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ABSTRACT

Performance is one of the important aspects of software quality.
Performance issues exist widely in software systems, and the pro-
cess of fixing the performance issues is an essential step in the
release cycle of software systems. Although performance testing is
widely adopted in practice, it is still expensive and time-consuming.
In particular, the performance testing is usually conducted after the
system is built in a dedicated testing environment. The challenges of
performance testing make it difficult to fit into the common DevOps
process in software development. On the other hand, there exist a
large number of tests readily available, that are executed regularly
within the release pipeline during software development. In this
paper, we perform an exploratory study to determine whether such
readily available tests are capable of serving as performance tests.
In particular, we would like to see whether the performance of these
tests can demonstrate performance improvements obtained from
fixing real-life performance issues. We collect 127 performance
issues from Hadoop and Cassandra, and evaluate the performance
of the readily available tests from the commits before and after the
performance issue fixes. We find that most of the improvements
from the fixes to performance issues can be demonstrated using
the readily available tests in the release pipeline. However, only a
very small portion of the tests can be used for demonstrating the
improvements. By manually examining the tests, we identify eight
reasons that a test cannot demonstrate performance improvements
even though it covers the changed source code of the issue fix. Fi-
nally, we build random forest classifiers determining the important
metrics influencing the readily available tests (not) being able to
demonstrate performance improvements from issue fixes. We find
that the test code itself and the source code covered by the test are
important factors, while the factors related to the code changes in
the performance issues fixes have a low importance. Practitioners
may focus on designing and improving the tests, instead of fine-
tuning tests for different performance issues fixes. Our findings
can be used as a guideline for practitioners to reduce the amount
of effort spent on leveraging and designing tests that run in the
release pipeline for performance assurance activities.
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1 INTRODUCTION

Performance is one of the most important aspects of software qual-
ity. Performance can directly affect the user experience of large-
scale systems, such as Amazon, Ebay, and Google [33]. A Prior
study finds that field issues reported in such systems are more as-
sociated with the performance of the system, instead of functional
issues [50].

Performance issues exist widely in software systems [26], and are
difficult to avoid during the software development processes [38].
The performance issues have various effects on the system. Some
lead to high resource (like CPU or memory) utilization, and some
can cause a long response time to user requests. An example perfor-
mance issue excerpt from Hadoop issue tracking system 1 describes
that when NetworkTopology calls add() or remove(), it calls toString()
for LOG.debug() which requires extra resources. As indicated in the
issue report, the toString() method is used for logging messages,
which can lead to the unnecessary slowdown of the operation and
extra resource utilization.

Performance testing is challenging. It is often an expensive and
time-consuming process [3, 25]. Performance tests often need to run
with carefully designed sophisticated test plans, on top of the sup-
port of special software (like JMeter [1]) and are executed for a long
period of time (days) [25]. On the other hand, such performance
tests typically exercise the entire system as a whole instead of an
optimized “Targeted Therapy”. In particular, such long-running and
un-targeted performance testing is difficult to fit into the widely
adopted DevOps process, when releases are frequent and contain
smaller changes between two releases.

On the other hand, there exist a large number of tests that are typ-
ically executed regularly during every build in the release pipeline
of software development [49]. For instance, in a recent release of
Cassandra, more than 500 tests are executed by default in a regular
build process during the release pipeline; while more than 4,000
tests are executed in a recent release of Hadoop2. Prior studies find
that such tests are often complex, covering various scenarios of the

1https://issues.apache.org/jira/browse/HADOOP-14369
2https://github.com/apache/hadoop/releases/tag/rel/release-3.1.2
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usage of the software [4, 5, 40]. More importantly, these tests are
readily available and are executed by default on a regular basis.

Due to the expensive performance testing as well as the wide
availability and maturity of tests that run in the release pipeline,
recent research has been advocating the use of such tests in per-
formance assurance activities[11, 22, 23, 45]. However, there exists
little knowledge about to what extent can the tests in the release
pipeline behave as performance tests. Therefore, in this paper, we
study the use of the readily available tests in the release pipeline
of two open-source projects, i.e., Hadoop and Cassandra, as per-
formance tests. We identify 127 performance issues that are fixed
in the two subject systems and the snapshots of the source code
before and after the fix of each performance issue. By evaluating
the performance of the tests with the snapshots of the source code,
we aim to answer the following research questions3:

RQ 1: Can the readily available tests from the release pipeline

demonstrate performance improvements from performance

issues fixes?

Most of the performance improvements after an issue fix
can be demonstrated by at least one test. However, for each
performance issue, only a very small (9.2% and 20.6%) portion
of the tests can demonstrate the performance improvements.

RQ 2: What are the reasons that some tests in the release pipeline

cannot be used as performance tests?

We identify eight reasons that a test from the release pipeline
cannot demonstrate performance improvements from a per-
formance issue fixes. The reasons can be used as a guideline
for practitioners to design micro-performance tests.

RQ 3: What are the important factors for a test to be useful as a

performance test?

We build classifiers to model whether a test can demonstrate
the performance improvements of a particular performance
issue. By exploring the important factors in our classifiers,
we find that the factors related to the test itself and the cov-
ered source code of the test are important in the classifiers.
On the other hand, the factors related to the code changes
in the performance issue fixes have a low importance. Our
results imply that practitioners may focus on designing and
selecting tests, instead of optimizing tests especially for dif-
ferent performance issues.

Our findings demonstrate the capability and the challenges of
using the readily available tests from the release pipeline in perfor-
mance assurance activities. Our paper calls for future research that
assists in designing and selecting tests that can be used in various
(e.g., functional and non-functional) scenarios for the development
of software systems.

Paper organization. The rest of this paper is organized as fol-
lows: Section 2 presents the prior research that is related to this
paper. Section 3 presents our approach for collecting the perfor-
mance data from the readily available tests and manual labelling
with test the performance metrics. Section 4 presents our three
research questions and our results to answer the three research
questions. Section 5 presents the threats to the validity of our study.
Finally, Section 6 concludes this paper.

