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Summary

The performance of large-scale systems must be thoroughly tested under various levels of

workload, as load-related issues can have a disastrous impact on the system. However, load

tests often require a large amount of time, running from hours to even days, to execute.

Nowadays, with the increased popularity of rapid releases and continuous deployment,

testing time is at a premium and should be minimized while still delivering a complete test

of the system. In our prior work, we proposed to reduce the execution time of a load test by

detecting repetitiveness in individual performance metric values, such as CPU utilization

or memory usage, that are observed during the test. However, as we explain in this paper,

disregarding combinations of performance metrics may miss important information about

the load-related behaviour of a system.

Therefore, in this paper we revisit our prior approach, by proposing a new approach that

reduces the execution time of a load test by detecting whether a test no longer exercises

new combinations of the observed performance metrics. We conduct an experimental case

study on three open source systems (CloudStore, PetClinic, and Dell DVD Store 2), in

which we use our new and prior approaches to reduce the execution time of a 24-hour load

test. We show that our new approach is capable of reducing the execution time of the test

to less than 8.5 hours, while preserving a coverage of at least 95% of the combinations that

are observed between the performance metrics during the 24-hour tests. In addition, we

show that our prior approach recommends a stopping time that is too early for two of the

three studied systems. Finally, we discuss the challenges of applying our approach to an

industrial setting, and we call upon the community to help us to address these challenges.
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1 INTRODUCTION

Performance issues in Ultra-Large-Scale (ULS) systems can cause impactful software failures. For example, due to a memory leak, Amazon Web
Services experienced an outage that affected millions of users [36]. Such performance failures can cause significant financial and reputational
consequences.

Performance-related failures can often be avoided by properly testing the performance of a system under various levels of load before deploying
it. However, load testing is expensive in terms of execution time: a load test can take hours or even days to complete [24]. In the current DevOps
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age of continuous deployment, it is important to make effective use of the available testing time. In addition, many software developers do not
want to spend much time on load tests [23].

There exists a point in time during a load test at which the cost-effectiveness of the test is the highest, i.e., if the test continues to execute after
this point, the amount of new information that is generated during the test is too small to be beneficial. Determining the most cost-effective length
of a load test facilitates the load testing process, thereby reducing the probability of a load-related issue in a system.

In our prior work [1], we proposed to reduce the time that is required to run a load test, by recommending to stop when performance metric
values that are monitored during a test become repetitive. The disadvantage of this approach is that it focuses on repetitiveness of each metric
individually. Each metric shows only one aspect of a system’s performance. Instead, the performance of a system should be captured by a combina-
tion of all of those aspects [12]. Our prior approach does not capture such combinations, despite their importance for capturing the performance
of a system.

In this paper, we revisit our prior approach [1] by focusing on combinations of performance metrics, using so-called system states. Throughout
the execution of a load test, the system goes through a variety of system states. A system state is a unique combination of ranges of performance
metric values. For example, a system state can be the combination of low CPU utilization and high memory usage. Intuitively, as the execution of
the test progresses, it exercises system states that are already exercised in an earlier stage of the test. Hence, the longer the test is executing, the
less likely it becomes that new system states are being exercised. As a result, the cost-effectiveness of a load test, i.e., the number of new states
that are exercised in a time frame, goes down as the test progresses.

Our proposed approach periodically monitors how many new system states a load test exercises. Our approach recommends to stop the test
when we no longer observe new system states in a given time frame during the test. We evaluate our approach by conducting experiments on
three open source systems (CloudStore [11], PetClinic [33] and Dell DVD Store 2 [13]), in which we use our approach to reduce the execution time
of a 24-hour load test. We find that our approach recommends to stop the tests within 8 hours, which is a reduction of approximately 70% of the
original 24-hour execution time. At the recommended stopping times, the tests were able to exercise more than 95% of the system states that are
exercised by the 24-hour test.

In summary, the main contributions of our paper are:

1. An approach for reducing the execution time of a load test, based on checking when a test no longer exercises new system states in a given
time frame.

2. A comparison in which we show that our new approach recommends more cost-effective stopping times than our prior approach.

While our approach works well on smaller systems, we encountered several challenges when trying to adopt our approach in an industrial
setting. We documented the challenges that we experienced to call upon the community to assign more research and practical efforts to solving
the important industrial problem of making load tests more efficient in terms of time.

This paper is organized as follows. Section 2 discusses our prior approach and related work. Section 3 presents a motivational example for our
approach. Section 4 describes our approach. Section 5 describes our experimental setup, followed by the results of our experiments in Section 6.
We discuss the challenges of applying our approach in an industrial setting in Section 7. Section 8 discusses threats to the validity. We conclude
the paper in Section 9.

2 BACKGROUND

In this section, we discuss our prior approach for determining when to stop a load test. In addition, we discuss related work that addresses the
challenges of having limited resources for performance or load testing. Note that despite their industrial significance, only a very small body of
work exists on addressing these challenges.

2.1 Our Prior Approach for Determining When to Stop a Load Test

Our prior work [1] aims at reducing a test’s execution time by determining how long a load test should run. Our prior approach is based on the
experience that much of the generated data from a load test is repetitive, when simulating a real-world workload. Therefore, if the load test would
no longer provide any new information about the system’s performance, the test can simply be stopped.

