
Log4Perf: Suggesting Logging Locations for Web-based Systems’
Performance Monitoring

Kundi Yao, Guilherme B. de Pádua, Weiyi Shang

Department of Computer Science and Software

Engineering

Concordia University

Montreal, Quebec, Canada

{ku_yao,g_bicalh,shang}@encs.concordia.ca

Steve Sporea, Andrei Toma, Sarah Sajedi

ERA Environmental Management Solutions

Montreal, Quebec, Canada

ABSTRACT
Performance assurance activities are an essential step in the release

cycle of software systems. Logs have become one of the most im-

portant sources of information that is used to monitor, understand

and improve software performance. However, developers often face

the challenge of making logging decisions, i.e., neither logging too

little and logging too much is desirable. Although prior research has

proposed techniques to assist in logging decisions, those automated

logging guidance techniques are rather general, without consid-

ering a particular goal, such as monitoring software performance.

In this paper, we present Log4Perf, an automated approach that

provides suggestions of where to insert logging statement with the

goal of monitoring web-based systems’ software performance. In

particular, our approach builds and manipulates a statistical per-

formance model to identify the locations in the source code that

statistically significantly influences software performance. To eval-

uate Log4Perf, we conduct case studies on open source system, i.e.,

CloudStore and OpenMRS, and one large-scale commercial system.

Our evaluation results show that Log4Perf can build well-fit sta-

tistical performance models, indicating that such models can be

leveraged to investigate the influence of locations in the source code

on performance. Also, the suggested logging locations are often

small and simple methods that do not have logging statements and

that are not performance hotspots, making our approach an ideal

complement to traditional approaches that are based on software

metrics or performance hotspots. Log4Perf is integrated into the

release engineering process of the commercial software to provide

logging suggestions on a regular basis.

CCS CONCEPTS
• General and reference → Performance; • Software and its
engineering → Software performance;

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPE’18, April 9–13, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.

ACM ISBN ISBN 978-1-4503-5095-2/18/04. . . $15.00

https://doi.org/10.1145/3184407.3184416

KEYWORDS
Software logs; Logging suggestion; Performance monitoring; Per-

formance modeling; Performance Engineering

ACM Reference Format:
Kundi Yao, Guilherme B. de Pádua, Weiyi Shang and Steve Sporea, An-

drei Toma, Sarah Sajedi. 2018. Log4Perf: Suggesting Logging Locations for

Web-based Systems’ Performance Monitoring. In ICPE ’18: ACM/SPEC In-
ternational Conference on Performance Engineering, April 9–13, 2018, Berlin,
Germany. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3184407.3184416

1 INTRODUCTION
The rise of large-scale software systems, such as web-based system

like Amazon, has imposed an impact on people’s daily lives from

mobile devices users to space station operators. The increasing

importance and complexity of such systems make their quality a

critical, yet a hard issue to address. Failures in such systems are

more often associated with performance issues, rather than with

feature bugs [39]. Therefore, performance assurance activities are

an essential step in the release cycle of large software systems.

Monitoring performance of large systems is a crucial task of

performance assurance activities. In practice, performance data

is often collected either based on system-level information [17],

such as collecting CPU usage, or application-level information,

such as response time or throughput. In particular, Application

Performance Management tools, such as Kieker [38], are widely

used in practice. They collect performance data from the systems

when they are running in the field environment. However, such

system or application-level performance data often leads to the

challenges of pinpointing the exact location in the source code that

is related to performance issues.

On the other hand, the knowledge of logs has been widely iden-

tified to improve the quality of large software systems [14, 15, 24,

25, 33]. Prior research proposed and used logs to monitor and im-

prove software performance [14, 15, 24, 33]. The success of those

performance assurance techniques depends on the well-maintained

logging infrastructure and the high quality of the logs. Although

prior research has proposed various approaches to improve the

quality of logs [21, 27, 28, 42, 43, 46, 47], all of these approaches

consider logs in general, i.e., not considering the particular need of

using logs for performance assurance activities. Therefore, the sug-

gested improvement of logs may not be of interest in performance

assurance activities.

In this paper, we present an approach that automatically pro-

vides logging location suggestion for web-based systems based on

https://doi.org/10.1145/3184407.3184416
https://doi.org/10.1145/3184407.3184416
https://doi.org/10.1145/3184407.3184416

the particular interest in performance modeling. Our approach first

automatically insert logging statements into the source code. Af-

ter conducting performance tests with the system, our approach

builds statistical performance models to represent the system per-

formance (such as CPU usage) using logs that are generated by the

automatically inserted logging statements in the source code. By im-

proving and analyzing statistical performancemodels, our approach

identifies the logging statements that are statistically significant in

explaining the system performance. Such logging statements are

suggested to practitioners as potential logging locations for the use

of performance assurance activities.

We evaluate our approach with two open source systems, namely

OpenMRS and CloudStore, and one commercial system. Our eval-

uation results show that we can build high-quality statistical per-

formance models with R2 between 26.9% and 90.2%. By studying

the suggested logging locations, we find that they all have a high

influence on the system performance. Also, these locations cannot

be identified using code complexity metrics or detected as perfor-

mance hotspots. This paper makes the following contributions:

• To the best of our knowledge, our work is the first to provide

logging suggestions with the particular goal of performance

monitoring.

• We propose a statistically rigorous approach to identifying

source code locations that can statistically explain system

performance.

• The outcome of our approach can complement the use of

traditional code metrics and performance hotspots to assist

performance engineers in practice.

Our approach is already adopted in an industrial environment

and is integrated into a continuous deployment environment. De-

velopers receive logging suggestions from our automated approach

regularly to better monitor the system performance in the field.

The rest of this paper is organized as follows: Section 3 presents

our automated approach to suggest logging locations. Section 4 and

5 present the results of evaluating our approach through answering

three research questions and discuss related topics based on the

results. Section 6 presents the prior research that is related to this

project. Section 7 presents the threats to the validity of our study.

Finally, Section 8 concludes this paper.

2 A MOTIVATING EXAMPLE
Tom is a performance engineering of an e-commerce web system.

He often uses the information from web logs (e.g., page requests)

to build performance models to understand system performance or

to detect performance issues.

Tom finds that the performance models are often unreliable in

predicting the system’s performance. He examines the performance

of each log entry and found that some entries have a significant

variance. However, there is not enough information in the web logs

to accurately pinpoint the issue for further monitoring. Hence, by

knowing only which web requests were called is not enough to

explain the performance of the system.

Let us consider an example (Algorithm 1) in which the function

process a list of products of a given signed-in customer. The prod-

ucts have an expiration date and, if they are expired, the program

needs to consult a different supplier. In this example, the method

LoadProductStock response time varies according to different fac-

tors, such as the number of products for that customer, and whether

the products are expired or not. If the products are not expired the

method might return very fast; while if the current customer has

many expired products, there will be too many calls to consult

suppliers, leading to the significantly long response time.

Algorithm 1 Example: Load products that has an expiration date.