3The data from our study is shared at https://github.com/senseconcordia/ICSE2020-
Performance

2 RELATEDWORK

In this section, we discuss the prior research that is related to this
paper.
Empirical studies on performance issues

Empirical studies are conducted in order to gain a deep under-
standing of the nature of performance issues. Jin et al. [26] con-
ducted an empirical study on 109 real-world performance issues
that are collected from five representative software projects. Za-
man et al. [54] study a random sample of 400 performance and
non-performance issues from Mozilla Firefox and Google Chrome.
Huang et al. [24] study 100 randomly selected real-world perfor-
mance regression issues from three open source systems. Based
on the study results, prior research found that that it is difficult to
reproduce performance issues and more time is spent on discussing
performance issues than other kinds of issues [54]. Therefore, au-
tomated approaches are designed in order to assist in detecting
performance issues [26] and prioritizing performance tests [24]
based on the study results. Prior research illustrates the importance
of addressing performance issues in practice. Our work can be
adopted by practices in tandem with the prior research on the topic
of performance issues.
Performance issues detection

Prior research builds predictive models in order to predict per-
formance issues [30, 52]. Lim et al. [30] formulate the performance
issue identification as a Hidden Markov Random Field based cluster-
ing problem. Xiong et al. [52] leverage statistical models to model
the system performance in the cloud. Luo et al. [31] propose a recom-
mendation system, called PerfImpact to identify code changes that
may potentially cause performance regressions. Such approaches
are applied with a new version of the software in order to detect
performance issue. However, such prior research on performance is-
sue modeling depends on a large amount of performance data with
complex modeling techniques. Such approaches, although proven
to be effective, are difficult to adopt in practice [6], due to their extra
overhead and the required resources. Moreover, such approaches
are often conducted at the last stage of the release. Leveraging
these approaches to detect every performance issue is difficult and
impractical. Therefore, our findings in this paper may complement
existing approaches in order to detect performance issue fixes more
frequently during the rapid development processes.
Micro-scale performance tests

Extensive prior research has proposed automated techniques to
design, execute and analyze large-scale performance testing [25].
Due to the complexity and the resources needed for such large-scale
performance testing, in recent years, research has been conducted
in order to study and design performance testing in a small scale
(micro-scale performance test).

Leitner et al. [29] conduct a study on 111 open-source java
projects to understand the state of art of performance testing. Sim-
ilarly, Stefan et al. [45] conduct a study on the practices of using
performance unit testing frameworks, including Caliper, ContiPerf,
Japex, JMH, JunitPerf. Both studies show that most of the perfor-
mance tests are smoke tests and the projects often use JUnit to
test the performance combined with functional test; while only few
open source projects use any performance unit testing framework.
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Figure 1: An overview of our case study setup and performance data collection.

These prior papers motivate our work in order to support a more
flexible and low-friction performance testing practice.

Approaches are designed to improve the existingmicro-performance
testing. Bulej et al. [11] present a statistic approach to express per-
formance requirements on unit testing. In addition, Horký et al. [23]
propose an approach to use performance unit tests to increase per-
formance awareness.

The prior research on micro-performance testing motivates the
need of knowing the effectiveness of the readily available tests in
performance assurance scenarios. Our findings can complement
prior research in order to advance the practice of testing system
performance in a targeted manner.

3 CASE STUDY SETUP

In this section, we first present the subject systems of our study and
the collection of performance issues from the subject systems. Then
we present our approach and experiment to collect performance
data and we also present the experimental environment. Figure 1
shows an overview of these steps.

3.1 Subject systems

We base our study on two open-source projects, Hadoop and Cas-

sandra. Hadoop is a distributed data processing system. Cassandra
is a free and open-source distributed NoSQL database management
system. We choose Hadoop and Cassandra since they are highly
concerned with their performance and have been studied in prior
research in mining performance data [15, 46].

3.2 Collecting performance issues

We first collect the performance issues in the two subject systems.
We follow an approach similar to the one used in prior studies [54]
for performance issues collection. In order to ensure that there
exists a performance improvement after the issue fixes, we only
focus on the issue reports that have the type Bug and are labeled
as Resolved or Fixed.

We use keywords as the heuristics to identify performance issue
reports. We start by using the keywords that are used in prior

research [26, 54]. In order to avoid missing performance issues, we
expand our list of keywords by using word embedding. We adopt
a word2vec model trained over 15GB of textual data from Stack

Overflow posts [19] to identify the words that are semantically
related to the existing list of keywords. Examples of the uncommon
words that related to performance issues include “sluggish”, and
“laggy”, which may not be used in previous research, but can help
collect performance issue reports.

By expanding the list of keywords, we gathered a total of 953
and 966 issue reports in Hadoop and Cassandra, respectively 4.
Intuitively, not all issue reports are indeed related to performance
issues. Therefore, the first and last authors manually examine every
issue report independently to confirm that the issue report is related
to a performance issue. The two authors achieve an agreement
of 73.9%. Afterwards, the two authors discuss each disagreement
to reach consensus. When the consensus cannot be reached, a
third author examines the issue report and makes a final decision.
Finally, we collect 88 and 121 performance-related issue reports in
Hadoop and Cassandra, respectively. The amount of issue reports is
comparable to prior study on performance issues [24, 26, 54].

3.3 Labelling performance issues with
performance metrics

Each performance issue has its corresponding performance metrics
that can be measured and used to demonstrate the symptom of the
performance issue and the improvement after fixes. For example,
issue HADOOP-6502, has a description of “. . . DistributedFileSys-
tem#listStatus is very slow when listing a directory with a size of
1300 . . . ”. Based on the description, we know that the performance
issue can be observed by measuring elapsed time of the execution
and the elapsed time should decrease after the issue is fixed. The
first two authors manually label all of the collected performance
issues with their corresponding performance metrics. In total, we
identify five performance metrics in our labelling of the perfor-
mance issues in our subject systems, i.e., elapsed time, CPU usage,

4The time period of the data collection is from the start date of each project to the day
we collected the issues (17, September 2018).
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memory usage, I/O read and I/O write. For Hadoop, 70, 19, 17, 6,
and 4 issues are labeled with elapsed time, CPU usage, memory
usage, I/O read and I/O write, respectively. 77, 32, 29, 33, and 29
issues from Cassandra are labeled with elapsed time, CPU usage,
memory usage, I/O read and I/O write, respectively. Note that an is-
sue report can have performance issues with multiple performance
metrics. The two authors have an agreement of 89.0% on the la-
belling and a similar approach as the last step is followed when
labelling disagreement occurs.

