the sigmoid activation function to suggest whether a block should
be logged or not. Below, we discuss the details of each layer.
Embedding Layer. After extracting the syntactic, semantic, and
fused features (i.e., in the forms of vectors, as illustrated in Figure 1),
we feed them to the embedding layer. The embedding layer cap-
tures the linear relationships among tokens in the input vector, and
outputs a set of new vectors, called word embeddings [49, 59]. Com-
pared to simple integer encoding or one-hot encoding which does
not consider the relationship among the tokens, word embeddings
can learn the similarities among tokens and return probabilisti-
cally distributed representations of the words (e.g., run and execute
might be similar in vector space).

RNN Layer. Since source code provides instruction on system
execution, there are dependencies between consecutive lines of
source code. For example, as we discussed in our manual study, the
condition variable in IfStatement may have dependency on prior
source code, because the variable is defined or processed priorly.
Hence, we follow prior studies [19, 27, 52, 75] and model source
code as sequential data (i.e., we consider the order of the source code
tokens in the data). We include a layer of Long Short Term Memory
(LSTM) in the deep learning model, which is a variant of RNN that
includes a memory cell and gate mechanisms in the recurrent unit
to preserve long term dependencies of the code [22, 28, 31, 35].
Output Layer. After the previous layers, the block features are still
high-dimensional vectors. In order to make a binary suggestion of
whether a block is logged or non-logged, we use a one-dimensional
dense layer with sigmoid activation function as the output layer of
our approach. This layer takes all outputs from the previous layer
to its unique neuron, then the neuron provides the final suggestion
(i.e., logged or non-logged) of this block.
Implementation and Training We use Keras [2] to implement
our deep learning model. For the embedding layer, we adopt Skip-
gram fromWord2vec [1] and set the dimension to 100 [48] to obtain
the word embeddings of each type of the three features separately.
For the RNN layer, we set the dimension of hidden states as 128 and
attach a dropout layer with a 0.2 dropout rate in order to reduce
the potential impact of overfitting and immoderate reliance on the
trained system [30, 57, 76]. We train our model for 100 epochs on
each studied system and set the batch size to 24. Because there is a
noticeable imbalance between the number of logged blocks and non-
logged blocks (overall only 3.2% to 14.8% blocks are logged blocks,
as shown in Section 4), for each studied system and each type of
code block features, we apply stratified random sampling [55] (i.e.,
ensure the random sample has the same distribution of classes as
the original data) to split the block features into training set (60%),
validation set (20%) and testing set (20%) [48, 75]. Note that we
remove the log-related statements when we are generating
the features to avoid biases in the suggestion results. Finally,
we upsample the logged block features in the training set after the
splitting process to mitigate the impact of data imbalance [7, 53].

5 EVALUATION
In this section, we evaluate our approach by introducing the evalu-
ation metrics and answering two research questions.

5.1 Evaluation Metrics
Given the features of a code block as inputs, our deep learning
model suggests if this block is logged or non-logged. To evaluate the
performance of our model, we use Balanced Accuracy, Precision,
Recall, and F-measure as our evaluation metrics.
Balanced Accuracy. Balanced accuracy is widely used by prior
studies to evaluate model performance on imbalanced data [41, 78].
It calculates the average of True Positive Rate (i.e., how many sug-
gested logged blocks are correct) and True Negative Rate (i.e., how
many suggested non-logged blocks are correct). Balanced accuracy
is computed as:

BalancedAccuracy = (
TP

TP + FN
+

TN

TN + FP
)/2
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Table 2: The results of suggesting logging locations using syntactic (Syn.), semantic (Sem.), and fused (Fus.) block features.
Balanced Accuracy Precision Recall F1