In our prior approach, we periodicallymeasure repetitiveness in the values of performance counters that are already generated from the load test.
In particular, we randomly pick a short time period (T1) from the data and exhaustively search for another time period (T2) that contains statistically
indistinguishable data. Our prior approach leverages statistical analysis (e.g., the two-tailed unpaired Wilcoxon test) to determine whether the
difference between the data in two time periods is statistically significant (p-value< 0.05). By the exhaustive search, if a time period can be found
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that contains statistically indistinguishable data, T1 is considered as repetitive. In our prior approach, we repeat the process of picking a random
time period and searching for a statistically indistinguishable time period a large number of times (e.g., 1,000) of times. Therefore, we can calculate
the probability of a time period being repetitive. We use this probability as a measure of repetitiveness in the performance test results. The details
of measuring repetitiveness are shown in Algorithm 1.

In order to use this measure of repetitiveness to determine whether to stop the performance test, practitioners may choose a threshold based
on their own experiences. In addition, we proposed an automated approach that measures the first derivative of repetitiveness. Based on the first
derivative of repetitiveness, our approach recommends to stop the performance test if the repetitiveness stabilizes.

As we show in Section 3, the limitation of our prior approach is that it does not consider combinations of performance metric values. In this
paper, we revisit our prior approach to overcome this limitation.

Algorithm 1 Algorithm for measuring repetitiveness in prior research [1]
Input : Performance data in a list perfList
Output: RepetitivenessRatio
/∗ Initialize the repetitiveness value∗/
repetitiveness← 0

for i<1000 do
Data1← perfList.getRandomPeriod()
/∗ Exhaustively search for repetitive data ∗/
foundRepeat← false

foreach timePeriod in perfList do
Data2← timePeriod

/∗ Select new data if there is overlapping ∗/ if Data1 overlaps Data2 then
continue

end
if Data1.isSimilar(Data2) then

foundRepeat← true

break
end

end
/∗ Increase the repetitiveness if we find a similar period ∗/
if foundRepeat then

repetitiveness ++

end
end
RepetitivenessRatio← repetitiveness / 1000

return RepetitivenessRatio

2.2 Related Work

To reduce the resources that are required to run a performance or load test, we can either (1) reduce the execution time, (2) adapt the workload
that drives a test or (3) reduce the system resources that are required to execute the test. We discuss the related work for each method of reducing
load testing resources below.

2.2.1 Reducing the Execution Time of a Load Test

In addition to our prior work [1], the work that comes closest to our work is that of He et al. [18]. He et al. used a statistics-based performance
testing approach that investigates whether the distribution of a performance metric is still changing after the execution of (part of) a test. Their
approach focuses on dealing with the performance uncertainty in cloud applications. However, their approach studies the distribution of each
performance metric individually (similar to our prior work). Jain [19] proposed an approach that recommends to stop a test when the variance in
the response time is reduced to less than five percent. Jain’s approach does not take into account the performance metrics about the physical level
of a system, e.g., the CPU utilization. Other studies on reducing the execution time of tests depend on logs. Busany et al. [7] and Jiang et al. [21]
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propose approaches that measure the repetitiveness of log traces in order to reduce the execution time of a test. The approach that we propose
in this paper differs from prior work as we use combinations of metrics to decide how to reduce the execution time of a performance test. The
advantage is that using combinations of metrics gives a more realistic view of the performance of a system [12].

2.2.2 Adapting the Workload that Drives a Load Test

Other work aims at adapting the execution time of a load test by dynamically adapting the workload that drives the test. For example, Tchana et
al. [34], Shivam et al. [32] and Ayala-Rivera et al. [5] adjust the load on a system until the system is saturated. Apte et al. [4] use information that was
retrieved from queueing models to plan the load on a systemmore efficiently. In our work, we do not adapt the load, but instead, we decide when a
load no longer provides us with new information about the system. The advantage of our approach over approaches that adapt the workload that
drives a test is that our approach leaves the workload unchanged, and therefore, does not have the threat of adapting to a less realistic workload.

2.2.3 Reducing the System Resources Required to Execute a Load Test

Most work on load testing focuses on how to reduce the system resources that are required by the system under test to handle a given workload.
Shariff et al. [31] presented an approach to reduce the system resources required to conduct a browser-based load test itself, i.e., their work focuses
on making the load test cluster more efficient. Their approach allows to share browser instances between simulated test users, thereby reducing
the total number of browser instances that are required to simulate the required number of users. Grano et al. [17] presented an approach that
generates functional test suites that are performance-aware. Their approach generates test suites with a high coverage and low computational
requirements at the same time. In contrast to our approach, Grano et al. focus on functional test suites.

In addition, many techniques on test case prioritization and selection have been proposed that allow to reduce the required system resources
to execute a test by focusing on high priority tests. As these techniques all focus on functional test suites, they are only tangentially related to load
tests and we do not give an overview of them. Instead, we refer the reader to the surveys by Yoo and Harman [37] and Khatibsyarbini et al. [22].

3 A MOTIVATING EXAMPLE

Erica is a performance engineer who works for a large software company. Erica’s task is to ensure that every new version of a software product
satisfies the performance requirements. However, the company uses continuous delivery to deploy several new versions of the product a day.
Ideally, a change to the software product is included as soon as possible in an upcoming release. Hence, the time it takes to test that change should
be minimized.

