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ABSTRACT

Performance testing is conducted before deploying system
updates in order to ensure that the performance of large
software systems did not degrade (i.e., no performance re-
gressions). During such testing, thousands of performance
counters are collected. However, comparing thousands of
performance counters across versions of a software system is
very time consuming and error-prone. In an effort to auto-
mate such analysis, model-based performance regression de-
tection approaches build a limited number (i.e., one or two)
of models for a limited number of target performance coun-
ters (e.g., CPU or memory) and leverage the models to de-
tect performance regressions. Such model-based approaches
still have their limitations since selecting the target perfor-
mance counters is often based on experience or gut feeling.
In this paper, we propose an automated approach to detect
performance regressions by analyzing all collected counters
instead of focusing on a limited number of target counters.
We first group performance counters into clusters to deter-
mine the number of performance counters needed to truly
represent the performance of a system. We then perform sta-
tistical tests to select the target performance counters, for
which we build regression models. We apply the regression
models on new version of the system to detect performance
regressions.

We perform two case studies on two large systems: one
open-source system and one enterprise system. The results
of our case studies show that our approach can group a large
number of performance counters into a small number of clus-
ters. Our approach can successfully detect both injected and
real-life performance regressions in the case studies. In ad-
dition, our case studies show that our approach outperforms
traditional approaches for analyzing performance counters.
Our approach has been adopted in industrial settings to de-
tect performance regressions on a daily basis.
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1. INTRODUCTION

Performance assurance activities are an essential step in
the release cycle of large software systems [10,22,37]. Such
activities aim to identify and eliminate performance regres-
sions in each newly released version. Examples of perfor-
mance regressions are response time degradation, higher than
expected resource utilization and memory leaks. Such re-
gressions may compromise the user experience, increase the
operating cost of the system, and cause field failures. The
slow response time of the United States’ newly rolled-out
healthcare.gov [4] illustrates the importance of performance
assurance activities before releasing a system.

Performance regression detection is an important task in
performance assurance activities. The main purpose of per-
formance regression detection is to identify performance re-
gressions, such as a higher CPU utilization relative to the
existing version of a system, before releasing a new version of
the system. To detect performance regressions, performance
analysts conduct performance testing to compare the perfor-
mance of the existing and new version of a system under the
same workload.

However, identifying performance regressions remains a
challenging task for performance analysts. One approach is
to compare every performance counter across the existing
and new versions of the system. However, large software
systems often generate thousands of performance counters
during performance testing [24,27]. Comparing thousands
of performance counters generated by large software systems
is a very time consuming and error-prone task.

Performance engineering research proposes model-based
performance regression detection approaches [8]. Such ap-
proaches build a limited number of models for a set of target
performance counters (e.g., CPU and memory) and leverage
the models to detect performance regressions. By examining
the results of a small number of models instead of all per-
formance counters, model-based approaches reduce the ef-
forts needed to uncover performance regressions. However,
there are major limitations of such model-based approach
since performance analysts often select the target perfor-
mance counters based on their experiences and gut feeling —
focusing on a small set of well known counters (e.g., response
time). Such ad hoc selection of target counters may lead to
the failure to observe performance regressions. For exam-
ple, selecting CPU as a target counter may miss observing
a performance regression for I/0.

In this paper, we propose an automated approach to de-
tect performance regressions by automatically selecting the
target performance counters. We first group performance



counters into clusters. We use the clusters to determine the
number of target performance counters needed to represent
the performance of the system. We then leverage statistical
tests to select a target performance counter for each cluster.
We build one regression model for each target performance
counter. The performance models capture the relationships
between the performance counters within each cluster. We
apply the regression models on data from the new version
of the system and measure the modelling error. If the new
version of the system does not have any performance regres-
sions, the regression models should model the performance
counters in the new version of the system with low modelling
error. Larger than usual modelling errors are considered as
signs of performance regressions.

To evaluate our approach, we perform two case studies on
two large systems: one open-source system and one enter-
prise system. We find that our approach can cluster per-
formance counters into a small number of clusters. Our ap-
proach successfully detects both injected and real-life per-
formance regression in the case studies. In addition, we
apply traditional approaches of performance regression de-
tection: comparing every performance counter across both
versions and building a model for a single target performance
counter. We find that our approach outperforms both tra-
ditional approaches in our case studies.

This paper makes three contributions:

1. We develop an automated approach to detect perfor-
mance regressions by automatically selecting the tar-
get performance counters.

2. Our evaluation results show that our approach success-
fully detects both injected and real-life performance
regressions.

3. Our evaluation results show that our approach out-
performs traditional approaches for detecting perfor-
mance regressions.

Our approach is already adopted in an industrial environ-
ment and is integrated into a continuous performance test-
ing environment. The environment leverages our approach
to flag performance regressions on a daily basis.

The rest of this paper is organized as follows: Section 2
presents prior research for detecting performance regressions
and discuses the challenge of current practice. Section 3
presents an example to motivate this paper. Section 4 presents
our approach of detecting performance regressions. Sec-
tion 5 and Section 6 presents the design and results of our
case study. Section 7 compares our approach with tra-
ditional approaches for detecting performance regressions.
Section 8 discusses the threats to validity of our study. Fi-
nally, Section 9 concludes the paper.

2. BACKGROUNDS AND RELATED WORK

We now describe prior research that is related to this
paper. We focus on performance regression and faults de-
tection approaches that make use of performance counters.
There are two dimensions for analyzing performance coun-
ters to detect performance regressions: amount of analysis
and complexity of analysis (see Figure 1). Performance an-
alysts conduct performance counter analysis either on all
counters or on a limited set of counters. On the other dimen-
sion, performance analysts can select either simple analysis,
such as comparing the mean value of a counter, or complex

analysis, such as building regression models. The choice of
the two dimensions makes four types of performance counter
based regression detection, as shown in Figure 1. In this sec-
tion, we discuss prior research based on these four types.
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Figure 1: Four types of counter-based performance
regression detection.