Systems Syn. Sem. Fus. RG. Syn. Sem. Fus. RG. Syn. Sem. Fus. RG. Syn. Sem. Fus. RG.
Cassandra 83.0 65.8 65.2 49.8 51.7 37.1 31.8 3.0 56.6 33.7 33.2 3.5 54.0 35.3 32.5 3.2
Elasticsearch 81.9 67.7 69.9 50.1 52.0 29.7 24.3 3.6 55.6 38.6 44.7 3.7 52.9 33.6 31.5 3.6
Flink 83.0 74.2 75.0 50.0 58.9 36.0 37.6 5.6 70.9 54.4 55.6 8.7 64.3 43.3 44.9 6.8
HBase 80.5 69.7 72.9 49.9 56.1 45.2 43.2 4.8 63.4 41.9 49.1 5.0 59.5 43.5 45.9 4.9
Kafka 74.4 68.3 67.5 50.1 41.5 30.8 37.4 9.5 58.2 48.5 49.0 11.0 47.3 37.7 42.5 10.2
Wicket 84.7 76.6 72.2 50.0 45.7 28.1 26.9 3.7 72.3 58.5 49.2 3.2 56.0 37.9 34.8 3.4
Zookeeper 72.9 64.6 70.5 49.8 48.3 39.6 47.5 12.8 55.6 39.2 50.3 16.8 51.7 39.4 48.9 14.5
Average 80.1 69.6 70.5 50.0 50.6 35.2 35.6 6.1 61.8 45.0 47.3 7.4 55.1 38.7 40.2 6.7

Note: RG. represents the result of the baseline. For each system and for each evaluation metric, the block feature that yields the best performance is marked in bold. All the numbers represent percentage.

where TP, TN, FP and FN refer to True Positive, True Negative, False
Positive (i.e., suggested as a logged block but is actually a non-logged
block) and False Negative (i.e., suggested as a non-logged block but
is actually a logged block), respectively. A high balanced accuracy
means both the majority class (i.e., non-logged block) and minority
class (i.e., logged block) are accurately suggested.
Precision. In our study, precision represents the ability of our
approach to correctly suggest logged blocks (i.e., how many logged
blocks suggested by our model are correct). Specifically, precision
is defined as:

Precision =
TP

TP + FP

Note that only positive labels (i.e., logged block) are considered for
this metric (i.e., the performance on non-logged data does not affect
our calculation of precision). Hence, a high precision means that
most of the suggested logged blocks are indeed logged.
Recall. Recall represents the ability of finding logged blocks from
the data set (i.e., how many logged blocks can be suggested by our
approach). It is computed as:

Recall =
TP

TP + FN

Same as precision, only positive labels are considered for this metric.
A higher recall means that we can identify more code blocks that
need to be logged.
F1 Score. F1 score is a metric that considers both precision and
recall. It is computed as:

F1 = 2 ∗ (
Precision ∗ Recall

Precision + Recall
)

F1 score balances the use of precision and recall and provides a
more realistic measure of the performance by using both of them.
A high F1 score means that we can both accurately and sufficiently
suggest logged blocks.

5.2 Case Study Results
In this subsection, we present the results for our research questions
(RQs). For each RQ, we describe the motivation, approach, and
results and discussions.
RQ1: How effective are different block features when sug-
gesting logging locations?
Motivation. Deciding where to log is a challenging practice [25,
41, 78]. As we find in our manual study, there exist some common
characteristics of where developers insert logging statements. Log-
ging location might be related to either the syntactic information,
semantic information of the code, or both. In this RQ, we investi-
gate the performance of our deep learning models and how each
block feature performs in suggesting logging location. Our finding