3.4 Evaluating the fixes of performance issue

In this subsection, we present how dowe study the use of the readily
available tests from the release pipeline to evaluate performance.
We first identify the performance issue fixing commits, in order to
identify the two snapshots of the source code, i.e., before and after
fixing each performance issue. We then present the selection and
execution of the associated tests that cover the issue fixing source
code. Finally, we present the performance evaluation for each test
in order to study whether each test can demonstrate a performance
improvement for the performance issue fixes.

3.4.1 Identifying performance issue fixing commits. We clone the
git version control repositories of our subject systems, and use git
log to extract all the code commits together with the corresponding
commit messages. The commit messages typically contain an issue
ID, indicating the issue that each commit addresses. With this in-
formation, we collect all the associated commits for each collected
performance issue.

We note that there may exist multiple commits for fixing one
issue. One reason is that an issue may be too complex to fix in one
commit. Therefore, developers may divide the fix of an issue into
several commits. In addition, developers might have thought that
the issue is fixed, while actually is found not fixed, reopened [51]
and fixed in a later commit. In these cases, we consider the chrono-
logical last commits as the issue fixing commits. We also exclude
the commits that do not have any code changes. Finally, if an issue
ID is not contained in any commit message, we remove the issue
from our study.

After this step, 46 issues are filtered out. And then, we can collect
two snapshots of source code for each performance issue, i.e., one
before issue fixing, and one after issue fixing. We checkout both
snapshots of the source code for each performance issue.

3.4.2 Executing associated tests. Both of our subject systems have
a large number of tests that are available in the release pipeline. We
first search for all tests based on their build files. Hadoop has four
different sub-modules. We select the tests by each sub-module to
minimize the large amount of irrelevant tests to save computational
resources. For Cassandra, we include all the retrieved tests.

Intuitively, not all tests execute the source code that is changed
by the performance issue fixes. Hence, for each performance issue,
we identify the tests that execute the source code that is changed
by the fixes (impacted tests) and the tests that do not (un-impacted
tests). We leverage code coverage tools to identify the executed
lines in the source code for each test. Different code coverage tools
are used in the subject systems. In particular, Cobertura and JaCoCo
are used for Cassandra. Hadoop depends on Atlassian Clover to

calculate code coverage. Since Atlassian Clover needs licenses to
execute, and all support was discontinued at April 11, 2018, we
turn to OpenClover, which is an open-sourced version of Atlassian
Clover, to measure the code coverage in Hadoop. If a test executes
the added or modified lines in the source code between two versions
(before and after the performance issues fixes), we consider the test
impacted. In addition, for deleted lines of code, we consider a test
covering the code if the test executes the lines before and after the
deleted lines. By doing this, we identify 127 issues that have the
impacted tests.

Afterwards, we run every test (both impacted and un-impacted)
individually to evaluate performance that is associated with each
test. In particular, the tests for each performance issue are executed
on one virtual machine with 8GB memory and 16 cores CPU hosted
by Google Compute Engine (GCE) 5. Each test is independently
executed with 30 repetitions to minimize noise. Prior research stud-
ies the use of cloud environment on performance evaluation and
shows the successful use of such a number of repetitions [28]. Note
that we also exclude the commits and the issues where the project
fails to build and run. In total, we spent more than 11,642 machine
hours for executing all the tests for the 127 performance issues in
our subject systems.

3.4.3 Evaluating the performance of each test. To evaluate the per-
formance that is associated with each test, we collect the five per-
formance metrics, including the elapsed time, CPU usage, memory
usage, I/O read and I/O write, as the labelling of performance is-
sues. We use psutil (python system and process utilities) [41] for
monitoring the CPU usage, memory usage, I/O read, and I/O write
of the process that executes the tests. Psutil has been used widely
in prior research on software performance [13, 53]. We use test
summary reports generated via Ant/Maven and Junit to measure
the elapsed time of each test. After this step, we have collected
performance data for all the tests (both impacted and un-impacted)
that are associated with two versions of source code (before and
after each performance issue fix) of each performance issue. We
then use this data to answer our research questions.

4 CASE STUDY RESULTS

In this section, we aim to answer the following research questions:

RQ1: Can the readily available tests from the
release pipeline demonstrate performance
improvements from performance issues fixes?

Motivation. Performance issue reports are often used as a great
source of knowledge in system performance assurance activities
in prior research [24, 26]. The certainty of having performance im-
provements, the description of the reports and the available patches
make performance issues a great subject for prior research on soft-
ware performance. This research question concerns whether the
performance of the readily available tests from the release pipeline
can demonstrate performance improvements from performance
issue fixes. If not, the readily available tests would not be capable
of serving as performance tests for other performance assurance
activities with even higher difficulty.

5https://cloud.google.com/compute/
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Approach. Analyzing performance evaluation results. For each
test, we leverage statistical tests on the performance evaluation re-
sults to determine whether the performance of the test has changed
after fixing the performance issue. In particular, for each perfor-
mance issue, we first select only the tests that are impacted by
the performance issue fixes. Afterwards, we check the label of the
performance metrics (e.g., elapsed time) (see Section 3.3) that are
associated with the symptoms of the performance issues. We would
like to determine whether the corresponding performance metrics
have different statistical significance values before and after the
performance issues fixes.

Due to the non-normality of the performance data, we useMann-

Whitney U test, as does prior work [14, 55]. Our null hypothesis and
alternative hypothesis are given below,

H0 : The two performance result (i.e., test and control group –
the same test before and after performance issue fixes) are
equal.