1: function LoadProductStock(c)
2: products ← product list of customer c
3: for each p in products do
4: if IsExpired (p) then
5: p.Stock ← StockFromSupplier (p)
6: end if
7: end for
8: end function

Although Tom can identify and monitor some complex requests

in the web logs, he finds that some complex requests may not be

so useful to monitor, since they have a steady performance behav-

ior. For those cases, the information provided by the web logs is

sufficient. Nevertheless, for the requests that their performance is

not steady (e.g., Algorithm 1), there exists a high degree of uncer-

tainty. Due to this reason, Tom needs to manually go through all the

web log entries to find the scenarios (e.g., particular customer and

product(s)) that required further monitoring and, therefore, require

more logging statements. For a large-scale systemwith a non-trivial

workload, this manual operation is not feasible, and, consequently,

Tom needs a technique to automatically suggest where the monitor-

ing and logging are needed, without repetitive information. Such

technique would significantly reduce the uncertainty of monitoring

or not the right places.

In this next section of this paper, we will present an approach

that seeks to suggest logging locations by examining whether the

location in the source code can provide significant explanatory

power to the systems’ performance.

3 APPROACH
In this section, we present our approach that can automatically

suggest logging locations for software performance monitoring. To

reduce the performance overhead caused by introducing instrumen-

tation into the source code, we first leverage the readily available

web logs to build a statistical performance model, and we identify

the web requests that are statistically significantly performance-

influencing. In the second step, we only focus on the methods that

are associated with the performance-influencing web requests and

identify which method is statistically significantly performance-

influencing. Finally, we focus on the basic block in the source code

that is associated with the performance-influencing method, and

we identify and suggest the code blocks that logs should be inserted.

For each step, we apply a workload on the subject system while

monitoring its performance. Afterwards, we build a statistical model

for the performance of the subject system using either the read-

ily available web logs or the automatically generated logs from

instrumentation during the workload. Using the statistical perfor-

mance model, we identify the statistically significant performance-

influencing logging statements. The overview of our approach is

presented in Figure 1.

Step 1: Identifying performance-influencing web
requests
In the first step, we aim to identify the source code associated with

the web requests that influence system performance.

1.1 Parsing web logs
We run performance test for our subject systems and monitor

their performance during the test. After the performance test, we

parse the generated web logs. In particular, we keep the time stamp

of the web log and the web request (e.g., a restful web request).

We then calculate log metrics based on those logs. Each value

of each log metric L is the number of times that each web request

executes during the period. For example, if a web request index.jsp
is executed 10 times during a 30-second time period, the metric

index.jsp’s value is 10 for that period.

1.2 Building statistical performance models using web logs
We follow a model building approach that is similar to the ap-

proach from prior software performance research [17, 33, 40]. We

build a linear regression model [20] to model the performance of

the software. We choose linear regression model because: 1) the

goal of the approach is not to build a perfect model but to interpret

the model easily instead, and 2) prior research used such modeling

techniques to model software performance [17, 18, 40]. We use

the log metrics that are generated from web logs as independent

variables. The dependent variable of the model is the performance

metrics that are collected during applying the load on the software

system, such as CPU usage.

After building a linear regression model for the performance

of the software, we examine each independent variable, i.e., log

metric, to see how statistically significant it is to the model’s output,

i.e., performance metrics. In particular, we only consider the log

metrics that have p-value ≤ 0.05. Since each log metric represents

the number of times that the associated source code of each web

request executes, the significance of a log metric shows whether the

execution of the web log associated source code has a statistically

significant influence on the software performance. Based on the list

of statistically significant log metrics, we identify the performance-

influencing web requests.

Step 2: Identifying performance-influencing
methods
In the second step, we focus only on the performance-influencing

web requests, and we aim to identify which methods in the source

code are statistically significantly influencing performance. To re-

duce the performance overhead of the instrumentation, we note that

every time we only focus on one performance-influencing web re-

quest. If multiple web requests are found performance-influencing,

we repeat this step for every one of them.

2.1 Automatically inserting logging statements into meth-
ods

In this step, we automatically insert a logging statement into

every method that is associated with the performance-influencing

web requests. We use source code analysis frameworks, such as

Eclipse JDT [2] and .NET Compiler Platform (“Roslyn”) [5], to parse

the source code and to identify the associated methods in the source

code. We automatically insert a logging statement based on Log4j2
and Log4Net.Async at the beginning of each method source code.

Since the goal of our approach only suggests the location to insert

logging statement, we only print the time stamp and the method

signature using the logging statement. After re-building the systems

and applying performance tests to each subject system, logs will

be generated automatically.

Similar to step 1.1, we parse both the web logs and the logs that

are generated by our inserted logging statement. Then we generate

log metrics based on these logs.

2.2 Reducing metrics
Intuitively, methods that never execute during a workload, or the

execution of the method has a constant value during the workload

do not influence the performance of the system. Hence, we first

remove any log metric that has constant values in the dataset.

Methods may often be called together, or one method may always

call another one. In such cases, not all methods need to be logged.

Hence, we perform a correlation analysis on the log metrics [26].

We used the Pearson correlation coefficient among all performance

metrics from one environment. We find the pair of log metrics that

have a correlation value higher than 0.9. From these two log metrics,

we remove the metric that has a higher average correlation with all

other metrics. We repeat this step until there exists no correlation

higher than 0.9.

We then perform redundancy analysis on the log metrics. The

redundancy analysis would consider a log metric redundant if it

can be predicted from a combination of other metrics [23]. We use

each log metric as a dependent variable and use the rest of the

log metrics as independent variables to build multiple regression

models.We calculate theR2 of eachmodel and if theR2 is larger than
a threshold (0.9), the current dependent variable (i.e., log metric)

is considered redundant. We then remove the performance metric

with the highest R2 and repeat the process until no log metric can

be predicted with R2 higher than the threshold. For example, if

method foo can be linearly modeled by the rest of the performance

metrics with R2>0.9, we remove the metric for method foo.

2.3 Building statistical performance models using both web
logs and our generated logs

In this step, we build a similar statistical model as step 1.2. As

a difference, we do not include the log metrics from web logs that

are found not performance influencing from step 1.2. We follow

the same model building process and the same way of identifying

statistically significant log metrics. The outcome of this step is the

methods that are statistically significantly performance-influencing.

Figure 1: An overview of our approach. The numbered steps in the figure correspond to the steps in Section 3.

Step 3: Identifying performance-influencing
basic code blocks
A method may be long and consist of many basic blocks. It may be

the case that only a small number of basic blocks are performance-

influencing. Therefore, in the final step, we focus only on the

performance-influencing methods, and we aim to identify which ba-

sic code block is performance-influencing. Similarly, every time we

only focus on onemethod. If multiplemethods are found performance-

influencing, we repeat this step for each method.

We use the code analysis frameworks to identify basic blocks

of each performance-influencing methods. If a performance influ-

encing method only contains one basic block, we do not proceed

with this step. For the methods with multiple basic blocks, similar

to step 2.1, we automatically insert logging statement into every

basic block and generate log metrics by both the web logs and our

generated logs. We also follow a similar approach as step 2.2 and 2.3

to identify which code block is statistically significantly influenc-

ing performance. We then automatically suggest to developers the

logging statement insertions into the basic code block, to assist in

performance monitoring. If none of the log metrics that are based

on basic blocks are significant, we suggest to developers the direct

insertion of logging statement at the beginning of the method itself.

4 EVALUATION
In this section, we first present the setup of our evaluation, in-

cluding the subject systems, the workload, and the experimental

environment. Then we evaluate our approach by answering three

research questions. For each research question, we present the mo-

tivation for the question, the approach that we use to answer the

question and finally the results.