TABLE 1 A motivational example of a performance issue that is missed by a test of which the execution time is reduced using our prior
approach [1]. As our prior approach detects repetition for each metric individually, period p3 is considered repetitive (i.e., with p1 for the response

time (RT) metric and with p2 for the CPU metric). The approach presented in this paper does not consider any of the periods repetitive.

Time RT CPU

100 11 (S1) 10 (S1) }
period p1, low load100 10 (S1) 12 (S1)

101 10 (S1) 10 (S1)
...

...
...

149 49 (S2) 100 (S2) }
period p2, high load150 50 (S2) 100 (S2)

151 50 (S2) 100 (S2)
...

...
...

199 11 (S1) 100 (S2) }
period p3, overload200 10 (S1) 100 (S2)

201 10 (S1) 100 (S2)
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FIGURE 1 An overview of our approach

To make more efficient use of the time that is available for testing, Erica uses our prior approach [1] to reduce the execution time of the existing
load tests. However, Erica notices that some performance issues are missed by the tests. Table 1 shows parts of the performance metrics that are
collected during the execution of the load test.

The table highlights three periods p1, p2 and p3, which represent the system states under low load, high load and being overloaded. Using
our prior approach [1], which searches for repetitiveness at the metric-level, p3 would be considered repetitive and therefore redundant, as the
observed response time is similar to that of p1 and the observed CPU utilization is similar to that of p2.

However, p3 clearly represents a state of the system, i.e., an overloaded state, that is not observed earlier in the test. Table 1 shows that studying
the repetitiveness based on the individual metric is not enough. Studying combinations of metrics can give more information about the test, such
as the load type, e.g., high or low load.

Therefore, Erica transforms the observed metrics in the metric states S1 (Low) and S2 (High) and studies the combinations in which the states
occur. Erica concludes that our prior approach [1] stops the test too early, as the system state S1 for RT and S2 for CPU is not covered. Instead,
Erica now stops the load test when there are no new states exercised by the test anymore.

In the remainder of this paper, we present our approach for deciding when to stop a load test based on the number of observed new system
states in a given time frame.

4 OUR APPROACH FOR DETERMINING WHEN TO STOP A LOAD TEST

Intuitively, we assume that during the execution of a long-running load test, there exists a point in time after which the test no longer provides new
information about the performance of the system under test. Hence, the load test can be stopped at that point in time. The goal of our approach
is to find this point in time after which the load test becomes repetitive.

In this section, we present our approach for determining when to stop a load test. Figure 1 gives an overview of our approach, whose steps are
detailed in this section. Algorithm 2 depicts the pseudo code that describes our approach. First, we collect performance metrics from the system
under test. We transform the collected metrics into metric states, i.e., we group the metric values in ranges. We define a system state as the
combination of metric states at a given time. Second, we monitor the number of newly-exercised system states during the test execution. Once
the approach finds that the test no longer exercises new system states in a given time frame, it recommends to stop the test. In the rest of this
section, we explain our approach in detail.

4.1 Collecting Data

We start the load test and collect performance metrics every s seconds during the execution of the test. Our approach has no theoretical limitation
on the number and selection of performance metrics that are collected. However, as we discuss in Section 7, selecting too many metrics can lead
to a large number of possible states. In this chapter, we demonstrate our approach using the following metrics:

• Response time (RT): The average response time of the requests that were handled in the last s seconds.

• CPU utilization (CPU): The average CPU utilization in the last s seconds.

• Memory usage (MEM): The memory usage in the last s seconds.

• Disk I/O (IO): The average number of bytes that are read and written in the last s seconds.

Table 2 contains an example of metric values that are collected during 30minutes of an imaginary load test.We use imaginary data in this section
to improve the readability and clarity of our approach. We will use the example in Table 2 throughout this section to demonstrate our approach.
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Algorithm 2 Pseudo code of our new approach for determining whether to stop a load test
Input : Performance data in a list perfList
Output:Whether to stop
/∗ Initialize the coverage as nothing ∗/
coverage← null

/∗ Get the latest performance data ∗/
newData← N last items in perfList

/∗ Get the existing performance data excluding the new data ∗/
oldData← perfList − newData

/∗ Get the existing exercised states in performance data ∗/
foreach data in oldData do

state← data.transformToState()
if coverage does not include state then

add state to coverage

end
end
/∗ Check if the new data exercises new states ∗/
foundNew← false

foreach data in newData do
state← data.transformToState()
if coverage does not include state then

foundNew← true /∗ new data exercises new state ∗/
break

end
end
/∗ If new data exercise new states, do not stop the test ∗/
return !foundNew

4.2 Transforming the Collected Metrics into States

When running a load test, we are not particularly interested in the precise performance values that are exercised. Instead, we are interested the
range of values that are exercised. For example, the difference between 75% and 76% CPU utilization is minor, while the difference between 15%
and 75% utilization is relevant. Therefore, we transform the performance metrics values into metric states, i.e., ranges of values. The combination
of these metric states at a given time represents a system state.

4.2.1 Handling Metrics with Upward/Downward Trends

In some cases, a performance metric may show a trend, in which the exercised values are monotonically increasing or decreasing during the test.
Such a monotonic increase or decrease in the values of a so-called trended metric has the consequence that the system is exercised with new
performance behaviour throughout the test. However, if the rate with which the metric increases or decreases is repetitive, the test exercises
repetitive behaviour, and therefore we can stop the test.