2.1 Ad hoc analysis

Ad hoc analysis selects a limited number of target per-
formance counters (e.g., CPU and memory) and performs
simple analysis to compare the target counters. Heger et
al. [18] present an approach that uses software development
history and unit tests to diagnose the root cause of perfor-
mance regressions. In the first step of their approach, they
leverage Analysis of Variance (ANOVA) to compare the re-
sponse time of the system to detect performance regressions.
The ad hoc approach may fail to detect performance regres-
sions if the target counters do not capture the performance
regressions. Moreover, such ad hoc analysis does not detect
the change of relationships between counters, such as the
relationship between I/O and CPU.

2.2 Pair-wise analysis

Pair-wise analysis leverages simple analysis to compare
every performance counter across two versions of a system.
Nguyen et al. [27-29] conduct a series of studies on perfor-
mance regressions. They propose to leverage statistical pro-
cess control techniques, such as control chart [33], to detect
performance regressions. In particular, they build a con-
trol chart for every performance counter and examine the
violation ratio of the same performance counter for a new
test. Malik et al. [23,24] propose approaches that cluster
performance counters using Principal Component Analysis
(PCA). Each component generated by PCA is mapped to
performance counters by a weight value. The weight value
measures how much a counter contributes to the component.
For every counter, a pair-wise comparison is performed on
the weight value of each component to detect performance
regressions.

There are two major limitations of pair-wise analysis. The
first limitation is the large number of performance counters.
Nguyen et al. and Malik et al. state in their research that
large software systems have thousands of performance coun-
ters [24,27]. Comparing each performance counter across
two versions of a software system is very time consuming
and error-prone. Moreover, pair-wise analysis does not cap-



ture the complex interplays between counters. A follow-up
of Nguyen et al.’s research leverages the historical test results
to build machine learning models [29]. The machine learning
models capture the relationship between counters, as well as
their relationship with regression causes. Such models are
then used to predict performance regression causes in new
tests. However, their approach requires a historical reposi-
tory of performance tests to build models.

2.3 Model-based analysis

Model-based analysis builds a limited number of models
for a set of target performance counters (e.g., CPU and
memory) and leverages the models to detect performance
regressions. The model-based approach helps us deal with
the large number of performance counters and helps com-
pare the relationships between the various counters.

Recent research by Xiong et al. [38] proposes a model-
driven framework to assist in performance diagnosis in a
cloud environment. Their framework builds models between
workload counters and a target performance counter, such
as CPU. The models can be used to detect workload changes
and assist in identifying performance bottlenecks.

Cohen et al. [8] propose an approach that builds proba-
bilistic models, such as Tree-Augmented Bayesian Networks,
to correlate system level counters and systems’ response
time. The approach is used to understand the cause to
changes on systems’ response time. Cohen et al. [9] propose
that performance counters can be used to build statistical
models for system faults. Bodik et al. [5] use logistic regres-
sion models to improve Cohen et al.’s work [8,9].

Jiang et al. [21] propose an approach that calculates the
relationship between performance counters by improving the
Ordinary Least Squares regression models and using the
model to detect faults in a system.

Current model-based approaches still have their limita-
tions. Performance analysts often select the target perfor-
mance counters based on their experience and gut feeling.
They often focus on a small set of well-known counters (e.g.,
CPU and memory). Such ad hoc selection of target counters
may lead to the failure to observe performance regressions
(see Section 7).

2.4 Multi-models based analysis

Multi-models based analysis builds multiple models from
performance counters and uses the models to detect perfor-
mance regressions.

Foo et al. [12] propose to detect performance regression
using association rules. Association rules group historically
correlated performance counters together and generate rules
based on the results of prior performance tests. Their ap-
proach extracts association rules from performance counters
generated during performance tests. They use the change
to the association rules to detect performance anomalies.
The association rules make use of thresholds derived from
the analyst’s experience (i.e., determining low, medium and
high values of counters). The approach requires a historical
repository of performance tests to build association rules.

Jiang et al. [20] use normalized mutual information as a
similarity measure to cluster correlated performance coun-
ters. Since counters in one cluster are highly correlated, the
uncertainty among counters in the cluster should be lower
than the uncertainty of the same number of uncorrelated
counters. Jiang et al. leverage information theory to moni-

tor entropy of clusters. A significant change in the in-cluster
entropy is considered as a sign of a performance fault. Dur-
ing the evaluation of the approach, the authors were able to
detect 77% of the injected faults and the faulty subsystems,
without having any false positives.

In this paper, we propose an automated approach to de-
tect performance regressions by automatically selecting the
target performance counters. Our approach aims to ad-
dress the limitation of current model-based analysis (see
Section 2.3), i.e., the ad hoc selection of target counters.
We present our approach in Section 4.

3. A MOTIVATING EXAMPLE

Tan is a performance engineer for a large-scale distributed
software system. The system serves millions of users world-
wide. Ensuring the efficient performance of the system is a
critical job. Therefore, Ian needs to conduct performance
testing whenever there is an update to the system, such as
adding new features and/or fixing bugs.

A typical performance test consists of the following steps.
First, Tan deploys the old version of the system into a test-
ing environment and applies a test workload on the system.
The workload is often pre-defined to exercise most of the
system’s features and is typically similar to the system’s
workload in the field. While applying the workload, the sys-
tem is monitored and thousands of performance counters are
collected. Second, Ian deploys the new version of the sys-
tem into the same testing environment and applies the same
workload. The new version of the system is monitored in
the same manner as the old version. Finally, Ian examines
the collected performance counters from both versions of the
system in order to uncover any performance regressions in
the new version.