4.1 Subject systems and their workload
We evaluate our approach with open-source software, including

OpenMRS and CloudStore, and one commercial software, ES. The
overview of the subject software is shown in Table 1.

Table 1: Overview of our subject systems.

Subjects Version SLOC (K) # files # methods

CloudStore v2 7.7 98 995

OpenMRS 2.0.5 67.3 772 8,361

ES 2017 >2,000 >9,000 >100,000

4.1.1 OpenMRS. OpenMRS is an open-source patient-basedmed-

ical record system commonly used in developing countries. Open-
MRS is built by an open community that aims to improve healthcare

delivery through a robust, scalable, user-driven, open source medi-

cal record system platform. Their application design is customizable

with low programming requirements, using a core application with

extendable modules. We choose OpenMRS since it is highly con-

cerned with scalability and its performance has been studied in

prior research [13]. OpenMRS provides a web-based interface and

RESTFul services. We deployed the OpenMRS version 2.0.5 and

the data used are from MySQL backup files that are provided by

OpenMRS developers. The backup file contains data for over 5K

patients and 476K observations. We use the RESTFul API test cases

created by Chen et al. [13]. The tests are composed of various

searches, such as: by patient, concept, encounter, and observation,

and editing/adding/retrieving patient information. The tests include

randomness to simulate real-world workloads better. We keep the

workload running for five hours. To minimize the noise from the

system warmup and cool-down periods, we do not include the data

from the first and last half an hour of running the workload. In the

end, we keep four hours of data from each performance test.

4.1.2 CloudStore. CloudStore is an open-source sample e-commerce

web application developed to be used for the analysis of cloud char-

acteristics of systems, such as capacity, scalability, elasticity, and

efficiency. It follows the functional requirements defined by the

TPC-W standard for verifiable transaction processing and database

benchmarks data [7]. It was developed to validate the European

Union funded project called CloudScale [1]. We choose CloudStore
due to its importance in improving cloud systems performance and

scalability. It has also been studied in prior research [13]. We de-

ployed the CloudStore version v2 and the data used was generated

using scripts provided by CloudStore developers. The generated

data for CloudStore contains about 864K customers, 777K orders,

and 300 items. We use the test cases created by Chen et al [13]

to cover searching, browsing, adding items to shopping carts, and

checking out. The tests include randomness to simulate real-world

workloads better. For example, there is randomness to ensure that

some customers may check out, and some may not. We run the

performance tests with the same length as OpenMRS.

4.1.3 ES. ES is a commercial software that provides government-

regulation related reporting services. The service is widely used

as the market leader of its domain. Because of a non-disclosure

agreement, we cannot reveal additional details about the system.

We do note that it has over ten years of history with more than

two million lines of code that are based on Microsoft .Net. We run

a typical loading testing suite as the workload of the system.

4.2 Experimental environment
The experimental environment for the open-source software is set

up on three separate machines. The first machine is the database

server; the second is the web server in which the web application

was deployed and, finally, the third machine simulates users using

the JMeter load driver [11]. Thesemachines have the same hardware

configuration, which is 8G of RAM and Intel Core i5-4690 @ 3.5

GHz quad-core CPU. They all run the Linux operating system and

are connected to a local network.

We use PSUtil [6] to monitor the performance of the software. To

minimize the noise of other background processes, we only monitor

the process of the subject system that is under the workload. We

monitor the CPU usage during the workload for every 10 seconds.

In particular, similar to prior research [10, 37], CPU percentage of

the monitored process between two timestamps are calculated as

the CPU usage of the corresponding workload during the period.

The experimental environment for ES is an internal dedicated

performance testing environment, also with three machines. The

testing environment is deployed with performance monitoring

infrastructure. Similar to the open-source software, we monitor

the CPU usage of the process of ES for every 10-seconds and use a

logging library to generate automatically instrumented logs.

To combine the two datasets of performance metrics and logs,

and to further reduce the impact of recording noises, we calculate

the mean values of the performance metrics in every 30 seconds.

Then, we combine the datasets of performance metrics and system

throughput based on the time stamp on a per 30-seconds basis. A

similar approach has been applied to address mining performance

metrics challenges [19]. We use Log4J2’s asynchronous logging to

generate the automatically instrumented logs since it is shown to

have the smallest performance overhead [4].

RQ1: How well can we model system
performance?
Motivation.

The success of our approach depends on the ability to build a

well fit statistical models for software performance. If the models

built by our approach are of low quality, we cannot use such models

to understand the influence of logged source code locations (i.e., log

metrics) to the software performance (i.e., performance metrics).

Additionally, the automatically inserted logging statements have an

impact on software performance. If the performance is influenced

by those inserted logging statements, instead of the existing source

code itself, our model cannot be used to identify performance-

influencing source code locations to log.

Furthermore, if we identify too many locations that are statisti-

cally significantly influencing performance, it is not practical for

developers to log all locations nor can developers deeply investigate

every location to ensure the need for logging. Besides, if all the

identified locations are already well logged, developers may not

need our approach’s logging suggestion.

Approach.
We measure the model fit to assess the quality of the statistical

models for software performance. In particular, we calculate the

R2 of each model to measure model fit. If the model perfectly fits

the data, the R2 of the model is 1, while a zero R2 value indicates
that the model does not explain the variability of the dependent

variable (i.e., performance metric). We also count the number of

logging locations that are suggested by our approach. For every

suggested logging location, we manually examine whether there

already exists a logging statement.

Results.
Our model can well explain system performance. Shown by

Table 2, our statistical performance models have an R2 of 26.9% and

90.2%. Such high values of the model fit confirms that our perfor-

mance models can well explain system performance. By looking

closely at the models, we can see that the models with our auto-

matically inserted logging statement typically has higher R2 than
the models that are only using web logs. For example, by insert

logging statements into two methods in OpenMRS, the fit of the

performance model almost doubles (from 26.9% to 46.3%). However,

the models that are with inserted logging statements into basic code

blocks have a relatively smaller increase of R2 in comparison to the

ones with method-level logging. In the same example of OpenMRS,

inserting the logs into basic code blocks only provides 1.6% increase

of the R2.
Our approach does not suggest an overwhelming amount of
logging locations for performance modeling. In total, our ap-

proach suggests three, two, and four locations for CloudStore, Open-

MRS, and ES respectively. We consider such an amount of sugges-

tion as an appropriate amount for practitioners. By measuring the

total number of methods in the subject systems, we only suggest to

log in less than 0.5% of them. By providing such suggestions to our

industrial practitioners, we also received the feedback that such an

amount of suggestions is not overwhelming. Hence, practitioners

can allocate resource to examine each suggestion and make the final

decision of whether to insert logging statements to those locations.

Moreover, by manually examining each of the logging locations,

we find that None of the suggested logging locations contain
logging statements. This implies that our approach may provide

additional information about the system performance other than

what is already known by developers.

The logging locations suggested by our approach signif-

icantly improve the performance models that are with a

high model fit. None of those locations initially contain a

logging statement.

RQ2: How large is the performance influence by
the recommended logging locations?
Motivation.