To capture repetitiveness in the trend of a metric, we calculate the delta (4) values. The4 value of a metric is the difference between the current
and the previous value of a metric. Figure 2 shows the raw and4 values for the memory usage metric from the example in Table 2, together with
a non-trended metric (RT) for reference.

To determine whether to use the raw or delta values of a metric, we calculate the Spearman correlation between the metric values and the
time [16]. We use the Spearman correlation because it is a nonparametric correlation measure, i.e., it does not make assumptions about the
distribution of the data. We calculate the Spearman correlation by using the cor() function in R. If the metric is correlated with the time (i.e.,
|correlation value| > 0.5 and p-value < 0.05), we use the4 metric values. Otherwise, we use the raw metric values. For our working example in
Table 2, the memory metric has |correlation value| = 1.00 and p-value < 0.05. Therefore, we use the 4 values for the memory metric, whereas
for the other metrics we use raw values.
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FIGURE 2 The MEM,4MEM, and RT metrics from the example in Table 2

4.2.2 Transforming the Metric Values into States

We use a binning algorithm (using the bins() function in R [29]) to transform the metric values into n states. A well-known usage of this algorithm
is by the histogram (hist()) function, which uses the binning algorithm to divide a data set into bins to visualize its distribution. Figure 3 shows the
division of metrics from the example in Table 2 into 3 states. The state boundaries of the states are the red vertical lines in the graphs.
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FIGURE 3 Transforming the values into states for the example from Table 2. The red vertical lines are the state boundaries determining the states

4.3 Determining Whether to Stop the Test

We count the number of unique system states stateunique that the test has exercised every τ minutes. Early in the test, stateunique increases rapidly.
However, as the test progresses, the exercised system states become repetitive, and stateunique stabilizes. Our approach recommends to stop the
test when stateunique no longer increases. It is important to realize that the total number of unique states that can be exercised by the test is not
affected by the choice of τ . However, the sensitivity of when to stop the test is (e.g., for a large τ it will take longer to decide to stop a test than
for a small τ ).

Table 3 shows stateunique of the example in Table 2 for τ = 5. stateunique grows rapidly at the early minutes but stabilizes after t = 25. Our
approach waits for the stateunique for d minutes. For our working example, d = 5 minutes. Therefore, our approach recommends to stop the test
at 30 minutes, as stateunique did not change for 5 minutes.
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TABLE 2 An example of performance metrics and metric states. Orange cells show the low value metric state (i.e., S1), blue cells show the
medium value metric state (i.e., S2), and yellow cells show the high value metric state (i.e., S3)

t Performance metric values Metric state System state

(mins) RT CPU MEM 4MEM IO RT CPU 4MEM IO exercised earlier?

1 65 43 46 46 69 S3 S2 S2 S3

2 78 59 140 94 41 S3 S3 S3 S2

3 36 32 193 53 12 S2 S2 S3 S1

4 23 56 208 15 94 S2 S2 S2 S3

5 39 10 302 94 13 S2 S1 S3 S1

6 38 50 321 19 78 S2 S2 S2 S3 X

7 16 100 330 9 36 S1 S3 S1 S2

8 21 83 340 10 48 S1 S3 S1 S2 X

9 2 13 354 14 75 S1 S1 S2 S3

10 81 42 378 24 35 S3 S2 S2 S2

11 16 88 391 13 66 S1 S3 S1 S3

12 53 80 464 73 15 S3 S3 S3 S1

13 63 23 561 97 48 S3 S1 S3 S2

14 8 25 565 4 20 S1 S2 S1 S1

15 36 64 640 75 92 S2 S3 S3 S3

16 22 84 651 11 47 S2 S3 S1 S2

17 87 84 704 53 61 S3 S3 S3 S2 X

18 40 9 799 95 12 S2 S1 S3 S1 X

19 18 89 813 14 65 S1 S3 S2 S3

20 84 41 829 16 50 S3 S2 S2 S2 X

21 7 25 834 5 21 S1 S2 S1 S1 X

22 79 60 886 52 42 S3 S3 S2 S2

23 38 21 944 58 13 S2 S1 S3 S1 X

24 40 11 1039 95 14 S2 S1 S3 S1 X

25 9 23 1044 5 19 S1 S1 S1 S1

26 64 24 1140 96 49 S3 S1 S3 S2 X

27 46 45 1187 47 70 S3 S2 S2 S3 X

28 17 89 1201 14 67 S1 S3 S2 S3 X

29 55 57 1217 16 93 S3 S2 S2 S3 X

30 46 45 1260 43 70 S3 S2 S2 S3 X

TABLE 3 The stateunique for every 5 minutes in the example in Table 2

t stateunique Stop test?

5 5 No
10 8 No
15 13 No
20 15 No
25 17 No
30 17 Yes



AlGhamdi et al. 9

5 EXPERIMENTAL SETUP

We conduct an experiment on three open source systems to evaluate our approach for reducing the execution time of a load test. In this section,
the three systems are presented along with the workloads that are used in the test.