H1 : The two compared tests do not have the same perfor-
mance.

and we run the test at the 5% level of significance (i.e., α = 0.05).
That is, if the P-value of the test is not greater than 0.05 (i.e., P −

value ≤ 0.05), we would reject the null hypothesis in favour of the
alternative hypothesis. In other words, there exists a statistically
significant performance change between the performance metrics,
and the change is unlikely by chance.

However, a statistical significance test does not contain the in-
formation about the size of the effect [17], and when the perfor-
mance data points under study are formed by a great number of
items, the statistically significant differences are more frequently
observed [12, 28]. Therefore, we further adopt the effect size as a
complement of the statistical significance test. Considering the non-
normality of our data points, we utilize Cliff’s Delta [16], which does
not require any assumptions about the shape or spread of the two
distributions [28]. The effect size is assessed using the thresholds
provided in prior research [42],
Filtering false-positive results. To avoid the False Positives, and
eliminate the influence of the negligible or small changes of the
performance, we only consider the performance changes that have
a large effect size. In short, if the performance metric of an impacted
test is changed, in particular improved (e.g., lower CPU usage), after
the performance issue fixes, with statistically significant difference
and large effect size, and the performance metric is also labelled
for the performance issue, we consider the test to be capable of
verifying the performance issues fixes.

In order to further avoid false positive results, we would like
to understand the patterns of false-positive results and use such
patterns to filter out our data. In order to identify the most obvious
false-positives, we check the largest ten performance changes (in
effect sizes, c.f., Section 4) in the un-impacted tests (no modification
committed on the source code covered by the tests) in each subject
system.Wemanual study on the possible causes of the false positive
changes that reside in the source code. We find two reasons: 1) some
functional tests contain random operations, which can lead to the
unstable performance and 2) frequent I/O operations. Therefore,
we do not consider the results of a test if the test is corresponding
to either of these two reasons.

Finally, we manually examine all the cases of each performance
issue (c.f., Section 4) to ensure that the tests indeed demonstrate a
performance improvement after a performance issue fix.

Results. Most performancefixes’ improvements can be demon-

strated by at least one readily available test. We find that for
56 out of 60 of the performance issues in Hadoop and 46 out of 67
performance issues in Cassandra, at least one test from the release
pipeline can be used to demonstrate performance improvements
with all their associated performance metrics. In addition, for seven
additional performance issues in Cassandra, performance improve-
ments with part of the performance metrics can be demonstrated.
For example, the commit #9afc209 fixes the issue CASSANDRA-7401,
which describes an endless loop in the source code. Based on the
report, there should be improvements on both elapsed time and
CPU usage from the issue fix. Among all the impacted tests, elapsed
time and CPU usage are indeed improved significantly with large
effect size in three tests. Such results show the potential capability
of the readily available tests from the release pipeline to serve as
performance tests.

Only a small portion of the tests from the release pipeline

can be used to demonstrate performance improvements. Fig-
ure 2 shows the percentage of tests that can or cannot be used to
demonstrate the improvements from performance issues fixes. The
results show that it would be challenging for practitioner to directly
use the readily available test in the release pipeline as performance
tests. In particular, on average, only 9.2% and 20.6% of the tests
in Cassandra and Hadoop, respectively, can demonstrate perfor-
mance improvements for all associated performance metrics. 13.9%
and 5.1% of the tests in Cassandra and Hadoop, respectively, can
demonstrate performance improvements with part of the associated
performance metrics. On the other hand, 76.9% and 74.3% of the
tests in Cassandra and Hadoop, respectively, cannot demonstrate
any performance improvement, even though these tests all execute
the changed source code for the issue fixes. For example, to fix issue
CASSANDRA-3344, 25 tests are impacted by the code change; while
only two tests can demonstrate the performance improvement from
the issue fix. Due to the large number of total available tests in the
release pipeline, practitioners may be overwhelmed by the influx
of performance results from the tests in the release pipeline and
the difficulty of selecting the useful ones.
�

�

�

�

On one hand, most of performance improvements from perfor-

mance issue fixes can be demonstrated using the readily available

tests in the release pipeline. On the other hand, it is challenging

to use these tests in practice since only a very small portion of

the tests can demonstrate the improvements.

RQ2: What are the reasons that some tests in the
release pipeline cannot be used as performance
tests?

Motivation. In the last research question, we find that many of the
readily available tests in the release pipeline cannot demonstrate a
performance improvement from the performance issue fixes, even
though the changed source code for the issue fixes is executed by
these tests. Therefore, in this research question, we would like to
understand the reason that these tests cannot serve as performance
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Figure 2: The percentage of tests that can or cannot be used

to demonstrate performance improvements from issue fixes

for each issue.

tests. The findings of this research question can assist practition-
ers in avoiding the use of certain tests in performance assurance
activities and in improving tests to serve as performance tests.

Approach. We follow a four-step open coding approach to analyze
the reasons that can cause a test to not be able to demonstrate
performance improvements, even though the test is impacted by
the issue fix.

Based on the results from RQ1, we collect all the impacted tests
for the performance issues, i.e., the tests that cover the changed
source code of the corresponding issue fix, but do not demonstrate
performance improvements on the performance metrics of the issue.
Two authors independently examine each test to uncover reasons
of not being able to demonstrate performance improvements. In
particular, the authors examine the following information that is
associated with each test: 1) the performance issue report, which
contains the high-level information for the issues’ description, 2)
the test code, which contains the low-level information of the tests
and the changed parts of the committed files and 3) the source code
covered by the test, which tells us which lines have been executed
by the tests.

Step 1. The first two authors independently generate categories
of reasons that a test cannot demonstrate performance improve-
ments. In particular, each author iteratively investigates all the tests
to identify the reasons, until no more new reasons can be found.
The outcome of the first step is the different category of reasons by
each of the two authors.

Step 2. Intuitively, the two authors would not generate identical
categories. Hence, the two authors meet and discuss their categories.
The goal is to generate final categories of reasons that both of
the two authors agree on. The two authors discuss each of their
generated categories of reasons and reach consensus on the final
categories.