In the previous research question, we find that, with our ap-

proach, we can suggest logging locations that are statistically sig-

nificant for performance modeling. Even though these logging

locations are statistically significant, the effect of the logging lo-

cation may still be trivial. Therefore, in this research question, we

would like to examine the magnitude of the influence on system

performance by our suggested logging locations.

Approach.
To understand the magnitude of the influence on system perfor-

mance by our recommended logging locations, we first calculate

Pearson correlation between the system performance, i.e., CPU,

and with the appearance of the suggested logging locations. Higher

correlation implies that the suggested logging locations may have

a higher influence on the system performance.

To quantify the influence, we follow a similar approach used in

prior research [31, 35]. To quantify this magnitude, we set all of the

metrics in the model (each as a suggested logging location) to their

mean value and record the predicted system performance. Then,

to measure the effect of every logging location, we keep all of the

metrics at their median value, except for the metric whose effect we

wish to measure. We double the median value of that metric and re-

calculate the predicted system performance. We then calculate the

percentage of difference caused by doubling the value of that metric.

For example, if the CPU is 60% at all metrics with median value and

90% by increasing one log metrics, the effect is 0.5, i.e.,

90% − 60%

60%

.

The effect of a metric can be positive or negative. A positive effect

means that a higher chance of execution the suggested logging

location may increase the system performance, e.g., higher CPU

usage. This approach permits us to studymetrics that are of different

scales, in contrast to using odds ratios analysis, which is commonly

used in prior research [34].

Results.
The appearance of the suggested logging locations influ-

ences the system performance. Table 3 shows that the appear-
ance of the suggested logging locations typically has a strong

correlation to system performance. In CloudStore, all of the log-

ging locations have a strong correlation to CPU usage, while the

correlations are moderate in OpenMRS. The relative effect shows

the influence of one method while controlling all other methods.

DaoImpl.getCurrentSession() in CloudStore has the largest ef-

fect when the appearance of the method is double to its median

value: the CPU usage increases 124%. Table 3 shows that even

method with a small effect, e.g., ConceptServiceImpl.getFalse-
Concept(), can increase the CPU usage by 19% if doubling its ap-

pearance.

Table 2: R2 values of the statistical performance models built by our approach.

Cloud Store

Steps: Web request name Method name/Block location

R2

Original With logging statement as a metric

Step 1: Web logs only N/A 90.20% N/A

Step 2: With method instrumentation

"cloudstore/ " HomeController.getProductUrl()) (No block) 78.50% 80.50%

"cloudstore/buy" DaoImpl.getCurrentSession()(No block) 49.40% 49.50%

"cloudstore/search" ItemDaoImpl.findAllByAuthor() 78.00% 81.20%

Step 3: With block instrumentation "cloudstore/search" ItemDaoImpl.java, line 233 to 243 81.30% 81.60%

OpenMRS

Steps: Web request name Method name/Block location

R2

Original With logging statement as a metric

Step 1: Web logs only N/A 26.90% N/A

Step 2: With method instrumentation concept/

ConceptServiceImpl.getAllConcepts()

ConceptServiceImpl.getFalseConcept()

46.30% 47.80%

Step 3: With block instrumentation concept/

ConceptServiceImpl.java, line 300 to 302

ConceptServiceImpl.java, line 929 to 930

47.90% 48.00%

ES

Steps: Web request name Method name/Block location

R2

Original With logging statement as a metric

Step 1: Web logs only N/A 43.80% N/A

Step 2: With method instrumentation

Web request A

file1.m()

file2.n()

75.90% 76.40%

Web request B (No significance) 30.00% N/A

Web request C

file3.o()

file4.p()

42.90% 43%

Step 3: With block instrumentation

Web request A

file1, block.r

file2, block.x

70.80% 70.80%

Web request C

file3, block.y

file4, block.z

76.00% 76.30%

“No block” means that the method only has one basic block in the method body.

“No significance” means that none of the methods are significant in the performance model.

We only present the class names, the method names and the file names due to the limit of space, without showing the package names and the full path of the

files.

The influence on the system performance may be both
positive or negative.We find that some suggested logging loca-

tions in ES may have a negative influence on the CPU usage of

the system, i.e., the higher the appearance of the logging location,

the lower the CPU usage. By manually examining those methods,

we find that these methods are related to synchronized external

dependency, i.e., the invocation of these methods will cause the

system to wait, leading to lower CPU usage. By having these logs,

developers can consider addressing such synchronized dependency

based on how often real-life users call these methods.

Our suggested logging locations have influences on system

performance; while such influence can be both positive and

negative.

RQ3: What are the characteristics of the
recommended logging locations?
Motivation.

In the previous research questions, we leverage our approach

to suggest logging locations to assist in performance modeling. If

we can study the characteristic of these locations in the source

code being performance influential, we may provide more general

guidance for a developer to log similar locations in the source code.

Furthermore, prior research has proposed various techniques to

provide general guidance on logging locations [21, 47] or to monitor

hot methods in performance. Our approach may be of less interest

if prior techniques also suggest such locations to log.

Approach.
For each of the suggested logging locations, we manually exam-

ine the surrounding source code to understand their characteristics.

In particular, the size of the source code, such as lines of code, one

of the factors prior study used to model logging decisions [47].

Moreover, uncertainty concerning control flow branches is also

considered in logging decisions [46]. Therefore, we measure the

source lines of code (SLOC) of the suggested methods and blocks

and the cyclomatic complexity of the methods that are suggested

to be logged.

Furthermore, we massively instrument the execution of all sub-

ject systems with JProfiler and Visual Studio Profiling tool [3, 8].

We measure both inclusive and exclusive execution time of each

method and rank all the methods by their execution time. We would

Table 3: The influences of our suggested logging locations on system performance.

Cloud Store

Suggested logging locations Influence

Web request name Method name/Block location Peason correlation Relative effect

cloudstore/ HomeController.getProductUrl() +0.80 +0.19

cloudstore/buy DaoImpl.getCurrentSession() +0.70 +1.24

cloudstore/search ItemDaoImpl.findAllByAuthor() +0.87 +0.60

cloudstore/search ItemDaoImpl.java, line 233 to 243 +0.73 +0.25

OpenMRS

Suggested logging locations Influence

Web request name Method name/Block location Peason correlation Relative effect

concept/ ConceptServiceImpl.getFalseConcept() +0.51 +0.19

concept/ ConceptServiceImpl.getAllConcepts() +0.53 +0.22

concept/ ConceptServiceImpl.java, line 300 to 302 +0.56 +0.25

concept/ ConceptServiceImpl.java, line 929 to 930 +0.56 +0.22

ES

Suggested logging locations Influence

Web request name Method name/Block location Peason correlation Relative effect

Web request A file1.m() -0.27 -0.34

Web request A file2.n() +0.81 +1.17

Web request C file3.o() -0.40 -0.80

Web request C file4.p() +0.56 +0.49

Web request A file1, block.r -0.26 -0.39

Web request A file2, block.x +0.78 +1.11

Web request C file3, block.y -0.11 -0.28

Web request C file4, block.z +0.86 +0.88

A relative positive effect means that more appearances of the logging location may result in CPU usage

increase.

We only present the class names, the method names and the file names due to the limit of space, without

showing the package names and the full path of the files.

like to examine whether our suggested methods are one of the hot

methods, i.e., with the highest executed time.