may help validate our manual study results that there may be an
implicit logging guideline that developers follow, and identify the
important features in suggesting logging location. Specifically, we
split this RQ into three sub-RQs:
RQ1.1: What is the performance of the three block features when
suggesting logged blocks?
RQ1.2: Do different block features capture different information?
RQ1.3: What are the suggestion accuracies for different categories
of logged blocks?
Approach. We train our deep learning framework on the training
data by following the process discussed in Section 4.We conduct our
experiments on the same systems that we used in our manual anal-
ysis. For each studied system, we train three models using different
types of block features (i.e., syntactic, semantic, and fused). Finally,
we evaluate the model performance on the testing set using the
above-mentioned evaluation metrics. Note that we pre-determined
the training (60%), validation (20%), and testing (20%) data set before
extracting the block features. Hence, we use the same set of code
blocks for each system when evaluating the syntactic, semantic and
fused blocks features.
RQ 1.1: What is the performance of the three block features when
suggesting logged blocks? To evaluate the effectiveness of our mod-
els, we compare the results of the models trained using three block
features with a baseline. Since there is no prior study that suggests
logging locations at the block level, we use Random Guess (RG) as
our baseline, which is commonly used by prior studies [18, 26, 46,
48, 60, 63, 64]. Given a block in a studied system, Random Guess
suggests whether this block should be a logged block or non-logged
block based on the proportion of logged block in this system. For
example, 10% of the code blocks in Kafka are logged block as shown
in Table 1. Then, for each code block being tested, there is a 10%
chance for Random Guess to suggest it as a logged block and a
90% chance to suggest it as an non-logged block. We repeat the
Random Guess 30 times (as suggested by previous studies [18, 26])
for each system to reduce the biases. We report the average values
of the four evaluation metrics computed based on the 30 times of
iterations as the result of Random Guess.
RQ 1.2: Do different code block features capture different information?
To further investigate if different block features capture different
information in the source code, we examine the overlap and dif-
ferences of the results generated from the models trained by using
three block features. For each type of block feature, we collect the
prediction results on the testing data of seven studied systems,
analyze the True Positives, True Negatives, False Positives, and
False Negatives, and compute the percentage of overlap among the
syntactic, semantic and fused block features.
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Figure 3: Venn diagrams of TP, TN, FP and FN of the three
block features. Each number represents the percentage of
the corresponding intersecting set out of the union set.

RQ 1.3: What are the suggestion accuracies for different categories of
logged blocks? Since three code block features may capture different
information in the source code, theymight have varied performance
when predicting different categories of logged blocks. Hence, we
further evaluate the performance of the three block features on the
different categories of logging statements (Section 3). We report
the suggestion results based on the type of blocks that the logging
statement is associated with (i.e., try-catch block, branching block,
looping block, and method declaration block).
Results and Discussions.
RQ 1.1. Table 2 presents the results of the models built using the
Syntactic (Syn.), Semantic (Sem.) and Fused (Fus.) code block fea-
tures, and the baseline Random Guess (RG.). Overall, for all the
evaluation metrics, models trained by using the block features out-
perform the baseline. The precision of RG ranges from 3.0% to 12.8%,
recall ranges from 3.2% to 16.8%, and the balanced accuracy ranges
from 49.8% to 50.1%. Note that RG makes suggestion based on the
distribution of training data, the distribution of logged and non-
logged blocks in the testing data is the same as the original data (as
shown in Table 1). Therefore, given sufficient trails, the balanced ac-
curacy of RG will be close to 50%. We find that models trained using
the syntactic block features have the best performance compared
to other block features across all studied systems. In particular,
the balanced accuracy of semantic and fused features ranges from
64.6% to 76.6%, while for syntactic feature it is over 72.9% on all
the studied systems (with an average of 80.1%). The average pre-
cision ranges from 24.3% to 47.5% when using semantic and fused
block features, and the average recall ranges from 33.2% to 58.5%.
In comparison, the average precision and recall on syntactic feature
are 50.6% and 61.8%, respectively. The results show that syntactic
information might play an important role in logging decisions and
may be leveraged to suggest logging locations.
RQ 1.2. Figure 3 shows the percentage overlap on (a) True Posi-
tive, (b) True Negative, (c) False Positive, and (d) False Negative
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Figure 4: The (a) Balanced Accuracy, (b) Precision, (c) Recall,
and (d) F1 of the models trained from three block features
when applied on different types of blocks.