To determine whether there exists any performance re-
gressions, Tan adopts a model-based approach. Ian first se-
lects a target performance counter, such as CPU, as depen-
dent variable. The choice of dependent variable is based on
Tan’s experience (e.g., customer’s priorities and prior experi-
ence with field problems). In his practice, CPU is by default
the dependent variable. Then Ian uses the rest of the per-
formance counters to build a regression model for the CPU
counter. Ian applies the model on a new version of the sys-
tem in order to predict CPU. If the prediction error is high,
Tan would report the existence of a performance regression.

However, this model-based approach may not detect all
instances of performance regressions. For example, Ian has
two sets of performance counters from two versions of the
system, shown in Table 1. Ian leverages the model-based
approach and the prediction error is less than 7%. There-
fore, Ian reports that the new version does not have any
performance regressions. However, after the system is up-
dated, users complain that the system is slower than before.
To resolve the users’ complaints, Ian starts to review the
performance counters and finds that there is a big difference
between the 1/0 read counters in the old versus new ver-
sion. The model-based approach has not captured the I/O
read counters, since the model considered that the I/O read
counters have low correlation with CPU.

From this example, we observe the following limitations of
current model-based approach for detecting performance re-
gressions. First, all too often, one performance counter can-
not represent the performance of a system. In lan’s example,
he misses the information of I/O read by focusing only on



Table 1: Examples of performance counters from performance testing.

Old version

Time Stamp 1 2 3 4 5 6 7 8
CPU Privileged 29.17 27.29 29.90 33.23 31.43 30.91 31.15 30.21
CPU User 33.02 29.48 28.23 26.25 26.95 26.22 26.04 29.38

IO read byte/sec 0 0 0 0 0 0 0 0
10 read op/sec 0 0 0 0 0 0 0 0
TO write byte/sec  7,808.00  4,481.75  7,787.79 _ 4,7156.79  7,34950  4,499.50  4,641.17 _ 8,310.15
10 write op/sec 180.36 163.29 174.36 178.87 188.47 192.43 187.91 178.80

Memory Working set 144,867 KB 144,388 KB 146,522 KB 145,020 KB 145,822 KB 145,822 KB 144,364 KB 144,499 KB

Memory Private byte 146,203 KB 146,625 KB 147,763 KB 147,681 KB 147,583 KB 147,587 KB 146,153 KB 146,305 KB

New version

Time Stamp 1 2 3 4 5 6 7 8
CPU Privileged 29.38 30.52 30.21 33.02 31.77 28.23 29.48 28.02
CPU User 26.98 27.29 31.04 27.92 27.08 28.23 32.29 33.54

10 read byte/sec 175,008.30 176,262.16 177,867.55 178,745.03 181,573.41 174,242.61 165,634.03 163,400.87
10 read op/sec 1,611.37 1,628.83 1,655.19 1,649.85 1,654.89 1,615.44 1,514.00 1,526.93
IO write byte/sec 4,364.58 7,908.74 4,514.13 7,588.77 4,887.06 7,767.46 4,262.85 3,961.54
10 write op/sec 190.99 183.79 188.82 189.32 189.58 186.40 179.88 167.89

Memory Working set 144,499 KB 144,499 KB 144,499 KB 144,753 KB 144,753 KB 145,056 KB 146,874 KB 144,503 KB

Memory Private byte 146,326 KB 146,350 KB 146,379 KB 146,649 KB 146,682 KB 146,981 KB 148,759 KB 146,383 KB

CPU. Second, choosing dependent performance counters are
often biased by performance analysts’ experiences and gut
feelings. In the example, Ian selects CPU based on his ex-
perience, while choosing an I/O related counter may have
helped him uncover the I/O related regression.

To overcome such limitations, lan designs an approach
that automatically groups performance counters into clus-
ters. He leverages the clusters to determine the number of
models that he needs to build. He then leverages statistical
tests to determine the dependent variable (i.e., target per-
formance counter) for each cluster and he builds a model
to capture the relationships between the counters in each
cluster.

In the next section, we present this new approach for de-
tecting performance regression by grouping counters into
clusters.

4. APPROACH

In this section, we present our approach for detecting per-
formance regressions. Each subsection corresponds to a step
in our approach, as shown in Figure 2. Table 1 shows an
example of performance testing results. The performance
counters are recorded during the performance testing of the
old and new versions a software system. The performance
counters are recorded 8 times for each test run. The values
of the performance counters at each time stamp are called
an observation of the performance counters. To ease the
illustration of our approach, we show a running example
with only 8 performance counters and 8 observations. How-
ever, the number of performance counters and observations
is much larger in real-life performance testing. The goal
of our approach is to detect whether there are performance
regressions in the new version of a system.

4.1 Reducing counters

In the first step, we clean up the performance counters
by removing redundant counters or counters with low vari-
ance in both new and old tests. We first remove perfor-
mance counters that have zero variance in both versions of
the performance tests. We then perform redundancy anal-
ysis [17] on the performance counters in each cluster. The

redundancy analysis would consider a performance counter
redundant if it can be predicted from a combination of other
variables. We use each performance counter as a depen-
dent variable and use the rest of the counters as indepen-
dent variables to build a regression model. We calculate the
R? of each model and if the R? is larger than a threshold,
the current dependent variable (i.e., performance counter)
is considered redundant. We then remove the performance
counter with the highest R? and repeat the process until no
performance counters can be predicted with R? higher than
the threshold. In this step, I/O read op/sec and Memory
Working set are removed, since they can be predicted by
I/0 read byte/sec, and Memory Private byte, respectively.

4.2 Clustering performance counters

The second phase of our approach is to group performance
counters into clusters based on their similarities. The num-
ber of clusters would show the number of models needed to
represent the performance of the system, and performance
counters in each cluster are used to build a model. This
phase in our approach consists of three steps. First, we cal-
culate the dissimilarity (i.e., distance) between every pair of
performance counters. Second, we use a hierarchical clus-
tering procedure to cluster the counters. Third, we convert
the hierarchical clustering into k clusters (i.e., where each
counter is a member of only one cluster).