Results.
The suggested logging locations are not in complexmethods.
By measuring the SLOC and cyclomatic complexity, we find that

the suggested logging locations are in the methods with small sizes

and low complexity. The methods that are suggested to be logged

have a SLOC of 4, 5 and 15 in CloudStore, and methods in OpenMRS

consists of only 3 and 6 SLOC. In ES, all suggested methods have a

SLOC less than 35. Similarly, the values of the cyclomatic complexity

of the suggested methods in CloudStore are only 1, 2 and 2; the

same values are merely 1 and 2 in OpenMRS. The small sizes and

the low complexity of the methods imply that practitioner may use

our approach in tandem with other approaches that are based on

source code metrics.

Most of the suggested logging locations are not the perfor-
mance hotspot. By examining the results of detecting hotspots

using both inclusive and exclusive execution time, we find that our

suggested logging locations are not typical performance hotspots.

In particular, only one of the logging locations (ItemDaoImpl.findAll

ByAuthor()) is in the top 10 of hotspots in the source code (exclud-

ing methods in the library). We consider the reason is that our

approach does not aim to identify the methods that are invoked

often, but the ones that can explain the system performance vari-

ance. Therefore, our approach may complement the detection of

performance hotspots in performance assurances activities.

The suggested logging locations are typically not in com-

plex methods nor performance hotspots. Performance engi-

neers can use our approach to complement those traditional

measurements in performance engineering activities.

5 DISCUSSION
In this section, we discuss the related topics based on our results.

5.1 Performance influence from the inserted
logging statement.

The invocation of logging statements themselves has a performance

overhead. To minimize such performance overhead, we opt to re-

duce the instrumentation scope at every run of the system by fo-

cusing on only one web request, web page or method at each time.

Moreover, we also leveraged async-logging provided by the logging

library to reduce overhead. However, introducing those logging

statements still brings overhead to the system.

Therefore, we measure the influence of the inserted logging

statement to the fit of the model. We consider the invocation to

the logging library itself as a method to monitor and create a log

metric measuring the times that the logging library is called to

generate logs. For every model that we built in our case study (see

Table 2), we add the new log metric as an independent variable.

By adding this independent variable into the model, we can study

whether the log metric provides an increase of R2, which represents

the additional explanatory power of the execution of the inserted

logging statement to the system performance. The increase of R2

measures the explanatory power of the model that is provided only

by the execution of the logging statements, but not the software

system itself.

The automatically inserted logging statements do not contribute

significantly to the performance models. We find that the log metric

that measures the execution of the logging statements provides only

little explanatory power to the models. In particular, the maximum

of the increase of the R2 is only 3.4% (see Table 2). Therefore, the

inserted logging statement do not have a large impact to bias the

explanatory power of our suggested logging locations.

5.2 Not all web requests need additional
logging.

After applying our approach, inserting logging statements may

not provide statistically significantly more explanation power to

the model. For example, in the Web Request B of ES, after insert-

ing logging statements into all associated method, none of them

are statistically significant in the performance model. Such re-

sults imply that over-inserting logging statements into the source

code may only provide repetitive information that is already avail-

able from other logs, whiling leading to more noise to practition-

ers [41]. By looking at the web request and the methods that do

not need additional logging, we find that these cases are typically

simple sequential executions with low complexity. For example,

ItemDaoImpl.findAllByAuthor() in CloudStore has a loop as an

extra basic block. However, our results show that inserting logging

statement into the loop would not improve the performance model.

That implies that the number of iterations of the loop may not

influence performance significantly.

5.3 How long do we need to test performance
to suggest logging locations?

Performance testing is a time-consuming task [10]. However, our

approach requires multiple iterations of conducting performance

tests. Even though it is straightforward to deploy the multiple

performance tests in separate testing environments to reduce the

time, such solutionmay still be resource-costly. In order tominimize

the cost of the resource, we investigate whether we may shorten

the duration of the performance tests and still yield similar results.

For every performance test, we take the data from the period

of the first hour, the first two hours and the first three hours. We

then follow the same steps as Section 3 and examine whether we

can suggest the same locations to insert logging statements. We

find that in 4 models, we can achieve the same logging suggestions

by only running one hour, two hours and three hours of the test

in four, one, and six models, respectively. We need the complete

four hours only in two models. This result shows that practitioners

may be able to reduce the test duration in practice to receive the

suggestion in a more timely manner.

6 RELATEDWORK
In this section, we present the prior research related to this paper

in three aspects: 1) software performance monitoring, 2) assisting

logging decisions and 3) software performance modeling.

6.1 Software performance monitoring
There exist three typical levels of software monitoring techniques.

The first, system monitoring, monitors the status of a running soft-

ware based on the performance counters from the system. Examples

of such counters include, CPU usage, memory usage and I/O traffic.

Rich data from these counters are widely used to monitor system

performance [17], allocate system resources and plan capacities [48]

or predict system crash [16]. Despite the usefulness of such data,

the lack of domain knowledge of the software running on top of

the system makes the data difficult to use for improving the system

in a detailed level (like improving source code).

The second type of widely used techniques are based on massive

tracing. The tracing information records every function call that is

invoked during the running of the system. Prior research leverage

the tracking information to system quality and efficiency [44, 45].

In order to generate such tracing information, tools such as JPro-
filer [3] is widely used in practice and research. The challenge of

leveraging such tracing information is the extra overhead from the

tracing tools. Such overhead prevent the use of tracing in a large

scale system or during the field running of the system, hence trac-

ing is often used in the development environment by developers.

Nevertheless, Maplesden et al. took advantage of patterns in tracing

information. They built an automated tool to detect such patterns

with the goal of improving the performance investigations and the

systems’ performance [29, 30].

To minimize the overhead from tracing, techniques are proposed

to only trace a selected set of function calls, such that the tracing

information from the field is possible to be monitored. For example,

Application Performance Management tools [9] typically choose

REST API call entry points to monitor. However, trace information

is often generated automatically without the interference of devel-

opers’ knowledge. The collected trace information may not all be

needed for developers’ particular purpose while the actual needed

information may be missing.

The third type of monitoring technique is based on logging. De-

velopers write logging statements in the source code to expose

valuable information of runtime system behavior. A logging state-

ment, e.g., logger.info(“static string”+ variable), typically consists of

a log level (e.g., trace/debug/info/warn/error/fatal), a logged event

using a static text, and variables that are related to the event context.

During system runtime, the invocation of these logging statements

would generate logs that are often treated as the most important,

sometimes only, source of information for debugging and main-

tenance of large software systems. The logging information are

generated based on developers’ knowledge of the system, and are

flexible to monitor various information in the code. Due to the

extensive value in logs, prior research has proposed to leverage

logging data to improve the efficiency and quality of large software

systems [14, 15, 24, 33]. The advantage of using logging to monitor

and analyze system performance motivates our paper. In particu-

lar, with our approach, the prior research that depends on logging

may benefit from the extra information that are captured from the

suggested logging statements.

6.2 Assist in logging decisions
Although logging is a significant technique for software perfor-

mance monitoring, the logging practice in general is not as straight

forward as one would expect. Logging involves a trade-off between

the overhead it can generate and having the appropriate informa-

tion. In a previous work, Zhao et al. proposed an algorithm that

touches such trade-off. They increase the debugging assertiveness

by automatically placing logs based on an overhead limit thresh-

old [46]. Even if no overhead existed, there is still a need to balance

between too much information and too little information [21].