Step 3. The two authors use the agreed categories from the
second step. The two authors independently put each test into one
category.

Step 4. Finally, the two authors examine the results where the
two authors do not agree. The two authors discuss their rationale to

try to reach consensus. If consensus cannot be made, the third au-
thor will examine the corresponding test to make the final decision.
The two authors have an agreement of 71.1%.

Results. We identify eight possible reasons that a test cannot

be used to demonstrate performance improvements. We dis-
cuss each reason in detail with examples in the rest of this RQ.

Too light workload (185 tests). We find that some perfor-
mance issues can only be triggered with a rather large data size.
However, functional tests may not be written with such a large
data size as input, making it impossible to demonstrate the issue
fixes. For example, the issue reported in CASSANDRA-581, can be
triggered with a very large number of sstables. It is fixed in the
commit #2b62df2. However, the impacted tests do not have a large
enough amount of sstables as input to reproduce the performance
issue.

Not enough repetition (9 tests). Some performance issues
have a rather small effect, while becoming impactful with a large
number of repetitions. For such performance issues, the tests of-
ten can detect the performance improvements but only with a
small or medium effect size, which are not considered in our ex-
periments to minimize noise. However, with more repetitions, the
effect can increase. For example, in the report of performance issue
CASSANDRA-581, developers mention that the method convert-

FromDiskFormat using split is slow only when being tested with
more than 1,000 keys. Although a test RandomPartitionerTest covers
the code changed by the issue fix, the method convertFromDiskFor-

mat is called only once in the test and the elapsed time is slightly
improved with a small effect size. Based on the description of the
issue report, if there were more repetitions around this method, the
performance improvement would be demonstrated by the test.

Race conditions (2 tests). The race condition related perfor-
mance issues can only happen when given a certain set of circum-
stances. For example, the commit #6158c64 fixed the deadlock issue
in the streaming code. With the description provided in the re-
port, CASSANDRA-5699, we find that we need a specific execution
condition to trigger the deadlock.

Limited line coverage of the performance related codes

(24 tests).We notice that developers may change a large amount
of source code to fix performance issues, but the test only covers
a small portion of the committed changes. In this situation, the
performance of the test can be misleading since it does not tell the
full picture of the issue fixes. For example, the commit #67ccdab
fixed a performance issue in the streaming code. By using the git diff
command, we know that there are 10 files changed with 437 line
additions and 243 line deletions. However, among these changes,
only one line is covered by the test SessionInfoTest. Moreover, the
covered line is a refactoring operation (Rename Variable), and the
performance sensitive operations are never performed by the tests
to demonstrate the performance improvement.

Partial branch coverage (34 tests). If the performance issue
is caused by the code inside the if statement, and without the 100%
coverage of the conditions, the code snippets cannot be tested, and
thus, the tests cannot demonstrate the fix to the performance issue.
A representative example can be found in the fixing process of
issue CASSANDRA-3234. The performance issue is caused by the
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echoedRow function, while this function cannot be invoked as it
lies inside the if statement without a 100% branch coverage.

Indirect performance influence (1 test). In this situation, the
behavior of performance issue related code is based on the return
value of another function. Therefore, covering the fix locations
of the issue may not be useful to demonstrate the fix to the per-
formance issue. For example, in the fixing process of the issue
CASSANDRA-8550, while benchmarking CQL3 secondary indexes,
developers noticed substantial performance degradation as the vol-
ume of indexed data increases. The issue is caused by the page size
selection, which is returned by another function. We notice that the
tests can cover the use of the return value while missing its caller.
Therefore, the tests cannot demonstrate the performance changes
as expected.

Frequent access of external resources (31 tests). Frequent
access operations of external resources may introduce noise into the
performance evaluation of the tests. We find tests that may have 1)
frequent I/O operations, including tables’ creation, deletion, update
and data insertion and selection, or 2) frequent memory operations,
like the flush operations. For example, test DefsTest covers the fix
in commit #3ad3e73 for the issue CASSANDRA-3234. However, the
test cannot demonstrate the improvement due to the noise from its
large number of flush operations.

Idle during execution (6 tests). Some tests may proactively
wait for a period of time, introducing an idle time that is much
longer than the actual execution time, which reduces the observed
performance improvement after issue fixes. For example, in the com-
mit #3ad3e73 that fixes issue CASSANDRA-3234, test CleanupTest
contains a 10-second Thread.sleep operation with a total 11.685s
elapsed test time. In this case, the elapsed time is dominated by the
sleep time, hiding the performance improvement after the issue
fixes.
�

�

�

�

We identify eight possible reasons that a test in a release pipeline

cannot serve as a performance test. The reasons can be used as a

guideline for practitioners to avoid and improve the use of certain

tests from the release pipeline.

RQ3: What are the important factors for a test to
be useful as a performance test?

Motivation. Prior research has studied the use of micro-scale per-
formance tests in performance evaluation [11, 22, 23, 45]. However,
the findings in our prior research questions illustrate the challenges
and show the reasons why we cannot directly adopt those tests in
performance evaluation. On the other hand, there exist tests from
the release pipeline that successfully demonstrate performance
improvements. By understanding the characteristics of tests that
are able to demonstrate performance improvements, we may gain
a better understanding of these tests and thus can provide more
general guidance to a developer for writing new tests that run in
the release pipeline for performance assurance activities.

Approach. To answer this research question, we adopt random
forest, an ensemble learning method [8], as it is one of the most
used machine learning algorithms for its performance and has
been adopted in various software engineering research [48]. We
build a binary classifier to identify whether a test can be used to
demonstrate performance improvements.

Step 1: Raw data collection. In RQ1, we have identified the
impacted tests of each performance issue, and whether the test
can demonstrate performance improvements. However, the ability
of a test to serve as a performance test may vary among differ-
ent performance metrics. For example, a test that can successfully
demonstrate memory usage improvement may not be able to show
the improvement with elapsed time. Therefore, in this step, we
separate the data based on each performance metric, i.e., we build
one classifier for each performance metric. For example, to collect
the raw data of elapsed time for project Cassandra, we first only
take all the performance issues that are manually labelled with
elapsed time. Then we collect the impacted tests of each perfor-
mance issue. For each impacted test, we use the results shown in
RQ1 to determine whether the test can demonstrate a performance
improvement. The results in RQ1 are considered the ground truth
data for our classifier.