4.2.1 Distance calculation

Each performance counter is represented by one point in
an n-dimensional space (where n is the number of observa-
tions of the performance counter). For example, if a perfor-
mance test runs for an hour and performance counters are
recorded every minute, there would be 60 observations of
each performance counter for this performance test. To per-
form clustering, we need to measure the distance between
each point in this 60-dimensional space. A larger distance
implies a greater dissimilarity between a pair of performance
counters. We calculate the distance between every pair of
performance counters to produce a distance matrix.

We use the Pearson distance (a transform of the Pearson
correlation [15]). While there are many other distance mea-
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Figure 2: An Overview of Our Approach.

sures [7,13,15,30], we choose Pearson distance since prior
research shows that it produces a clustering that is similar
to manual clustering [19,32]. Pearson distance also performs
well when clustering counters in prior performance engineer-
ing research [35].

We first calculate the Pearson correlation (p) between two
performance counters. p ranges from -1 to +1, where a value
of 1 indicates that two performance counters are identical, a
value of 0 indicates that there is no relationship between the
performance counters and a value of -1 indicates an inverse
relationship between the two performance counters (i.e., as
the values of one performance counter increase, the values
of the other counter decrease).

We then transform the Pearson correlation (p) to the Pear-
son distance (d,) using Equation 1.

{lp for p >0

= 1
i lo| for p <0 )

Table 2 shows the distance matrix of our example.

4.2.2 Hierarchical clustering

We leverage a hierarchical clustering procedure to cluster
the performance counters using the distance matrix calcu-
lated in the previous step. We choose to use hierarchical

Table 2: Distance matrix of our example

CPUJCPU|[I/O read[I/O write [I/O write
Privileged | User | byte/sec| byte/sec op/sec
CPU User 0.58
I/0 read byte/sec 0.08] 0.80
1/0 write byte/sec 0.90| 0.07 0.15
1/0 write op/sec 0.44] 0.52 0.73 0.93
Memory Private/byte 0.84| 0.06 0.14 0.12 0.03

clustering in our approach because we do not need to spec-
ify the number of clusters before performing the clustering
and hierarchical clustering is adopted in prior performance
engineering research [35]. The clustering procedure starts
with each performance counter in its own cluster and pro-
ceeds to find and merge the closest pair of clusters (using
the distance matrix), until only one cluster (containing ev-
erything) is left. The distance matrix is updated when the
two clusters are merged.

Hierarchical clustering updates the distance matrix based
on a specified linkage criteria. We use the average linkage,
which has been leveraged successfully in prior performance
engineering research [35]. When two clusters are merged, the
distance matrix is updated in two steps. First, the merged
clusters are removed from the distance matrix. Second, a



new cluster (containing the merged clusters) is added to the
distance matrix by calculating the distance between the new
cluster and all existing clusters. The distance between two
clusters is the average distance (Pearson distance) between
the performance counters of the first cluster and the second
cluster [13,36].

Figure 3 shows the dendrogram produced by hierarchi-
cally clustering the performance counters using the distance
matrix from our running example from Table 2.
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Figure 3: A dendrogram generated by performing
hierarchical clustering on our example. The read
dashed line in the figure shows where the dendro-
gram is cut into clusters using the Calinski-Harabasz
stopping rule.

4.2.3 Dendrogram cutting

The result of a hierarchical clustering procedure is a hi-
erarchy of clusters, visualized using dendrograms. Figure 3
shows an example of a dendrogram. A dendrogram is a di-
agram that uses a binary tree to show each stage of the
clustering procedure as nested clusters [36].

Dendrogram needs to be cut in order to complete the clus-
tering procedure. The hight of the cut line of a dendrogram
represents the maximum accepted amount of intra-cluster
dissimilarity within a cluster. After cutting the dendro-
gram, each performance counter is assigned to only one clus-
ter. Either manual inspection or statistical tests (also called
stopping rules) are used to cut dendrograms. Although a
manual inspection of the dendrogram is flexible and fast, it
is subject to human bias and may not be reliable. We use
the Calinski-Harabasz stopping rule [6] to perform our den-
drogram cutting. Although there are many other stopping
rules [6,11,25,26,31] available, prior research finds that the
Calinski-Harabasz stopping rule performs well when cutting
dendrograms produced when clustering performance coun-
ters [35].

The Calinski-Harabasz stopping rule measures the simi-
larity within-clusters and the dissimilarity between-clusters.
The optimal clustering will have high within-cluster similar-
ity (i.e., the performance counters within a cluster are as
similar as possible) and a high between-cluster dissimilar-
ity (i.e., the performance counter from two different clusters
are as dissimilar as possible). Using the Calinski-Harabasz
stopping rule, we do not need to pre-specify the number of
clusters, instead the number of clusters is determined by

the similarity between clusters in the dendrogram. If the
distances between performance counters are large, the den-
drogram cutting process would generate a large number of
clusters. However, in our experiments, we find that the num-
ber of clusters generated by our approach is typically small
(see Section 6).

We mark a red horizontal dashed line in Figure 3 to show
where we cut the example hierarchical cluster dendrogram
using the Calinski-Harabasz stopping rule. By cutting the
dendrogram, we create three clusters of performance coun-
ters. The first cluster contains CPU Privileged and I/0 read
byte/sec. the second cluster contains I/0 write op/sec and
Memory Private byte. The rest of the performance counters
(CPU User and 1/0 write byte/sec) are in the third cluster.

4.3 Building models

The third phase of our approach is to build models for each
cluster of performance counters. This phase of our approach
consists of two steps. First, we identify a dependent counter
(i.e., target counter) in each cluster for model building. Sec-
ond, for each cluster we build a regression models [14] using
the performance counters in that cluster.