Aiming to support the logging decisions, many previous works

have contributed in ways to understand, automate and suggest

opportunities of where to log. Fu et al. performed an empirical

study on industry systems categorizing logged snippets of code.

Their work also revealed the possibility of predicting where to log

according to the extracted logging features [21]. Zhu et al. follow

up the work and predict where to log as suggestions to developer.

Similarly, a called Errlog presented by Yuan et al. indicated the

benefits of automatically detecting logging opportunities for failure

diagnosis using exception patterns and failure reports [42].

Previous research also presented other aspects to consider when

taking logging decisions. Li et al. modeled which log level should

be used when adding new logging statements [27]. In a different

work, Li et al. studied log changes and modeled those log changes

to provide a just-in-time suggestion to developers for changing

logs [28]. Different previous research has presented what to log for a

diverse set of concerns. Yuan et al. presented LogEnhancer that adds
causally-related information to existing logging statements. Their

focus was on software failures and software diagnosability [43].

Despite of above research effort, there exists no research focus on

providing logging suggestions with the goal of monitoring system

performance. In contrast with previous research, paper work focus

on logging suggestion for performance.

6.3 Performance modeling
Performance modeling is a typical practice in system performance

engineering. Due to the more complex nature of performance

problems in distributed systems, simple raw metrics might not

be enough. Therefore, Cohen et al. introduced the concept and use

of signatures and clustering from logging data and system metrics

to detect system states that are of significant impact in the sys-

tem’s performance [17]. With such data, Cohen et al. [16] used

TAN (Tree-Augmented Bayesian Networks) models to model the

high-level system performance states based on a small subset of

metrics without a priori knowledge of the system. Brebner et al.

have application performance management (APM) data in multiple

industry projects to build performance models. However, the mod-

els that depend on APM can get very complex, and customization

is needed [12]. In order to improve the quality of performance mod-

eling and prediction. Stewart et al. [36] consider the inconsistency

of usage in enterprise and large e-commerce systems. In their work,

they modeled using measurement data and transaction mix, and
they report a better prediction quality instead of the existing scalar

workload volume approach.

Since there could be too many performance metrics to be used

in performance modeling, different previous researches address the

issue. Xiong et al. [40] propose an automatic creation and selection

of multiple models based on different metrics. They execute tests on

virtual machines using standard performance benchmarks. Shang

et al. [33] presented an approach to automatically group metrics

in a smaller number of clusters. They used regression models on

injected and real-life scenarios, and their approach outperforms

traditional approaches.

Besides the use of regression models, other statistical techniques

have been used to facilitate the communication of results, such as

control charts [32]. Many different modeling approaches have been

summarized by Gao et al. in three categories: rule-based models,

data mining models and queueing models. In their work, they used

the models to compare the effectiveness of load testing and provide

insights on how to better do load testing [22]. Farshchi et al. [18]

build correlation model between logs and operation activity’s effect

on system resources. Such correlation is later leveraged to detect

system anomalies.

The rich usage of performance modeling supports our approach

that leverages such model to suggest logging locations. We iter-

atively find the best logging locations that would provide most

significant explanatory power to the performance of the system.

7 THREATS TO VALIDITY
This section discusses the threats to the validity of our study.

7.1 External Validity
Our evaluation is conducted on CloudStore, OpenMRS and ES. All

subject systems have years of history and there are prior perfor-

mance engineering research studying these systems’ workload [13].

Nevertheless, more case studies on other software in other domains

are needed to evaluate our approach. All our subject systems are

developed based on either Java or .Net. Our approach may not be

directly applicable for other programming languages, especially

dynamic languages such as Python. Further work may investigate

approaches to minimize the uncertainty in performance characteri-

zation of dynamic languages.

Our approach currently only focuses on web application. We

leverage web logs in the first step in order to scope down the

amount of source code to instrument. However, other researchers

and practitioners may adapt our approach by applying our approach

by starting on a few hot locations in the source code. Yet, without

evaluation with such an approach, we cannot claim the usefulness

of our approach on other types of systems.

7.2 Internal validity
Our approach is based on the system performance that is recorded

by Psutil. The quality of recorded performance can impact the in-

ternal validity of our study. Similarly, the frequency of recording

system performance by Psutil may also impact the results of our

approach. Further work may further evaluate our approach by vary-

ing such frequency. Our approach depends on building statistical

models. Therefore, with a smaller amount of performance data, our

approach may not perform well due to the quality of the statisti-

cal model. Determining the optimal amount of performance data

needed for our approach is in our plan. Although our approach

builds statistical models using logs, we do not aim to predict nor

claim causal relationship between the dependent variable and in-

dependent variables in the models. The only purpose of building

regression models is to capture the relation between logs and sys-

tem performance.

7.3 Construct validity
Our approach uses linear regression models to model system per-

formance. Although linear regression models have been used in

prior research in performance engineering [33, 40], there exist other

statistical models that may model system performance more accu-

rately. Our goal is not to accurately predict system performance

but rather capture the relationship between logs and the system

performance. Further work may investigate the use of other models.

We chose to design our approach in an aggressive manner when

deciding potential logging locations. For example, we choose a low

p-value to ensure the statistical significance of the logging loca-

tion. Our approach may miss potential possible logging locations.

However, our goal is to prioritize on the precision of the sugges-

tion hence making the suggestion less intrusive to practitioners.

By working with our industrial collaboration, we find that a large

number of logging suggestions can be overwhelming since prac-

titioners prefer to manually verify each logging location before

having actual changes to the source code.

The overhead of the logs may influence system performance.

Although we evaluate the impact of logs on system performance

by examining the explanatory power of logging statements them-

selves, the overhead may still impact the results of our approach.

Minimizing such overhead is in our further plan.

Our evaluation of our approach is based on modeling system

CPU usage. There exist other performance metrics, such as memory

and response time, that can be modeled by logs when evaluating our

approach. Also, the performance of the subject systems is recorded

while running their performance tests. If a logging location is not

executed by performance tests, it cannot be identified by our ap-

proach. To address this threat, we sought to use the performance

test that mimics the field workload from our industrial collaborators.

However, a different workload may lead to different performance

influencing locations in the source code. Therefore, when applying

our approach, practitioners should always be aware of the impact

from the workload (the performance tests on the system). Hence,

evaluation with more performance metrics and more performance

tests may lead to better understanding of the usefulness of our

approach.

Although we suggest logging locations for performance assur-

ance activities, we do not claim that they are the only relevant

logging locations. Additionally, the R2 of our models is between

26.9% and 90.2%. The R2 shows that logs cannot explain all the

variance in the system performance. The unexplained variance of

performance may due to other performance influencing source code

or external influence of the system (e.g., network latency). In our

future work, we plan to model other influencing factors of system

performance to improve our approach.

Our approach is based on automated code analysis and code

manipulation, when changing and rebuilding the software is needed.

Such an approach may require extra resources to the performance

infrastructure. In our future work, we plan to alter the source code

adaptively during the runtime of performance testing or in the field

to improve our approach.