Step 2: Metrics extraction. To build classifiers, we extract met-
rics for the raw data collected from the previous step. The effective-
ness of a test can be associated with many metrics. In this work,
we extract metrics from three aspects of the tests:

• test code, which contains the information about the test
itself.

• source code covered by the test, where we can find the test
coverage rate and the characteristics of covered source code.

• source code impacted by the issue fix, which measures the
characteristics of committed changes of the source code
while fixing the performance issue.

The intuition behind the selection of the three aspects is straight-
forward, as we are running the test to evaluate the performance of
the covered source code and the performance improvements from
issues fixes should be caused by the committed changes.

Inspired by the work on defect prediction [27, 34, 36, 37], and
the prior findings on performance issues and performance regres-
sions [2, 13, 18, 24, 26, 44], we extract metrics from each of the three
aspects. Some metrics exists in multiple aspects. The details of the
metrics are shown in Table 1.

Step 3: Training and testing random forest classifiers. In
this step, we build random forest classifiers to model whether a
test can demonstrate the performance improvements or not. In
particular, we build five classifiers, each predicting for one perfor-
mance metric (i.e., elapsed time, CPU usage, memory usage, I/O
read and I/O write). For each classifier, we use a 10 × 10-fold cross-
validation implementation in scikit-learn 6 with random shuffle [39].
We fit a classifier on the training data, and use the validation data
to test the classifier. For our binary classification problem, we use
the area under the receiver operating characteristic (ROC) curve
(AUC) as a performance measurement [7]. AUC ranges in value
from 0 to 1, showing the capacity of the classifier on distinguishing
between classes. A higher AUC means a better classifier at pre-
dicting. Finally, we have 10 × 10 models and corresponding AUC
values. In this study, we use the random forest implementation 7

6https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
StratifiedKFold.html
7https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html
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Table 1: An overview of our extracted metrics to build random forest classifiers.

T S F Category Metrics Level Description

• • •

Complexity and size

FanOut Method Number of unique methods that are called by the code snippet.
• • • FanIn Method Number of unique methods that call the methods of the code snippet.
• • • CyclomaticComplexity Method McCabe Cyclomatic complexity of the code snippet.
• SLOC File Number of source code lines in the code snippet.
• CodeElementsSize Method Code elements divided by Size.

• Diffusion Entropy Commit Distribution of modified code across files in one commit.
• • •

History
DeveloperCount Commit Number of developers that changed the code snippet.

• • • TimeInterval File Average time interval between the last and the current change of the code snippet.
• •

Human factor
DeveloperCommitCount File Average number of commits of the developers who modified the code snippet.

• • RecentDeveloperCommitCount File Average number of commits made in last 12 months of the developers who modified the
code snippet.

• • •

Code elements

Condition Method Number of condition statements of the code snippet.
• • • Loop Method Number of loop statements of the code snippet.
• • • ExceptionHandling Method Number of try-catch statements of the code snippet.
• • • Synchronization Method Number of synchronization statements of the code snippet.
• • • FinalStatic Method Number of final or static statements of the code snippet.
• • • ExpensiveVariableParameter Method Number of expensive parameters/variables of the code snippet.
• • • ExternalCall Method Number of external function call of the code snippet.
• • • Control Method Number of control statements of the code snippet.
• •

Code change

CodeChurn File Total sum of lines added into and deleted from the code snippet across all the commit
history.

• • LineAdded File Total sum of lines added into the the code snippet across all the commit history.
• • LineDeleted File Total sum of lines deleted from the code snippet across all the commit history.

•

Coverage criteria
LineCoverage File Line coverage ratio of the test.

• BrahchCoverage File Branch coverage ratio of the test.
Note: T, S and F in the heading are abbreviations for the three aspect of metrics: test code, source code covered by the test and source code impacted by the issue fix. • means that

the metric is calculated for the corresponding aspect.

and roc_auc_score 8 function in scikit-learn [39] to train and eval-
uate our classifiers. Note that for I/O read of project Hadoop, we
only have 13 and 345 functional tests that can and cannot demon-
strate performance improvements. The dataset is small for training
a classifier, resulting in the misleading conclusions. Therefore, we
do not train our classifier for I/O read with Hadoop.

Step 4: Determining importance of each group of metrics.

In this step, we examine the importance of each group of metrics.
In particular, we extract three groups of metrics, i.e., fix impacted
source code, test code, and test covered source code. We remove
each group of metrics from our data and rebuild the classifiers.
Afterwards, we measure the AUC values of each classifier and
compare with the AUC values of the original classifiers with all
metrics. The more the AUC values decrease, the more important
the group of metrics are.

Step 5: Determining the importance of each metric. To
evaluate the importance of each metric on our random forest clas-
sifiers, we adopt the Mean Decrease Impurity (MDI) (also called
Gini importance) [9, 10]. In a tree algorithm, it calculates each
metric’s importance as the sum over the number of splits that in-
clude the metric, proportionally to the number of samples it splits.
For our random forest, the importance is averaged over all trees
of the ensemble. We use the function feature_importances_ of the
scikit-learn 9 [39] in Python to compute the metrics importance
values.

After we repeat the 10-fold cross-validation for 10 times, each
metric has 100 importance scores. We then perform Scott-Knott
Effect Size Difference (ESD) test [43] on the metrics importance.

8https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.
html
9https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier.feature_
importances_

The Scott-Knott ESD test uses hierarchical clustering analysis to
partition different metrics into distinct groups. With this analysis,
each metric has a rank. In this study, we use the sk_esd function of
the ScottKnottESD package 10 in R [47].