5.1 Subject Systems

We used the same subject systems as in our prior work [1], to allow comparison of the results of our new and prior approaches. CloudStore [11]
is an open-source e-commerce system, which follows the TPC-W performance benchmark standard [35]. CloudStore is built for performance
benchmarking and contains 40.6k source lines of code (SLOC). PetClinic [33] is an open-source web system providing a simple yet realistic design
of a web system. PetClinic (2k SLOC) was used in prior performance engineering studies [9, 15, 20]. Dell DVD store (DS2, 3.3k SLOC) is an open-
source web system [13] that benchmarks new hardware system installations by simulating an electronic commerce system. DS2 was also used in
prior performance engineering research [27, 30].

5.2 Deployment of the Subject Systems

Our experimental environment consists of 2 Intel CORE i7 servers that run Windows 8 with 16G of RAM. We deploy the systems on one of the
servers, whereas the other server is used to run the load driver. We use the same web server, i.e., Tomcat 7.0.57 [3], and database, i.e., MySQL
5.6.21 [28], for all subject systems.

5.3 Load Tests

To test our subject systems, we use workloads that mimic the real-life usage of the systems under test, and cover all of the common features [6].
The workloads of PetClinic and CloudStore are exercised using Apache JMeter [2].We used a workload that was used in prior work on performance
engineering for PetClinic [9] and for CloudStore [10]. The DS2 system has its own load generator, which generates a workload. The load tests
of all three subject systems are run for 24 hours. We chose to run the tests for 24 hours, because although there exist load tests that run for
longer, for practical reasons 24 hours is the maximum length we would like to assign to our industrial load tests. In addition, using 24 hours for our
experiments allows us to compare the approach that is presented in this paper with our prior approach [1]. We used two different types of load
intensity: random and steady. During the DS2 test, the load intensity is randomly changed every 10 minutes. We used a steady load for CloudStore
and PetClinic. This way, we evaluate our approach using two different types of load intensity.

We would like to emphasize that the purpose of our tests is not to reveal short spikes in performance, or to stress test the subject systems.
Instead, we test whether the systems can handle various expected levels of workload.

5.4 Data Collection

We collect two types of performance metrics during the execution of the load tests.
Physical metrics (CPU,MEM, and IO): The physical performancemetrics measure the performance of the system during the load tests. In particular,
we use a performance monitoring system, PerfMon [26], to collect physical performance metrics.
Domain metric (RT): The domain performance metrics measure the performance of the system from the users’ perspective. In our experiment, the
DS2 load driver automatically calculates RT during the tests. We calculate RT in the CloudStore and PetClinic experiments by analyzing log files
that are generated by JMeter during the tests.

It is challenging to analyze performance metrics that are generated from different sources. Because of the clock skew [14], the data that is
generated from PerfMon, JMeter log files, and the DS2’s load generator may not be generated at exactly the same time. Those resources generate
the performance metric measurements at every 10 seconds. For example, PerfMon may record the CPU utilization at 12:01 (i.e., 12 minutes and 1
second), 12:11 and 12:21, while the response time measurements are generated at 12:05, 12:15 and 12:25. To address this challenge, we calculate
the average value of every three consecutive measurements, and every 30 seconds, we take the average of the metric values at 10, 20, and 30
seconds. Hence, we join the two metrics above by taking the average values of the metrics as the value for 12:30. The downside of this approach
is that spikes in performance that are shorter than 30 seconds are hard to detect. However, as described in the previous subsection, detecting such
short spikes is not the purpose of our tests.
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5.5 Parameters of Our Approach

During the experiment, we configure our approach with the following parameters:

1. n: The number of states in which we divide the metrics. In our experiments, we use n = 3: S1, S2, and S3.

2. τ : The number of minutes, after which we measure stateunique during the execution of the tests. We use τ = 10.

3. d: The length of time that we wait for the test not exercising new system states. We use d = 40 minutes.

These parameter settings were chosen based on our experience with load testing in industry. The τ and d settings impact the sensitivity of our
approach. We discuss the challenges of choosing n in Section 7.

6 EXPERIMENTAL RESULTS

In this section, we present the results of the experiments that we conducted to evaluate our approach. In addition, we compare our approach with
our prior work [1] that recommends to stop a load test based on repetitiveness at the performance metric level. In this section, we evaluate our
approach by answering two research questions:

• RQ1: What is the state coverage at the stopping times that are recommended by our approach?

• RQ2: What is the relevance of the states that are not covered when stopping a load test early?

For each research question, we discuss the motivation, approach and results.

6.1 RQ1: What Is The State Coverage At The Stopping Times That Are Recommended By Our Approach?

Motivation. The goal of our approach is to reduce the execution time of a load test without reducing the information that the test provides. Stopping
a test later increases the chance of receiving more information from the test, i.e., as it covers more system states, but comes at the cost of increased
execution time of the test. On the other hand, stopping a test too early results in missing useful information about the systems’ performance.

Our approach recommends to stop the execution of a performance test when it stops providing new information for d minutes. In this RQ, we
evaluate the state coverage at the recommended stopping times.
Approach. We use the data of the 24-hour test executions to evaluate the cost-effectiveness of the recommended stopping times. We calculate
the state coverage by dividing stateunique at the stopping time by stateunique after exercising the tests for 24 hours. In addition, we compare the
state coverage at the stopping times that are recommended by our new and prior approach. Note that for each test execution, we recommend one
stopping time.
Results.Our approach reduces the execution time of the test by 70%while covering more than 95% of the system states that are exercised in the
24 hours test. Table 4 shows the stopping times that are recommended by our approach and the state coverage at those times. Table 4 shows that
running the tests as long as the recommended stopping times will only yield 5% additional state coverage.