4.3.1 Identifying dependent variable

In model-based performance regression detection (see Sec-
tion 2), performance analysts often select the target perfor-
mance counters based on their experience and gut feeling.
They often focus on a small set of well known metrics (e.g.,
CPU and memory). Such ad hoc selection of target counters
may lead to the failure to observe performance regressions
(see Section 7).

To address the limitation, we propose an approach to au-
tomatically select dependent variables (i.e., target counters).
We select the performance counter that has the largest dif-
ference between the two versions of the system. We select
such a counter as dependent variable since our approach
aims to measure the largest difference between two runs of
a system. To measure the difference, we use a Kolmogorov-
Smirnov test [34] on the distribution of each performance
counter across the two versions. The smaller the p-value
computed using Kolmogorov-Smirnov test, the more likely
the performance counter is non-uniformly distributed across
the two versions. We select the performance counter with
the smallest p-value computed by Kolmogorov-Smirnov test.
We choose to use the Kolmogorov-Smirnov test because it
does not have any assumptions on the distribution of the
performance counters. I/0 read byte/sec, 1/0 write op/sec
and CPU User are chosen to be the three dependent vari-
ables for each cluster in our example.

4.3.2 Building regression models

We build a regression model, where the independent vari-
ables are the remaining performance counters in a cluster.
We model the dependent variable as a linear function of in-
dependent variables. We choose a linear model since it is
easier to interpret the model when developers need to iden-
tify the root cause of a detected regression.

4.4 Identifying performance regressions

The final phase of our approach is to identify performance
regressions using the regression models built in the last phase.
We use the average prediction error as a measure of the de-
viation between two test results. If the average prediction



error of a cluster in a new version is larger than a threshold
(e.g., 30%), we consider that the new version of the system
has a performance regression in the particular cluster. In
practice, developers need to learn the best threshold for a
particular system based on their experiences of the system.
In our example, the average prediction errors are 100%, 4%
and 2% in the three clusters. Since 100% prediction error
in the first cluster is a large prediction error, we consider
that there is performance regression in the new version. De-
velopers should focus on the counters in the first cluster to
identify the root cause of the performance regression.

5. CASE STUDY

To study the effectiveness of our approach of detecting
performance regressions, we perform case studies with two
different large systems with injected performance issues. Both
systems were used in prior studies [24,27]. In this section,
we present the subject systems, the workload applied on
the systems, the experimental environment and the injected
performance issues.

5.1 Subject Systems

5.1.1 Dell DVD Store

The Dell DVD store (DS2) is an open-source three-tier
web application [2]. DS2 simulates an electronic commerce
system to benchmark new hardware system installations.
Performance regressions are injected into the DS2 code to
produce versions of DS2 with performance issues. We reuse
the test results generated by Nguyen et al. [27]. The lab
setup includes three Pentium III servers running Windows
XP and Windows 2008 with 512MB of RAM. The first ma-
chine is a MySQL 5.5 database server [3], the second ma-
chine is an Apache Tomcat web application server [1], and
the third machine is used to run the load driver. During
each run, all performance counters associated with the DS2
application server are recorded.

5.1.2  Enterprise Application

The enterprise application (FA) in our study is a large-
scale, communication application that is deployed in thou-
sands of enterprises worldwide and used by millions of users.
Due to a Non-Disclosure Agreement (NDA), we cannot re-
veal additional details about the application. We do note
that it is considerably larger than DS2 and has a much larger
user base and longer history. Performance analysts of EFA
conduct performance tests to ensure that the FA continu-
ously meets its performance requirements.

5.2 Subject performance tests

We evaluate our approach by running it against perfor-
mance tests with and without performance regressions.

5.2.1 Dell DVD Store

To have performance tests with and without regressions,
the following performance regressions were injected into DS2:

e A: Increasing Memory Usage. Adding a field to
an object increases the memory usage. Because the
object is created many times by DS2, such a change
would cause a large increase of memory usage.

e B: Increasing CPU Usage. Additional calculation
is added to the source code of DS2. The source code

Table 3: Summary of the 10 runs of our approach
for the DS2 system.

Run Old New| Performance

name Version Version regression
symptoms

No regression 1| Good run 1,2,3,4|Good run 5 NA
No regression 2| Good run 1,2,3,5/Good run 4 NA
No regression 3| Good run 1,2,4,5|Good run 3 NA
No regression 4| Good run 1,3,4,5(Good run 2 NA
No regression 5| Good run 2,3,4,5|Good run 1 NA
Regression 1|Good run 1,2,3,4,5 A [Memory usage
increase

Regression 2|Good run 1,2,3,4,5 B CPU usage
increase

Regression 3|Good run 1,2,3,4,5 C Heavier DB
requests

Regression 4|Good run 1,2,3,4,5 D Heavier DB
requests

Regression 5|Good run 1,2,3,4,5 E 10 increase

with additional calculation is frequently executed dur-
ing the performance test.

e C: Removing column index. Column index are
used for frequently queried columns. Such regression
can only be identified during a large-scale performance
test since only the workload that exercises the corre-
sponding query would suffer from the performance re-
gression. A column index in the database is removed
to cause slower database requests.

e D: Removing text index. Similar to C, a text index
is often used for searching text data in the database. A
database text index is removed to cause slower database
requests.

e E: Increasing I/O access time. Accessing I/O stor-
age devices, such as hard drives, are usually slower
than accessing memory. Adding additional I/O ac-
cess may cause performance regressions. For example,
adding unnecessary log statements is one of the causes
of performance regressions [16]. Logging statements
are added to the source code that is frequently exe-
cuted in order to introduce this performance regres-
sion.

A performance test for DS2 without any injected perfor-
mance regressions is run five times. We name these five runs
as Good Run 1 to 5.