Finally, to examine the direction of the relationship between
each metric and the likelihood of a test being successful on demon-
strating performance improvements, we measure the correlation
between each metric and the targets/classes using a Spearman rank
correlation (rho). A positive Spearman rank correlation indicates
that the metric shares a positive relationship with the likelihood of a
test being successful on demonstrating performance improvements,
whereas a negative correlation indicates an inverse relationship.

Results. Our random forest classifiers achieve high AUC val-

ues, considerably outperforming a randomclassifier. For project
Cassandra, Table 2 shows that, our random forest classifiers achieve
an average AUC of 0.86, 0.59, 0.69, 0.72, and 0.73 for elapsed time,
CPU usage, memory usage, I/O read and I/O write, respectively.
Similarly, for project Hadoop, our classifiers achieve an average
AUC of 0.90, 0.68, 0.66, 0.79 for elapsed time, CPU usage, memory
usage, and I/O write, respectively. These results indicate that our
random forest classifiers outperform random classifiers when de-
termine whether a test can be used for demonstrating performance
improvements. By analyzing the results, we find that the higher
AUC value of elapsed time than the CPU usage, Memory usage,
I/O read and I/O write classifiers may be due to the larger number
of available tests that can be used to demonstrate improvements
in elapsed time over other performance metrics. In addition, we
find that the AUC values of all the classifiers are stable, especially
the models from the elapsed time. The stable AUC values of our
classifiers suggest that our classifiers achieve stable performance in

10https://github.com/klainfo/ScottKnottESD
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Table 2: An average of AUC, and AUC changes after removing some metrics. −, +, and 0 means there is a decrease, increase

and no change of AUC.

All
Metrics

Metrics without
source code

impacted by the
issue fix

Metrics without
test code

Metrics without
source code

covered by the
test

C
a
ss
a
n
d
ra

AUC AUC Change AUC Change AUC Change
Elapsed time 0.86 0.79 -0.07 0.85 -0.01 0.8 -0.06
CPU usage 0.59 0.58 -0.01 0.57 -0.02 0.56 -0.03
Memory usage 0.69 0.67 -0.02 0.67 -0.02 0.64 -0.05
I/O read 0.72 0.68 -0.04 0.68 -0.04 0.68 -0.04
I/O write 0.73 0.73 0 0.67 -0.06 0.7 -0.03

H
a
d
o
o
p Elapsed time 0.90 0.90 0 0.87 -0.03 0.86 -0.04

CPU usage 0.68 0.68 0 0.59 -0.09 0.68 0
Memory usage 0.66 0.66 0 0.61 -0.05 0.67 0.01
I/O write 0.79 0.79 0 0.74 -0.05 0.8 0.01

determining the effectiveness of using these readily available tests
in the release pipeline in performance assurance activities.
The metrics extracted from the source code covered by the

test play an important role in the usefulness of a test. Table 2
shows that for Cassandra, the metrics from the source code covered
by the tests always have a strong influence on the AUC values
among the classifiers for all performance metrics. Table 3 presents
the top three most important metrics to the classifiers. To have a
better understanding of these metrics, we also present their metrics
importance measured using MDI, the direction (i.e., the sign of ρ) of
the relationship between these metrics and the likelihood of a test
being successful on demonstrating performance improvements. By
examining Table 3, we find that for Cassandra, the metrics from the
source code covered by the test always have the largest MDI for all
classifiers. The LineCoverage and BranchCoverage metrics lie in the
top two ranks across all the classifiers. The results also show that
these two metrics have a positive impact on the unit usage, I/O read,
and I/O write performance metrics. It indicates that a test tends to
successfully demonstrate a performance improvement from a per-
formance issue fix, if the test has a relatively higher line or branch
coverage. These findings confirm the results in our preliminary
manual study in RQ2, i.e., the tests with a lower line or branch
coverage have difficulty triggering the performance issues, thus
cannot demonstrate the improvements from the performance issues
fixes. This finding suggests the importance of coverage criteria in
developing performance tests.
The metrics of the test itself play an important role in the

usefulness of a test. Shown in Table 2, for Hadoop, the metrics
related to the test code have a large influence on all the classifiers.
By examining the top three most important metrics to the classifiers
(see Table 3), the Size and TimeInterval metrics from test code and
are also important on whether a test can demonstrating perfor-
mance improvements. For project Cassandra, Table 3 shows that
SLOC metric of the test code ranks first in the I/O write classifier.
This SLOC metric is also one of the top three important metrics in
the elapsed time, CPU usage, memory usage, and I/O read classifiers.
The SLOC metric has a positive impact in all the five performance
metrics. It indicates that a test tends to successfully demonstrate
performance improvements, if it has a relatively higher source lines
of code. Meanwhile, for project Hadoop, the metric TimeInterval

also lie in the top three most important metrics. The negative sign
indicates that if a test code is updated long time ago, it may result
in a low likelihood demonstrating the performance improvements.
Finally, for Hadoop, the importance of the metric RelativeExpensive-
VariableParameter, from test code, indicates that a readily available
test tends to successfully demonstrate the performance improve-
ments from performance issues, especially memory issues , if it has
a relatively higher call of expensive variables in the test.
Themetrics of the changed source code by a performance is-

sue fix do not often play an important role in the usefulness

of a test. We find that for Hadoop the average AUC our random
forest classifiers do not change when the metrics extracted from
the source code impacted by the issue fix category (see Table 2). In
addition, none of the metrics that are related to the source code
impacted by the issue fix lies in the top three important metrics
of the classifiers. These findings suggest that developers may pay
more attention to the test code and the source code covered by
the test. Some practitioners may like to fine tune the tests for ev-
ery performance issue fix. However, our results suggest that such
fine-tuning may not be cost-effective since the characteristics from
the changed source code of a performance issue do not typically
play an important role in whether the test can demonstrate the
performance improvements from performance issue fixes.

�

�

�

�

Metrics related to the test itself and the source code covered by

the test are important in the classifiers. On the other hand, the

metrics related to the code changes in the performance issues fixes

have a low importance. Practitioners should focus on designing

and improving the tests, instead of optimizing tests for different

performance issue fixes.