among the models trained using syntactic, semantic, and fused
block features. Note that Red, Green, and Blue circle represents the
suggestion results of syntactic, semantic, and fused block features,
respectively. Each number represents the percentage of the corre-
sponding intersecting data set (e.g., for TP, 42.0% represents the
common set of True Positive among Syn., Sem. and Fus.) out of the
entire set (e.g., for TP, the entire data set is the set that combines
the TP from syntactic, semantic and fused altogether across all
studied systems). There is a 42.0% overlap in TP among the three
features, while syntactic covers most of the TPs (79.9% out of all the
TPs) compared to semantic (62.3%) and fused (66.5%) block features.
Only 20.1% of the TPs are missed by syntactic but captured by two
other block features. For TNs (i.e., correctly suggest as non-logged
block), almost all (93.9%) are overlapping among the three block
features. The results show that there is a high level of agreement
among the models when suggesting the non-logged blocks. For FPs,
there is no considerable overlap among the three features (13.3%).
For FNs, syntactic has the lowest number of FNs (63.2% of the FNs
are covered by syntactic, compared to 80.2% covered by semantic
and 76.2% covered by combined feature). The results show that
different block features might capture different information from
source code. As semantic and fused block features still capture TPs
that are missed by syntactic block feature (20.1%), future work could
further investigate how to better combine the two sources of infor-
mation to provide a sufficient and accurate suggestion. Moreover,
we manually investigate a sample of FPs and FNs. We identify their
characteristics and find that many of them are not indeed FPs and
FNs (details in Section 6).
RQ 1.3. Figure 4 shows the (a) Balanced Accuracy, (b) Precision, (c)
Recall, and (d) F1 of the models when suggesting on different types
of blocks associated with the categories in Section 3. Overall, the
three block features have a similar trend for the results on different
types of blocks. Syntactic features have the best results for all types
of blocks on all the evaluation metrics. Among the four types of
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Table 3: The results of cross-system logging locations suggestion using syntactic block features.
Balanced Accuracy Precision Recall F1 Fleiss’ Kappa

Systems Within Cross Ratio Within Cross Ratio Within Cross Ratio Within Cross Ratio logged non-logged
Cassandra 83.0 67.8 (σ 3.0) 81.7 51.7 37.5 (σ 9.1) 72.6 56.6 41.9 (σ 7.8) 74.1 54.0 39.1 (σ 7.3) 72.5 0.47 (Mod.) 0.90 (Sub.)
Elasticsearch 81.9 65.5 (σ 4.5) 80.0 52.0 36.2 (σ 11.5) 69.7 55.6 42.0 (σ 5.2) 75.6 52.9 37.8 (σ 7.0) 71.5 0.45 (Mod.) 0.90 (Sub.)
Flink 83.0 70.2 (σ 3.0) 84.6 58.9 30.5 (σ 8.8) 51.8 70.9 49.2 (σ 9.1) 69.4 64.3 36.7 (σ 7.6) 57.1 0.46 (Mod.) 0.91 (Sub.)
HBase 80.5 67.5 (σ 2.3) 83.9 56.1 37.5 (σ 4.8) 66.9 63.4 41.8 (σ 6.7) 66.0 59.5 40.5 (σ 4.6) 68.1 0.49 (Mod.) 0.92 (Sub.)
Kafka 74.4 65.7 (σ 4.1) 88.4 41.5 32.0 (σ 4.2) 77.2 58.2 42.5 (σ 6.8) 73.1 47.3 36.2 (σ 3.9) 76.6 0.42 (Mod.) 0.88 (Sub.)
Wicket 84.7 67.8 (σ 3.3) 80.1 45.7 40.3 (σ 5.2) 88.2 72.3 42.1 (σ 8.0) 58.3 56.0 40.8 (σ 4.7) 72.9 0.43 (Mod.) 0.85 (Sub.)
Zookeeper 72.9 66.8 (σ 2.7) 91.7 48.3 33.6 (σ 6.2) 69.6 55.6 44.8 (σ 5.6) 80.6 51.7 38.3 (σ 5.8) 74.1 0.37 (Fair) 0.81 (Sub.)
Average 80.1 67.3 84.0 50.6 35.4 70.0 61.8 43.5 70.4 55.1 38.6 70.0 0.44 (Mod.) 0.88 (Sub.)
Note:Within shows the results of within-system suggestion. Cross shows the average results and the standard deviation (σ ) when applying the models trained using other systems. Ratio shows the