We create ten sets of data. Five sets are with performance
regressions and five sets without performance regressions.
Each data set has two parts: one part for the new version
of the system and another part for the old version of the
system. We use Good Run 1 to 5 as the old version of the
system. We use the five performance tests with injected re-
gressions (A to E) as the new versions of the system. Each
set of data without performance regression consists of data
from one run from the Good Run 1 to 5 as a new version of
the system and the rest four runs from the Good Run 1 to 5
as old version of the system. We run our approach against
the new and old versions of the system. In total, we have
five runs of our approach between two versions of DS2 with-
out performance regression and five runs of our approach
between two versions of DS2 with performance regression.
The summary of the ten runs is shown in Table 3.



5.2.2  Enterprise Application

We pick a performance test as a baseline in the test repos-
itory of the EA. We also pick one performance test without
regression and five performance tests with identified regres-
sions. We run our approach between the baseline test and
each of the other five tests. Due to the NDA, we cannot men-
tion the detailed information of the identified regressions in
the performance tests of FA. We do note that the identified
regressions include CPU, memory and I/O overheads.

6. CASE STUDY RESULTS

In this section, we evaluate our approach through two
research questions. For each research question, we present
the motivation of the question, the used approach to address
the question, and the results.

RQ1: How many models does our approach
need to build?

Motivation. Performance regression testing often gener-
ates a large number of performance counters, examining ev-
ery performance counter is time consuming and error prone.
On the other hand, model-based performance regression de-
tection approaches often select one performance counter as
dependent variable and build one model for the chosen per-
formance counter. However, all too often, one model cannot
represent the performance of a software system. Our ap-
proach groups performance counters into clusters to deter-
mine how many models are needed to represent the perfor-
mance of a software system. We want to examine the num-
ber of clusters that our approach uses to group performance
counters. We also want to examine whether the counters
used to build regression models in each run of our approach
are consistent. If the counters are consistent across different
runs, performance analysts can select to use those counters
without using our approach.
Approach. We measure the total number of counters in
DS2 and the number of clusters generated from each test.
For EA, we do not report the total number of performance
counters due to NDA, but only report the number of clusters
generated. However, we do note that the total number of
performance counters of FA is much larger than DS2. We
then remove redundant counters in each cluster and identify
a target counter for each cluster. We examine whether the
counters (target counters and non-redundant independent
counters) in each run is consistent.
Results. Our approach can group performance coun-
ters into a small number of clusters. For the ten runs of
our approach on DS2, nine runs only have two clusters and
one run has four clusters. Such results show that in the nine
runs, instead of examining 28 performance counters one-by-
one for every performance test, performance analysts only
need to build two models and examine two values from the
models for each performance test. For the six runs of our
approach on FA, two to five clusters are generated by our
approach. Since FA has a much larger number of perfor-
mance counters, these results show that our approach can
group the performance counters into a small number of clus-
ters even when the total number of counters is considerably
large.

The counters (target counters and independent
counters) used to build regression models in each
run of our approach are not consistent. We compare

all the counters that are not removed by our variance and
redundancy analysis. We find that 5 to 13 counters are used
to build models across runs of our approach (i.e., 15 to 23
counters are removed). The removed counters are not the
same across runs of our approach. We find that even though
nine out of ten runs for DS2 have two clusters, the cluster-
ing results are not the same. Moreover, the clustering results
are not the same within the runs with a regression and runs
without a regression, respectively. In addition, there is no
performance counter that is always selected to be the target
counters across runs of our approach. For example, CPU,
one of the mostly used performance counters, is only selected
twice as a target counter in the ten runs of our approach.

Counters measuring the same type of resource may
not result in the same cluster. For example, CPU, mem-
ory and I/O are three typical resources in performance test-
ing results. However, our results show that CPU related
counters are not clustered together, neither do memory or
1/0 related counters. For example, in the clustering results
of No regression 1, the first cluster consists of ID Process, 10
Data Bytes/sec and I0 Read Operations/sec; while the sec-
ond cluster consists of Elapsed Time, Page Faults/sec and
Pool Nonpaged Bytes.

Our approach can group performance counters into a
small number of clusters even though the total number
of performance counters is large. Results of clustering
and removing counters are different across runs of our
approach. Performance analysts cannot select a limited
number of counters based on experience or based on a
small number of runs of our approach, since the results
of clustering and removing counters are different across
runs of our approach.

RQ2: Can our approach detect performance
regressions?

Motivation. Detecting performance regressions is an im-
portant performance assurance task. Deploying an updated
a system into with performance regressions may bring signif-
icant financial and reputational repercussions. On the other
hand, incorrectly detected performance regressions may cause
the waste of large amounts of resources. Therefore, we want
to evaluate whether our approach can accurately detect per-
formance regressions.

Approach. Our approach is based on a threshold and choos-
ing a different threshold may impact the precision and recall.
Hence, we do not report the precision and recall of our ap-
proach. Instead, we report the results of our approach, i.e.,
we build models from an old version and apply the models
on a new version of the system and calculate the predic-
tion errors of the models. If the new version of the system
does not have any performance regressions, the regression
models should model the performance counters in the new
version of the system with low prediction errors. On the
other hand, if the new version has regressions, applying the
models on the new version should generate high prediction
errors. Therefore, larger than usual modelling errors are
considered as signs of performance regressions. We want to
see whether the tests with and without performance regres-
sions have a difference in prediction errors. Since each run
of our approach has multiple models and every model has a
prediction error, we focus on the largest prediction error in
each run of our approach.



Table 4: Prediction errors in each cluster when
building regression models for DS2. Each model is
built using data from an old version and is applied
on data from a new version to calculate prediction
errors. The largest prediction error in each run is
in bold font.