8 CONCLUSION
Logging information is one of the most significant sources of data in

performance monitoring and modeling. Due to the extensive use of

logs, all too often, the success of various performance modeling and

analysis techniques often rely on the availability of logs. However,

existing empirical studies and automated techniques for logging de-

cisions do not consider the particular need for system performance

monitoring. In this paper, we propose an approach to automatically

suggest where to insert logging statements with the goal of support

performance monitoring for web-based systems. Our approach sug-

gests inserting logging statement into the source code locations that

can complement the explanation power of statistical performance

models. By evaluating our approach on two open source systems

(CloudStore and OpenMRS) and one commercial system (ES), we

find that our approach suggests logging locations that improve

the statistical performance models and those suggested logging

locations have a high influence on system performance while not

being traditional complex methods nor performance hotspots. Prac-

titioners can integrate our approach into the release pipeline of

their system to have logging suggestions periodically.

ACKNOWLEDGEMENT
We would like to thank ERA Environmental Management Solutions

for providing access to the enterprise system used in our case study.

The findings and opinions expressed in this paper are those of the

authors and do not necessarily represent or reflect those of ERA

Environmental Management Solutions and/or its subsidiaries and

affiliates. Moreover, our results do not reflect the quality of ERA

Environmental Management Solutions’ products.

REFERENCES
[1] 2017. CloudScale Project. (oct 2017). Retrieved Oct 9, 2017 from http://www.

cloudscale-project.eu/

[2] 2017. Eclipse Java development tools (JDT). (oct 2017). Retrieved Oct 9, 2017

from http://www.eclipse.org/jdt/

[3] 2017. JProfiler. (oct 2017). RetrievedOct 9, 2017 from https://www.ej-technologies.

com/products/jprofiler/overview.html

[4] 2017. Log4J Async. (oct 2017). Retrieved Oct 9, 2017 from https://logging.apache.

org/log4j/2.x/manual/async.html

[5] 2017. .NET Compiler Platform ("Roslyn"). (oct 2017). Retrieved Oct 9, 2017 from

https://github.com/dotnet/roslyn

[6] 2017. psutil. (feb 2017). Retrieved Feb 2, 2017 from https://github.com/giampaolo/

psutil

[7] 2017. TPC Benchmark W (TPC-W). (oct 2017). Retrieved Oct 9, 2017 from

http://www.tpc.org/tpcw/

[8] 2017. Visual Studio Profiling. (oct 2017). Retrieved Oct 9, 2017 from https:

//docs.microsoft.com/en-us/visualstudio/profiling

[9] Tarek M. Ahmed, Cor-Paul Bezemer, Tse-Hsun Chen, Ahmed E. Hassan, and

Weiyi Shang. 2016. Studying the Effectiveness of Application Performance

Management (APM) Tools for Detecting Performance Regressions for Web Appli-

cations: An Experience Report. In Proceedings of the 13th International Conference
on Mining Software Repositories (MSR ’16). ACM, New York, NY, USA, 1–12.

http://www.cloudscale-project.eu/
http://www.cloudscale-project.eu/
http://www.eclipse.org/jdt/
https://www.ej-technologies.com/products/jprofiler/overview.html
https://www.ej-technologies.com/products/jprofiler/overview.html
https://logging.apache.org/log4j/2.x/manual/async.html
https://logging.apache.org/log4j/2.x/manual/async.html
https://github.com/dotnet/roslyn
https://github.com/giampaolo/psutil
https://github.com/giampaolo/psutil
http://www.tpc.org/tpcw/
https://docs.microsoft.com/en-us/visualstudio/profiling
https://docs.microsoft.com/en-us/visualstudio/profiling

[10] H. M. Alghmadi, M. D. Syer, W. Shang, and A. E. Hassan. 2016. An Automated

Approach for Recommending When to Stop Performance Tests. In 2016 IEEE
International Conference on Software Maintenance and Evolution (ICSME). 279–
289.

[11] Apache. [n. d.]. Jmeter. http://jmeter.apache.org/. ([n. d.]). Accessed: 2015-06-01.

[12] Paul Charles Brebner. 2016. Automatic Performance Modelling from Application

Performance Management (APM) Data: An Experience Report. In Proceedings of
the 7th ACM/SPEC on International Conference on Performance Engineering (ICPE
’16). ACM, New York, NY, USA, 55–61.

[13] Tse-HsunChen,Weiyi Shang, Ahmed E. Hassan,MohamedNasser, and Parminder

Flora. 2016. CacheOptimizer: HelpingDevelopers Configure Caching Frameworks

for Hibernate-based Database-centric Web Applications. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2016). ACM, New York, NY, USA, 666–677.

[14] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed

Nasser, and Parminder Flora. 2014. Detecting Performance Anti-patterns for

Applications Developed Using Object-relational Mapping. In Proceedings of the
36th International Conference on Software Engineering (ICSE 2014). ACM, New

York, NY, USA, 1001–1012.

[15] T. H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser, and P. Flora. 2016.

Finding and Evaluating the Performance Impact of Redundant Data Access for

Applications that are Developed Using Object-Relational Mapping Frameworks.

IEEE Transactions on Software Engineering PP, 99 (2016), 1–1.

[16] Ira Cohen, Jeffrey S Chase, Moises Goldszmidt, Terence Kelly, and Julie Symons.

2004. Correlating Instrumentation Data to System States: A Building Block for

Automated Diagnosis and Control.. In OSDI, Vol. 4. 16–16.
[17] Ira Cohen, Steve Zhang, Moises Goldszmidt, Julie Symons, Terence Kelly, and

Armando Fox. 2005. Capturing, Indexing, Clustering, and Retrieving System

History. In Proceedings of the Twentieth ACM Symposium on Operating Systems
Principles (SOSP ’05). ACM, New York, NY, USA, 105–118.

[18] M. Farshchi, J. G. Schneider, I. Weber, and J. Grundy. 2015. Experience report:

Anomaly detection of cloud application operations using log and cloud metric

correlation analysis. In 2015 IEEE 26th International Symposium on Software
Reliability Engineering (ISSRE). 24–34.

[19] King Chun Foo, Zhen Ming Jiang, Bram Adams, Ahmed E Hassan, Ying Zou,

and Parminder Flora. 2010. Mining performance regression testing reposito-

ries for automated performance analysis. In Quality Software (QSIC), 2010 10th
International Conference on. IEEE, 32–41.

[20] David A Freedman. 2009. Statistical models: theory and practice. cambridge

university press.

[21] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin,

Dongmei Zhang, and Tao Xie. 2014. Where Do Developers Log? An Empirical

Study on Logging Practices in Industry. In Companion Proceedings of the 36th
International Conference on Software Engineering (ICSE Companion 2014). ACM,

New York, NY, USA, 24–33.

[22] R. Gao, Z. M. Jiang, C. Barna, and M. Litoiu. 2016. A Framework to Evaluate

the Effectiveness of Different Load Testing Analysis Techniques. In 2016 IEEE
International Conference on Software Testing, Verification and Validation (ICST).
22–32.

[23] FE Harrell. 2001. Regression modeling strategies. 2001. Nashville: Springer
CrossRef Google Scholar (2001).

[24] Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder Flora. 2009.

Automated performance analysis of load tests. In ICSM ’09: 25th IEEE International
Conference on Software Maintenance.

[25] Brian W. Kernighan and Rob Pike. 1999. The Practice of Programming. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[26] Max Kuhn. 2008. Building Predictive Models in R Using the caret Package. Journal
of Statistical Software, Articles 28, 5 (2008), 1–26.