percentage of Cross over Within. Fleiss’ Kappa shows the degree of agreement on the suggestion result of the cross-system models on logged and non-logged blocks. Mod. and Sub. represent moderate and
substantial agreement [37], respectively.

blocks, logging statements associated with try-catch blocks have
the best results on all the evaluation metrics (85.8% balanced ac-
curacy, 75.2% precision, 79.1% recall and 77.2% F1 for syntactic).
As also found in prior studies [25, 78], logging statements in such
blocks may be better defined. We also find that logging statements
associated with branching blocks have a good overall suggestion
result. In contrast, the results of suggesting logging statements as-
sociated with looping and method declaration blocks are relatively
lower (balanced accuracy ranges from 63.2% to 69.0%, and F1 ranges
from 22.1% to 23.8%). Although the three block features have a sim-
ilar trend of results on different types of blocks, syntactic features
are better than the other two for suggesting logging locations on all
the studied types of blocks. Moreover, our study shows that there
is a clearer pattern of inserting logging statements in try-catch and
branching blocks (i.e., higher precision and recall). Practitioners
may prioritize reviewing and deciding the given logging sugges-
tions in such blocks. In addition, future research may investigate
other sources of information in order to better assist in making
logging decisions for looping and method declaration blocks.

All the trained models noticeably outperform the baseline.
Among the three types of block features, models trained using
syntactic block features achieve the best results on all the
evaluationmetrics. The results show that syntactic information
might be leveraged to suggest logging locations.

RQ2: Are the trained models transferable to other systems?
Motivation. When working on a new system, developers may en-
counter difficulties when deciding logging locations. Different from
matured systems with a long period of development and mainte-
nance history, developers working on new systems may not have
sufficient knowledge on deciding where to log. Therefore, in this
RQ, we investigate whether different systems share similar implicit
guidelines of logging locations. Our findings may provide evidence
on the existence of common logging characteristics across systems
and help future research derive a universal logging guideline. In
particular, we study two sub-RQs:
RQ2.1:What is the effectiveness of cross-system logging sugges-
tion?
RQ2.2: What is the level of suggestion agreement on cross-system
models?
Approach. In this RQ, we study if logged blocks share similar syn-
tactic block features by doing a cross-system transferable learning.
Namely, we study if a model that is trained using the syntactic
features from one system can be used to suggest logging location
in another system. We choose to study syntactic block features