Run Name | Prediction Errors
No regression 1 3% 9%
No regression 2 | 3% 6%
No regression 3 | 11% 1%
No regression 4 | 4% 4%

No regression 5 | 6% 5%
Run Name Prediction Error
Regression 1 44% 1622%

Regression 2 916% 2%
Regression 3 | 17% [ 46% | 5% [ 1%
Regression 4 101% 161%
Regression 5 24% 6%

Results. Our approach can detect both the injected
performance regressions in DS2 and the real-life per-
formance regressions in EA. Table 4 shows the predic-
tion errors of our approach on DS2. The largest prediction
errors in each run without regression is between 4% to 11%,
whereas the runs with injected performance regressions have
at least one model with a much higher prediction error. The
largest prediction errors in each runs with performance re-
gressions is from 24% to 1622%. Table 5 shows that the
largest prediction error in the FA run without regression is
only 3%, while the largest prediction errors in the EA runs
with real-life regression is 16% to 386%.

Our approach is not heavily impacted by the choice
of threshold value. Table 4 and 5 show that the predic-
tion errors generated by our approach have a large difference
between the runs with and without performance regressions.
For all the largest prediction errors in the DS2 runs with-
out regression, the mazximum value is 11%, whereas for all
the largest prediction errors in the runs with regressions,
the minimum value is 24%. For all the largest prediction
errors in the FA runs, the difference between runs with and
without regression is also large. Even though our approach
is based on a threshold to detect performance regressions,
such large difference in prediction errors (shown in Table 4
and 5) indicate that our approach can successfully detect
performance regressions and that the threshold value does
not impact the accuracy of our approach. Nevertheless, our
experiments highlight the need to calibrate the thresholds
based on practitioners’ experience since each of the two sys-
tems exhibits a different range of prediction errors.

Our approach can successfully detect both injected and
real-life performance regressions. The threshold value of
prediction errors should be calibrated using a good test
run (i.e., one with no regressions).

7. COMPARISON AGAINST TRADITIONAL

APPROACHES

In this section, we compare our approach against two tra-
ditional approaches: 1) building models against specific per-
formance counters and 2) using statistical tests.

Table 5: Prediction errors in each cluster when
building regression models for EA. Each model is
built using data from an old version and is applied
on data from a new version to calculate prediction
errors. The largest prediction error in each run is in
bold font. The rows with empty cells are the ones
with less than five clusters.

Prediction Error

3% [ 2% [ 2% | 3%

Run Name Prediction Error
Regression 1 | 22% 38% | 94%
Regression 2 6% 16%
Regression 3 8% | 386% 2% | 5%
Regression 4 | 65% 22% | 18%
Regression 5 | 55% 9% 4% | 4% | 15%

Run Name
No Regression 1

7.1 Comparing our approach with building mod-

els for specific performance counters

Prior research often uses performance counters to build
models for a specific performance counter (i.e., a target
counter) (See Section 2). For example, Xiong et al. [38]
build regression models for CPU, memory and I/0. Cohen
et al. [8] build statistical models for a performance counter
that measures the response time of the system. However,
performance regressions may not have direct impact on the
specific target counter. In addition, performance analysts
may not have enough good or extensive knowledge to se-
lect an appropriate target counter to build a model. On
the other hand, our approach automatically identifies the
target counters without requiring in-depth knowledge of the
system. In this subsection, we compare our approach with
building performance models for specific performance coun-
ters.

We build two regression models for DS2 with CPU and
memory as target counters, respectively. The EA has a per-
formance counter that measures the general load of the sys-
tem. We build three regression models for the EA, using
CPU, memory and the load counter of EFA as target coun-
ters, respectively. We measure the prediction error in each
model. The results are shown in Table 6 and 7.

Building regression models against specific performance
counters may not detect performance regressions. Table 6
and 7 show that even though the prediction errors in the runs
without regression are low, some runs with a regression also
have low prediction errors. For example, run Regression 1
in DS2 has a 0% prediction error when building a model
against memory. We examine the counters and find that
even though Regression 1 is injected to introduce a mem-
ory overhead, the version with regression uses only 3% more
memory than the version without regression. However, the
correlations between memory and other counters are differ-
ent. For example, the correlation between memory and 10
Other Bytes/sec is 0.46 in the old version while the corre-
lation is only 0.26 in the new version. In the case study of
EA, using specific performance counters is even less accu-
rate with real-life regressions. When using CPU and mem-
ory, there are cases where prediction errors in the runs with
regressions are lower than the runs without regressions. The
load counter is typically used in practice for measuring the
system performance of EA. The prediction error without re-
gressions is 5%, while the two runs with regressions are only



Table 6: Prediction errors when building regression
models for specific performance counters in DS2.
The model is built using data from an old version
and is applied on a new version to measure predic-
tion errors.

Run Name Prediction Error

CPU | Memory

No regression 1 1% 0%
No regression 2 1% 0%
No regression 3 1% 0%
No regression 4 1% 0%
No regression 5 1% 0%
Run Name | CPU | Memory
Regression 1 22% 0%
Regression 2 | 993% 8332%
Regression 3 15% 15%
Regression 4 | 250% 57%
Regression 5 5% 1%

Table 7: Prediction errors when building regression
models for specific performance counters in EA. The
model is built using data from an old version and
is applied on a new version to measure prediction
errors.

Prediction error
CPU | Memory | Load counter

Run Name

Regression 1 27% 11% 45%
Regression 2 16% 3% %
Regression 3 0% 6% 12%
Regression 4 19% 9% 147%
Regression 5 | 641% 3% 7%
Run Name | CPU | Memory | Load counter

No Regression 1 6% 3% 5%

slightly higher (7%). In such cases, it is difficult for perfor-
mance analysts to determine whether there are any perfor-
mance regressions. Although one counter in some runs with
regression (e.g., CPU in regression 2, DS2) may have high
prediction error, developers can only ensure to capture such
regression if they build a model for all counters. Otherwise,
there is always possibility that we might miss detecting a
regression because we selected a wrong target counter.