5 THREATS TO VALIDITY

This section discusses the threats to the validity of our study.
External validity. Due to the large amount of time and computing
resources for execution to identify performance improvements and
the code coverage of tests, our evaluation is conducted on two open-
source software systems, i.e., Hadoop and Cassandra. Although our
study only focuses on 127 performance issues, the scale of our study
is comparable to prior research on performance issues [26, 54]. Our
findings might not be generalizable to other systems. Future studies

1443



ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Zishuo Ding, Jinfu Chen, and Weiyi Shang

Table 3: Average rank of the top three influential metrics

and the Spearman rank correlation (ρ). Note: A + (or −)

sign of ρ indicates a positive (or an inverse) relationship of

the metric with the likelihood that a functional being able

to demonstrate the performance improvements. The larger

MDI that a metric has, the more influential the metric is.

Cassandra
Rank Aspect::Metrics MDI±SD ρ

Elapsed time
1 S::LineCoverage 0.068±0.001 +
2 S::BrahchCoverage 0.068±0.001 +
3 T::RelativeExceptionHandling 0.044±0.001 +

CPU usage
1 S::LineCoverage 0.059±0.002 +
2 S::BrahchCoverage 0.059±0.002 +
3 T::TimeInterval 0.046±0.002 +

Memory
1 S::BrahchCoverage 0.051±0.001 −

2 S::LineCoverage 0.051±0.001 −

3 T::TimeInterval 0.045±0.001 −

I/O read
1 S::BranchCoverage 0.060±0.001 +
2 S::LineCoverage 0.059±0.001 +
3 T::TimeInterval 0.048±0.001 +

I/O write
1 S::BrahchCoverage 0.049±0.002 +

S::LineCoverage 0.049±0.002 +
T::SLOC 0.049±0.002 +

2 T::RelativeExpensiveVariableParameter 0.040±0.001 −

3 T::TimeInterval 0.038±0.001 +

Hadoop
Rank Category::Metrics MDI±SD ρ

Elapsed time
1 S::LineAdded 0.038±0.001 +
2 S::TimeInterval 0.037±0.001 −

3 S::LineDeleted 0.033±0.001 +
CPU usage

1 T::TimeInterval 0.036±0.001 −

2 T::RelativeExceptionHandling 0.033±0.001 +
3 T:RelativeExpensiveVariableParameter 0.032±0.001 +

Memory
1 T::RelativeExpensiveVariableParameter 0.035±0.001 +
2 S::TimeInterval 0.034±0.001 −

3 T::TimeInterval 0.033±0.001 −

I/O write
1 S::LineAdded 0.040±0.002 +
2 T::TimeInterval 0.030±0.001 −

3 T::RelativeExpensiveVariableParameter 0.030±0.001 +

Note: T and S in the aspects are abbreviations for the two aspect of metrics:
test code and source code covered by the test.

can apply our approach on other systems, such as commercial
closed source systems.
Internal validity. Our issue report selection in the JIRA tracking
system may be biased by the keyword definition. Although we use
a manual identification process to verify whether the filtered issue
reports are related to performance, we may still miss performance
issue that do not contain any of our listed keywords. Our approach
requires performance metrics to measure performance of available
tests. In particular, we only study five performance metrics while
there may be others if other people study and label other perfor-
mance issues. Future studies can include more performance issues
and metrics to complement the findings of our study. The manual

labelling and manual study results may be subjective to the two au-
thors. More user studies and surveys on practitioners may address
this threat.

We use software metrics based on the findings from prior re-
search and also extract newmetrics highly related to test.We choose
our prediction model (Random Forest), based on its widespread use
in prior software engineering research [20], and since it typically
provides a high accuracy in the modeling. There may exist other
metrics and machine learning models that can be leveraged in our
study, where future research can explore to complement our find-
ings.
Construct validity. There exist other performance assurance ac-
tivities, such a performance regression detection [21, 32]. Our study
chooses to use performance issues because of the knowledge and
quality of issue reports and the certainty in performance improve-
ments. Future research can complement our study by using readily
available tests in other performance assurance activities as perfor-
mance tests.

There always exists noise when monitoring performance [35].
In order to minimize such noise, for each readily available test, we
repeat the execution 30 times independently. Then we use a statisti-
cally rigorous approach to measuring performance improvements.
Further studies may opt to increase the number of repeated execu-
tions to furtherminimize the threat based on their time and resource
budget. Our approach is based on the system performance that is
recorded by Psutil [14]. Further studies may evaluate our approach
by varying such performance monitoring tools, i.e., pidStat.

In our context, we evaluate the performance of tests in a Google
Cloud Platform performance evaluation environment. Although
we minimize the noise in the environment to avoid bias, such an
environment is not exactly the same as in-field environment of the
users. To minimize the threat, we only consider the performance
improvements that have large effect size. In addition, with the
advancing of DevOps, more operational data will become available
for future mining software repository research. Research based on
field data from the real users can address this threat.

6 CONCLUSION

In this paper, we evaluate the performance of readily available
tests in the release pipeline, and then examine whether these tests
can be used as performance tests, in particular, to demonstrate
the performance improvements from performance issues fixes. By
performing an exploratory study on a total of 127 performance
issues in two open-source projects, i.e., Hadoop and Cassandra, we
find that most of improvements from performance issues can be
demonstrated using the readily available tests in the release pipeline.
Moreover, through a manual study, we identify eight reasons that
may lead a test not being able to demonstrate the performance
improvements. Finally, we build random forest classifiers to identify
the most important metrics that influence the tests’ capability on
demonstrating performance improvements.

To summarize, this paper makes the following contributions:

• To the best of our knowledge, our work is the first to study
the use of readily available tests in performance assurance
activities.
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• We uncover eight reasons why a readily available test cannot
be used as a performance test.

• We find that a test itself and the source code covered by the
test are the important factors for tests to be able to serve as
performance tests.

Our findings shed light on the opportunities and challenges in
leveraging the readily available tests in performance assurance
activities. Practitioners can use our uncovered reasons and factors
as guidelines to design and improve tests that run in the release
pipeline for performance assurance activities.
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