Once the number of unique states that are covered stabilizes, it stabilizes throughout the test. Figure 4 shows the stateunique as the tests
progress. In these graphs, the x-axis shows the time, and the y-axis shows the percentage of state coverage. Overall, while the tests are running,

TABLE 4 The recommended stopping times and the state coverage when applying our approach to the tests

Subject systems # of Covered states1 Stopping time2 Coverage3 Duration4

CloudStore 81 7:30 96% 31%
PetClinic 81 8:10 98% 34%
DS2 66 5:30 95% 23%

1 the number of states that are covered by the 24-hour tests.
2 reported as hours : minutes.
3 percentage of all states that are exercised by the test at the stopping time.
4 percentage of the full execution time, i.e., 24 hours.
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FIGURE 4 State coverage of our experiments over time. The red line is the stopping time that is recommended by our proposed approach. The
blue line is the stopping time that is recommended by our prior approach [1]

TABLE 5 Comparison between the state coverage and the stopping times of new and prior [1] approaches

Our approach Our prior approach

Subject systems Stopping times State coverage Stopping times State coverage

CloudStore 7:30 96% 5:10 (earlier) 89%
PetClinic 8:10 98% 4:20 (earlier) 75%
DS2 5:30 95% 7:50 (later) 95%

the increase rate of stateunique decelerates over the time, until it stabilizes. We find that once the state coverage is stabilized, it remains stabilized
until the end of the test.

Our prior approach misses information about the combinations of metrics for PetClinic and CloudStore. When stopping the test using our
prior approach, some information that our new approach discovers is missed. Table 5 shows that stopping the tests at the stopping times that are
recommended by our prior approach for CloudStore and PetClinic covers only 89% and 75% of the states, compared to 95% and 98% in our new
approach. The stopping time that is recommended by our prior approach for DS2 covers exactly the same amount of information that the stopping
time of our proposed approach does, i.e., 95%, but with a delay of more than two hours.�

�
�
�

Our approach is capable of reducing the execution time of a 24-hour load test for the three subject systems to 23-34%, while
preserving a state coverage of at least 95%.
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FIGURE 5 The difference between a borderline-state and a clearly-identified-state. A metric value that is inside the light grey background area is
considered as close to a state boundary

6.2 RQ2: What Is The Relevance Of The States That Are Not Covered When Stopping a Load Test Early?

Motivation. Although our new approach recommends early stopping times at which a test achieves a high state coverage (more than 95%), there
are still states that are missed by our approach but captured by the 24-hour load tests. In this research question, we study the relevance of these
missed states.

Figure 5 shows an example of the distribution of the performance metrics. In each distribution, two missed system states, i.e., m1 and m2 are
indicated by the blue lines. The MEM value for m1 is close to a state boundary, i.e., inside the light grey background area. The state, into which a
metric value that is close to a state boundary is indicated, might be affected by a few outliers of metric values as such outliers can slightly change
the state boundaries. Therefore, such borderline values might be less relevant if one of the states that the value is close to is already covered.
Approach. To check the relevance of the missed states, we categorize them into two types of states:

• Borderline-states: states of which at least one of their metric values is close to a state boundary.

• Clearly-identified-states: states of which none of their values is close to a state boundary.

We consider a metric value close to a state boundary when the difference between the value and the state boundary is less than 5% of the
standard deviation (std) of the entire metric distribution. The solid red lines in Figure 5 are the state boundaries for the metrics, which transform
the metric values into states. The dashed red lines indicate 5% of the std around the state boundaries, which we use to categorize the missed states
into either borderline-states or clearly-identified-states. Because the MEM value of m1 is close to one of the state boundaries, we categorize m1 as
a borderline-state. We categorize m2 as a clearly-identified-state, because none of its metric values are close to a state boundary.

Furthermore, a borderline-state is considered relevant, if the borderline-state contains new information about the test. The example borderline-state
in Figure 5 can represent two system states, depending on the state boundaries:

• RT:S2, CPU:S1, MEM:S3, and IO:S1, or

• RT:S2, CPU:S1, MEM:S2, and IO:S1

If neither of these two system states are covered by the test before the recommended stopping time, we consider the borderline-state as a
relevant-borderline-state, because the state contains new information that our approach misses to capture, regardless of the state boundary of the
MEM metric.

We compare our two approaches using the coverage-opportunity metric. Coverage-opportunity is measured as the number of new relevant
states (clearly-identified-states or relevant-borderline-states) that can be covered by running the test longer. We calculate and compare the coverage-
opportunity metrics of the three subject systems at the stopping times that are recommended by our two approaches. The coverage-opportunity
metric is calculated as follows:

coverage-opportunity =
missedclear +missedrelevant
required-execution-time
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TABLE 6 The states that are missed by our approach and captured by the 24-hour load tests

Missed states Borderline-states Relevant-borderline Clearly-identified

CloudStore 3 2 1 0
PetClinic 2 0 0 2
DS2 3 2 1 0

TABLE 7 The states that are missed by our prior approach [1] and captured by the 24-hour load tests

Missed states Borderline-states Relevant-borderline Clearly-identified

CloudStore 9 7 2 1
PetClinic 20 0 0 20
DS2 3 2 1 0

TABLE 8 The coverage-opportunity metrics of our approaches.