[27] Heng Li, Weiyi Shang, and Ahmed E. Hassan. 2017. Which Log Level Should

Developers Choose for a New Logging Statement? Empirical Softw. Engg. 22, 4
(Aug. 2017), 1684–1716.

[28] Heng Li, Weiyi Shang, Ying Zou, and Ahmed E. Hassan. 2017. Towards Just-

in-time Suggestions for Log Changes. Empirical Softw. Engg. 22, 4 (Aug. 2017),
1831–1865.

[29] David Maplesden, Ewan Tempero, John Hosking, and John C. Grundy. 2015. Sub-

suming Methods: Finding New Optimisation Opportunities in Object-Oriented

Software. In Proceedings of the 6th ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE ’15). ACM, New York, NY, USA, 175–186.

[30] David Maplesden, Karl von Randow, Ewan Tempero, John Hosking, and John

Grundy. 2015. Performance Analysis Using Subsuming Methods: An Indus-

trial Case Study. In Proceedings of the 37th International Conference on Software
Engineering - Volume 2 (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 149–158.

[31] Audris Mockus. 2010. Organizational Volatility and Its Effects on Software

Defects. In Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE ’10). ACM, New York, NY, USA,

117–126.

[32] Thanh H.D. Nguyen, Bram Adams, Zhen Ming Jiang, Ahmed E. Hassan, Mo-

hamed Nasser, and Parminder Flora. 2012. Automated Detection of Performance

Regressions Using Statistical Process Control Techniques. In Proceedings of the
3rd ACM/SPEC International Conference on Performance Engineering (ICPE ’12).
ACM, New York, NY, USA, 299–310.

[33] Weiyi Shang, Ahmed E. Hassan, Mohamed Nasser, and Parminder Flora. 2015.

Automated Detection of Performance Regressions Using Regression Models on

Clustered Performance Counters. In Proceedings of the 6th ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE ’15). ACM, New York, NY,

USA, 15–26.

[34] Emad Shihab, Zhen Ming Jiang, Walid M. Ibrahim, Bram Adams, and Ahmed E.

Hassan. 2010. Understanding the Impact of Code and Process Metrics on Post-

release Defects: A Case Study on the Eclipse Project. In Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software Engineering and Mea-
surement (ESEM ’10). ACM, New York, NY, USA, Article 4, 10 pages.

[35] Emad Shihab, Audris Mockus, Yasutaka Kamei, Bram Adams, and Ahmed E.

Hassan. 2011. High-impact Defects: A Study of Breakage and Surprise Defects.

In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Con-
ference on Foundations of Software Engineering (ESEC/FSE ’11). ACM, New York,

NY, USA, 300–310.

[36] Christopher Stewart, Terence Kelly, and Alex Zhang. 2007. Exploiting nonsta-

tionarity for performance prediction. In ACM SIGOPS Operating Systems Review,
Vol. 41. ACM, 31–44.

[37] Mark D. Syer, Weiyi Shang, ZhenMing Jiang, and Ahmed E. Hassan. 2017. Contin-

uous validation of performance test workloads. Automated Software Engineering
24, 1 (2017), 189–231. https://doi.org/10.1007/s10515-016-0196-8

[38] André van Hoorn, Jan Waller, and Wilhelm Hasselbring. 2012. Kieker: A Frame-

work for Application Performance Monitoring and Dynamic Software Analysis.

In Proceedings of the 3rd ACM/SPEC International Conference on Performance
Engineering (ICPE ’12). ACM, New York, NY, USA, 247–248.

[39] E.J. Weyuker and F.I. Vokolos. 2000. Experience with performance testing of

software systems: issues, an approach, and case study. Transactions on Software
Engineering 26, 12 (Dec 2000), 1147–1156.

[40] Pengcheng Xiong, Calton Pu, Xiaoyun Zhu, and Rean Griffith. 2013. vPerfGuard:

An Automated Model-driven Framework for Application Performance Diagnosis

in Consolidated Cloud Environments. In Proceedings of the 4th ACM/SPEC Inter-
national Conference on Performance Engineering (ICPE ’13). ACM, New York, NY,

USA, 271–282.

[41] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle

Zhang, Pranay U. Jain, and Michael Stumm. 2014. Simple Testing Can Prevent

Most Critical Failures: An Analysis of Production Failures in Distributed Data-

intensive Systems. In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (OSDI’14). USENIX Association, Berkeley,

CA, USA, 249–265.

[42] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael M Lee, Xiaoming Tang,

Yuanyuan Zhou, and Stefan Savage. 2012. Be Conservative: Enhancing Failure

Diagnosis with Proactive Logging.. In OSDI ’12: Proceedings of the 10th USENIX
conference on Operating Systems Design and Implementation, Vol. 12. 293–306.

[43] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. 2011.

Improving software diagnosability via log enhancement. In ASPLOS ’11: Proc.
of the 16th international conference on Architectural support for programming
languages and operating systems.

[44] Sai Zhang and Michael D. Ernst. 2014. Which Configuration Option Should I

Change?. In Proceedings of the 36th International Conference on Software Engineer-
ing (ICSE 2014). ACM, New York, NY, USA, 152–163.

[45] Sai Zhang and Michael D. Ernst. 2015. Proactive Detection of Inadequate Diag-

nostic Messages for Software Configuration Errors. In Proceedings of the 2015
International Symposium on Software Testing and Analysis (ISSTA 2015). ACM,

New York, NY, USA, 12–23.

[46] Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan, and Yuanyuan

Zhou. 2017. The Game of Twenty Questions: Do You Know Where to Log?. In

Proceedings of the 16th Workshop on Hot Topics in Operating Systems (HotOS ’17).
ACM, New York, NY, USA, 125–131.

[47] Jieming Zhu, Pinjia He, Qiang Fu, Hongyu Zhang, Michael R. Lyu, and Dongmei

Zhang. 2015. Learning to Log: Helping Developers Make Informed Logging Deci-

sions. In Proceedings of the 37th International Conference on Software Engineering
- Volume 1 (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 415–425.

[48] Zhenyun Zhuang, Haricharan Ramachandra, Cuong Tran, Subbu Subramaniam,

Chavdar Botev, Chaoyue Xiong, and Badri Sridharan. 2015. Capacity Planning

and Headroom Analysis for Taming Database Replication Latency: Experiences

with LinkedIn Internet Traffic. In Proceedings of the 6th ACM/SPEC International
Conference on Performance Engineering (ICPE ’15). ACM, New York, NY, USA,

39–50.

http://jmeter.apache.org/
https://doi.org/10.1007/s10515-016-0196-8

	Abstract
	1 Introduction
	2 A motivating example
	3 Approach
	4 Evaluation
	4.1 Subject systems and their workload
	4.2 Experimental environment

	5 Discussion
	5.1 Performance influence from the inserted logging statement.
	5.2 Not all web requests need additional logging.
	5.3 How long do we need to test performance to suggest logging locations?

	6 Related work
	6.1 Software performance monitoring
	6.2 Assist in logging decisions
	6.3 Performance modeling

	7 Threats to validity
	7.1 External Validity
	7.2 Internal validity
	7.3 Construct validity

	8 Conclusion
	References