because they are extracted from the AST nodes in the source code,
which are common across all Java systems, and they have the best
performance compared to the other two block features as shown
in RQ1. Moreover, since the syntactic block features capture the
underlying code structure [33], a high cross-system suggestion
accuracy may show the potential of deriving a logging guideline
based on code structure in future studies.
RQ 2.1: What is the effectiveness of cross-system logging suggestion?
For each studied system, we build a model using the syntactic block
features and apply the model on each of the other systems. For
example, we train a model using the syntactic block features in Cas-
sandra, and apply the model on six other studied systems. Finally,
we compute and report the average balanced accuracy, precision,
recall, and F-measure of the cross-system logging suggestion.
RQ 2.2: What is the level of suggestion agreement on cross-system
models? To study whether the models trained using different sys-
tems capture similar information (i.e., the relationship between the
syntactic features and logging location), we analyze the agreement
level of cross-system suggestion results. We separately examine the
suggestion agreement of the cross-system models on logged blocks
and non-logged blocks. Namely, for each studied system, we apply
the models trained using other systems, and study the suggestion
results of the cross-system models on the true logged blocks and
the true non-logged blocks, respectively. In particular, we compute
Fleiss’s Kappa to study the agreement among the suggestion re-
sults from cross-system models [24]. Fleiss’s Kappa computes the
inter-rater agreement among a fixed set of raters (i.e., suggestion
results from different cross-system models). A higher level of agree-
ment may show that the syntactic block features have very similar
relationships with logged or non-logged blocks across all studied
systems.
Results and Discussions.
RQ 2.1. Table 3 shows the results of our cross-system suggestions
using syntactic block features. In general, we find that the results of
cross-system suggestions are lower than within-system suggestions
using syntactic block features. However, the results are still com-
parable to within-system suggestions using semantics and fused
block features. For balanced accuracy, the cross-system suggestions
achieve over 80% (i.e., Ratio column in Table 3) of the correspond-
ing within-system suggestion using syntactic block features. On
average, the balanced accuracy ranges from 65.5% to 70.2%, with
standard deviations range from 2.3 to 4.5. For precision, recall, and
F1, the cross-system suggestions achieve 51.8% to 88.2% ratio of the
within-system suggestion results. In short, even though we find that
the results of cross-system suggestion are slightly lower than those
of within-system, we may still achieve a reasonable performance.
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Similar to RQ1, we also manually study a sample of FPs and FNs
from the results of RQ2 (details in Section 6).
RQ 2.2. Table 3 also shows the Fleiss’s Kappa [24] for each studied
system. For logged blocks, the agreements are moderate in six stud-
ied systems. The agreement level is fair in Zookeeper, but the value
is also close to the threshold of a moderate agreement (i.e., 0.41 [24]).
Our results show that the models trained using the syntactic block
features may share certain underlying properties. Namely, there
are some commonalities in the code structure on how developers
decide logging locations across the studied systems. For non-logged
blocks, the agreements are substantial across all studied systems.
In short, our findings show that developers are rather consistent on
deciding which blocks do not need logging statements. Although
there are some inconsistencies across the studied systems, we may
still apply cross-system models to help suggest logging locations
in other systems.

We find that cross-system logging location suggestion achieves
a reasonable performance compared to within-system sugges-
tion (i.e., 84% of the within-system balanced accuracy). We also
find that the cross-system models have moderate agreements
on logged blocks and substantial agreements on non-logged
blocks. Our results show that developers in different systems
may follow certain implicit guidelines on deciding logging
locations.

6 DISCUSSION
As shown in the RQs, our models can provide promising results of
suggesting logging locations. To further inspire future studies and
better assist practitioners, we conduct a manual study to understand
the FPs and FNs in the suggestion results. For each studied system
in RQ1 and for each of the three models (i.e., Syntactic, Semantic,
and Fused, simplified as Syn., Sem. and Fus.), we select the top-
five FPs and FNs for our manual study, ranked by their suggested
probabilities of being logged and non-logged, respectively (a total of
105 FPs and 105 FNs). For the cross-system models in RQ2, we also
select the top-five FPs and FNs from each system (a total of 35 FPs
and 35 FNs).
False Positives. For Syn. in RQ1, we find that 25/35 of the studied
FPs are actually TP. The code block either contains some other
types of print statements to record the execution information (e.g.,
System.out.print()), or contains only one child block and has no
other code statements, and the child block contains a logging state-
ment. For Sem., Fus., and cross-system models, we also find 15/35,
16/35, and 18/35 cases that belong to this category, respectively. For
the remaining studied FPs, the suggestions are made when the code
block is at the beginning of a method (9 cases for Syn., 12 for Sem.,
10 for Fus., 16 for cross-system models), or in complex code with
multiple nested blocks (1 case for Syn., 8 for Sem., 9 for Fus., 1 for
cross-system models).
False Negatives.We find that 15/35 of the studied Syn. FNs may
not truly be FN. Similar to the situation in FP that a code block only
contains a logged child block and has no other code statements, the
child block is suggested as a non-logged block and thus becomes
an FN. For Sem., Fused. and cross-system models, we find 7/35,
6/35, and 15/35 cases that belong to this category. We also find that