Coverage-opportunity metric

Prior approach New approach

CloudStore 0.6 0.4
PetClinic 3.2 0.8
DS2 0.4 0.2

Where the required-execution-time is the duration of time (in hours) the test requires to cover the missed states, missedclear is the number of
missed clearly-identified states, and missedrelevant is the number of missed relevant borderline states. If the coverage-opportunity is small, it is not
cost-effective to run the test longer.
Results. 4 out of 8 states that are missed by our new approach in comparison to the 24-hour load tests are relevant. Table 6 shows that our
approach misses 1 relevant state out of 3 missed states for CloudStore, 2 relevant states out of 2 missed states for PetClinic, and 1 relevant state
out of 3 missed states for DS2.

24 out of 32 states that aremissed by our prior approach and captured by the 24-hour tests are relevant. Table 7 shows that our prior approach
misses 3 relevant states out of 9 missed states for CloudStore, 20 relevant states out of 20 missed states for PetClinic, and 1 relevant state out 3
missed states for DS2. Hence, our prior approach not only misses more states than our new approach, the portion of missed states that are relevant
is also higher.

The coverage-opportunity metric values of our new approach are smaller than of our prior approach for all subject systems. Table 8 shows the
coverage-opportunity metrics for all three subject systems. Table 8 shows that the stopping times that are recommended by our approach are more
cost-effective than the stopping times that are recommended by our prior approach.�

�
�
�

Our approach misses a small number of relevant states for all subject systems. The coverage-opportunity metric values of the
approach that is presented in this section are smaller across all systems than the coverage-opportunity metric values of our prior
approach, which indicates that our new approach recommends more cost-effective stopping times.

7 CHALLENGES AND LESSONS LEARNED

In this paper, we propose an approach for deciding when to stop a load test, while taking combinations of performance metrics into account. We
are partially successful in our approach. In our experiments on three open source systems, our experimental results show that we can successfully
recommend when to stop the load test. However, during our experiments we ran into several challenges which currently prevent us from applying
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our approach in a larger, industrial setting. In this section, we elaborate on these challenges.We call upon the community to address these challenges
in future studies.

Challenge C1: State explosion

The applicability of our approach is currently limited by the choice of n, the number of states in which we divide the metrics, and the number of
performance metrics p. As the theoretical number of system states is np, the number of system states explodes for larger choices of n and p. As the
differences between these states is often minor, the system will likely exhibit many different states during the test. Hence, detecting the stability
of a load test is difficult for a large number of system states.

A possible solution to the state explosion problem is to prune the total number of states that a test can theoretically cover based on several
heuristics. First, we should remove correlated performance metrics, as many performance metrics are highly correlated [24], which should reduce
the number of metrics. In addition, we should focus only on system states that are realistic and relevant for the application. For example, a memory-
intensive applicationmay not exhibit all system stateswith a high CPUutilizationwhen executing a representativeworkload. Hence, when detecting
the stability of a load test for such an application, we should only look whether states that would occur during a realistic workload were already
exhibited by the test. Such states can be captured from production systems. To provide amore generic approach, we are calling upon the community
to provide such performance data from production systems.

Challenge C2: Deciding on the state boundaries

We currently use the bins() function in R to transform the metric values into n states. This function has two disadvantages: (1) the algorithm
used by the function divides the metric values into bins of equal size, and (2) the number of bins needs to be configured. We realized during our
experiments that for many performance metrics the values are not uniformly distributed. Therefore, based on the choice of n, states could have a
very small range. This small range can be a problemwhen reaching themaximum capacity of a resource (e.g., 90–95% vs. 95–100%CPU utilization).
We currently (partially) address this problem by introducing borderline-states and clearly-identified-states in Section 6.2 but the interpretation and
correctness of these ‘fuzzy’ state boundaries requires a large amount of domain knowledge. Future studies should investigate more automated
approaches for deciding on the state boundaries, such as automated clustering approaches.

Challenge C3: Determining the correctness of the recommended stopping point

Unlike functional testing, for which it is straightforward to determine whether a test passes or fails, load tests require more interpretation of their
results. Hence, it is not a simple task to determine whether the reduced tests still fully represent the characteristics of the original load test. The
most intuitive approach is to include domain experts in reviewing the reduced tests. The domain experts may indicate whether a reduced test
is representative enough. If the reduced tests misses important information, pointing out the exact missed information can be of great help for
us to improve the approach. However, first of all, such activities requires a large effort from practitioners and more importantly, the reviewing
itself is challenging. Even the experts may not have a clear vision of whether two load test results are representative of each other. Knowing the
representativeness of a load test is still an open research challenge.

Challenge C4: Reservation of practitioners

The last challenge of adopting our approach in industry is not technology-related, but rather relates to social factors. On the one hand, practition-
ers often consider the long-running load tests as resource consuming and cost-ineffective. On the other hand, when we propose an automated
approach to recommend when to stop a load test to practitioners, they are often reluctant to use and depend on that approach in their work envi-
ronment. The reason is that for many practitioners, the danger of missing critical performance information outweighs the burden of a long-running
load test.