for 4/35, 3/35, 3/35 and 5/35 of the studied FNs from Syn., Sem.,
Fus. and cross-system models, they are blocks that have many very
similar sibling blocks nearby (e.g., many similar if blocks having
similar structures), while only the FN cases here contain logging
statements. For the remaining studied FNs, similar to what we find
in FPs, they locate at the beginning of a method (15 cases for Syn, 18
for Sem., 14 for Fus., 14 for cross-system models), or in complicated
code structure with multiple nested code blocks (1 case for Syn., 7
for Sem., 12 for Fus., 1 for cross-system models).

Our findings show that the actual performance of our model
may be even better due to the diverse nature of how developers
write logging code. We also find that it may be more difficult to
suggest a logging statement at the beginning of a method due to
the lack of prior information in the code block.

7 THREATS TO VALIDITY
Construct Validity. Our approach presumes that the training data
has high-quality source code and follow good logging practice.
However, there exist no industrial standards guiding developers
to write logging statements. In this paper, we choose seven large-
scale, well-maintained systems with different sizes, across various
domains to conduct the study. They are commonly used in prior
log-related studies and are considered as following good logging
practice [10, 11, 38, 46]. We evaluate our models on the test data set
of each studied system. Different test data set might lead to very
different results. To mitigate the fluctuation caused by different test
data set, we apply stratified random sampling by following prior
studies [48, 55, 75] to split the data set and ensure each randomly
sampled data set has the same distribution of labels as the original
data.
Internal Validity.We conduct manual studies to investigate the
characteristics and uncover the categories of logging locations. To
avoid biases, the authors examine the data independently. For most
of the cases, the authors reach an agreement. Any disagreement
is discussed until a consensus is reached with a substantial-level
agreement (Cohen’s Kappa 0.86) [56]. Involving third-party log-
ging experts to verify our results might further reduce this threat.
Different parameters used in the neural networksmight affect the ef-
fectiveness of the trained models. We follow prior studies [48, 75] to
set the parameters for our deep learningmodels. Themodels trained
using our approach might not be optimal on some of the evaluation
metrics (e.g., an average F1 score of 66.7 on syntactic code block
features). Future study may further improve the performance of
our approach and provide a more comprehensive perspective of the
suggestion results by surveying software engineering practitioners.
We use word embeddings [49, 59], which is widely used by prior
studies [48, 75] as the distributed representations of source code.
Future study may consider other code representation approaches
(e.g., code2vec [6, 34]) to examine the performance on suggesting
logging locations.
External Validity.We conducted our study only on seven large-
scale open source systems. However, we selected the studied sys-
tems in various domains and sizes (from 97K to 1.5M LOC as shown
in Table 1) in order to improve the representativeness of our stud-
ied systems. Our studied systems are all implemented in Java. The
results and models may not be transferable to systems in other
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programming languages. Future studies should validate the gen-
eralizability of our findings and the transferability of our models
in systems that are implemented written in other programming
languages.

8 CONCLUSION
In this paper, we aim to tackle the challenges that developers might
encounter when deciding logging locations by first conducting a
comprehensive manual study. We uncover six categories of logging
locations and find that developers usually insert logging statements
to record execution information that happens in various types of
code blocks. We propose a deep learning based approach to provide
finer-grained (i.e., at the code block level) suggestions on logging
locations. Our approach achieves promising results on suggesting
logging locations in both within-project and cross-project predic-
tions. Our results highlight the potential of providing finer-grained
suggestions on logging locations by leveraging syntactic informa-
tion in the source code, and such suggestions may be shared across
systems. Future studies could explore a more advanced way of com-
bining syntactic and semantic information in the source code, in
order to provide better suggestions on logging locations.
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