Unfortunately, the solution for this challenge lies in the solution for challenge C3, as we need a decisive way to determinewhether our suggested
stopping points are indeed correct. Future studies should investigate the important problem of whether a load test is representative of a system’s
real workload.
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8 THREATS TO VALIDITY

This section discusses the threats to the validity of our study.

8.1 Threats to Internal Validity

Determining the System States. In our approach, every state is represented by a range of values for a metric. We determine a state by calculating
cutting lines for each metric. These cutting lines might be too stringent. For example, if high CPU utilization is between 100% and 75%, and the
test generates two consecutive values for the CPU metric of 74% and 76%, they are transformed into two different states, even though their
difference is small. In future work, we will experiment with techniques for defining more fuzzy state boundaries.

8.2 Threats to External Validity

Our Subject Systems. To evaluate our proposed approach, we conducted experiments on three open source online transaction processing systems
(i.e., CloudStore, PetClinic, and DS2). All studied systems are used in prior work on performance engineering [9, 15, 20, 27, 30]. We selected
systems that use different programming languages: PHP for DS2, and Java for CloudStore and PetClinic. Future studies are necessary to evaluate
our approach on large industrial systems and on systems from different domains.
IdentifyingMetricswithUpward/DownwardTrends. In Section 4.2.1we describe thatwe identify trends inmetrics using the Spearman correlation.
An internal threat to the validity of our approach is that we assume that the trend of a metric is constantly increasing or decreasing throughout
the whole duration of the test. An alternative approach is to consider trends within a shorter time window. Future studies should investigate how
one can best define the size of the time window during which it is decided whether a metric is trended.
Our Load Tests. In our experiment, we used two different types of loads: a random load for DS2, and a steady load for PetClinic and CloudStore.
Also, we used two load drivers: the JMeter and DS2 load drivers. Future studies should evaluate our approach using other load test drivers and
more complex (e.g., industrial) workloads.

8.3 Threats to Construct Validity

The Choice of Our Performance Metrics. During a typical load test, hundreds of performance metrics are collected, most of which are highly
correlated [24], and under a limited number of categories. When conducting our experimental study we used only four metrics but from different
categories. Our approach is not theoretically limited to a specific number of metrics, but as discussed in Section 7, there is a practical limit. Future
studies should evaluate our approach with a larger set of metrics, to better understand what this practical limit is. In addition, it is essential to select
the right metrics to capture the performance state of an application. The metrics we chose are examples of common choices, but these choices
may depend strongly on various aspects of the application (e.g., the type, the environment and the implementation language(s)). For example, for
Java applications it may be necessary to monitor both process and JVMmemory usage. The ideal choice of performance metrics is one that should
be made based on experience with the application and environment. We assume that if metrics are not monitored they do not matter for testing
the application under load.
Repetitiveness of a Test. We assume that a load test contains a certain degree of repetitiveness. Future studies are necessary to investigate how
our approach works for tests with changing workloads, e.g., tests that contain bursty workloads [8, 25].
The 24 Hours Execution Time of the Load Test. In our experiments we ran the load tests for the subject systems for 24 hours. We chose to run the
tests for 24 hours because it is the maximum execution time we would be comfortable with for an industrial load test. The difficulty of deciding
when to stop a load test is one of the main drivers for our research. In practice, the stopping times of load tests are chosen based on the experience
of load testers. As a result, ‘golden standard’ load tests do not exist which makes the evaluation of our approach challenging – a limitation of our
approach that was also present in our prior work and related work (e.g., by He et al. [18] who used one-week load tests instead of our 24 hours
load tests). Our approach aims at making this choice more systematic rather than based on gut feeling.

We acknowledge that the improvements that we report in terms of execution time depend on the length of the original load test. However, the
exact improvements that our approach achieves are not very important, as they rely on the system under test and the workload as well. Table 4
shows that the 24-hour test is long enough for the CloudStore and the PetClinic systems, as all 81 theoretically possible states are exercised during
the test. The load test for the DS2 system exercises only 66 out of the 81 theoretically possible states, which indicates that for some systems, it
may be more difficult to exercise all system states. It is possible that allowing the test to run longer exercises more states. Future studies on more
systems are necessary to investigate whether there exists an ‘ideal’ load test length that generalizes to more than one system.



16 AlGhamdi et al.

9 CONCLUSION

Conducting a proper load test before releasing a software system is critical, as such a test helps to ensure the performance of the system in the field.
However, the time that is available to conduct a load test is usually limited. In our prior work [1], we proposed an approach that recommends when
to stop a load test based on repetitiveness in observed metric values. In this paper, we propose an improved approach that considers combinations
of performance metrics as well.

Our approach measures the number of new system states, i.e., the combinations of metric value states, that a test exercises. Once the test no
longer exercises new system states in a given time frame, our approach recommends to stop the test. We evaluate our approach in experiments
on three open source systems (i.e., CloudStore, PetClinic and Dell DVD Store). The most important results of our experiments are:

1. Our proposed approach stops our load tests within 8.5 hours, while covering at least 95% of the system states that are covered by the
original 24-hour load tests.

2. Our proposed approach recommends more cost-effective stopping times than our prior approach [1].

While our new approach is an improvement over our prior approach, there exist several challenges which currently prevent us from applying
our approach in a larger, industrial setting. The most important challenges are the risk of state explosion, and the difficulty of deciding on the
representativeness of the shorter load test. We call upon the community to dedicate more research to this important industrial problem.
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