Our approach outperforms the traditional approach of
building models for specific counters to detect perfor-
mance regressions. Using specific counter may miss de-
tecting performance regressions.

7.2 Comparing our approach with statistical
tests

Statistical tests, such as Student T-test, are often used to
compare performance counters across performance testing.
We use independent two-sample unpaired two-tailed T tests
to determine whether the average value of a performance
counter in the old and new versions of the system is differ-
ent. Our null hypothesis assumes that the average values
of a performance counter are similar in two versions of the
system. Our alternate hypothesis is that the average value
of a performance counter is statistically different across the
two versions. We reject the null hypothesis when p-values
are smaller than 0.05.

Table 8 presents the results of using the T-test when com-
paring two versions of the system. We find that for DS2,

Table 8: Number of performance counters that have
significant differences in the two versions. We con-
sider the difference is significant when the p-value
of the T-test is smaller than 0.05.

of DS2

Run Name | # significantly differenced counters

No regression 1 6
No regression 2 3
No regression 3 6
No regression 4 3
No regression 5 6
Regression 1 8
Regression 2 17
Regression 3 21
Regression 4 23
Regression 5 11

of EA

Run Name | % significantly differenced counters
Regression 1 35%
Regression 2 30%
Regression 3 40%
Regression 4 39%
Regression 5 24%
No regression 1 32%

the runs with regressions have more performance counters
with p-values smaller than 0.05 than the runs without per-
formance regressions. However, we notice that the runs in
DS2 without regressions still have 3 to 6 performance coun-
ters with significant differences in the two versions. In such
case, the performance analysts would need to examine each
performance counters to find out that such runs have no
regressions.

T-test does not perform well with EA. Table 8 shows that
the run without regression has 32% of the performance coun-
ters with significant difference across both versions, while
the runs with regression have 24% to 40% of the performance
counters with significant difference. The runs Regression 2
and Regression 5 on FA have less performance counters with
significant differences than the run without regressions (No
regression 1). Moreover, in the run without regressions, ex-
amining 32% of the entire performance counters is still a
very time consuming task. Such finding shows that the T-
test approach does not work well in practice for identifying
performance regressions.

T-test does not perform well in practice to detect perfor-
mance regressions. There are a large number of perfor-
mance counters with significant differences in the T-test
results even though no regressions exist.

8. THREATS TO VALIDITY

This section discusses the threats to the validity of our
study.
External validity

Our study is performed on DS2 and EA. Both subject
systems have years of history and there are prior perfor-
mance engineering research [22,27,35] studying both sys-
tems. Nevertheless more case studies on other software in
other domains are needed to evaluate our approach.
Internal validity

Our approach is based on the recorded performance coun-
ters. The quality of recorded counters can impact the in-



ternal validity of our study. For example, if none of the
recorded performance counters can track the syndrome of
a performance regression, our approach would not assist in
detecting the regressions. Our approach also depends on
building regression models. Therefore, our approach may
not perform well where there are a small number of obser-
vations of performance counters, since one cannot build a
regression model based on a small data set. Our model re-
quires periodically recorded performance counters as input
counters. Some event-based performance counters (like re-
sponse time), need to be transformed (like average response
time during the past minute), to be leveraged by our ap-
proach.

Although our approach builds regression models using per-
formance counters, we do not claim any causal relationship
between the dependent variable and independent variables
in the models. The only purpose of building regression mod-
els is to capture the relation between performance counters.
Construct validity

Our approach uses the Pearson distance to calculate the
distance matrix, uses the average distance to link clusters
and uses the Calinski-Harabasz stopping rule to determine
the total number of clusters. There are other rules to perfor-
mance those calculations. Although experiments show that
the performance of other rules does not outperform Calinski-
Harabasz in performance engineering research [35], choosing
other rules may have better results for other systems. We
use the p-value from a Kolmogorov-Smirnov test to deter-
mine target counters. In practice, multiple counters can all
have minimal p-values. To address this threat, we plan to
use other criteria, such as effect size, to select the target
counter.

Our evaluation is based on comparing the largest predic-
tion errors of the runs with and without performance re-
gression. Our case studies show the large difference of pre-
diction errors between runs with and without performance
regression. However, choosing an appropriate prediction er-
ror as a threshold is still crucial to achieve high accuracy for
our approach. Due to the dissimilarity between large soft-
ware systems, performance analysts need to choose the best
threshold for their systems. Automated identification of a
threshold for a system is in our future plan.

We compare our approach with using T-test to compare
every performance counter. Although the T-test is widely
used to compare two distributions, other statistical tests,
such as Mann-Whitney U test, may also be used in practice
to compare performance counters. We plan to compare our
approach with other statistical tests in future work. We
also compare our approach with building regression models
against CPU, memory and the load counters for the two
subject systems. We plan to compare our approach with
building other types of models and using other performance
counters to further evaluate our approach.

9. CONCLUSION

Performance regression detection is an important task in
performance assurance activities. Detecting performance re-
gressions is still a challenging task for performance analysts.
We propose an approach to automatically detect such re-
gressions. Our approach first groups performance counters
into clusters. We use the clusters to determine the number
of models that we need to build. For each cluster, we lever-
age statistical tests to select a performance counter (i.e., a

target counter), against which we build a regression model.
We use the prediction error to measure the difference be-
tween two versions of a system in each cluster. A higher
than threshold prediction error is considered a sign of a per-
formance regression. Our approach addresses the challenges
of detecting performance regressions in two folds: 1) our
approach groups performance counters into clusters to de-
termine how many models are needed to represent the per-
formance of a system, 2) we do not require in-depth system
experiences from performance analysts.
The highlights of this paper are:
e We propose an approach to automatically detect per-
formance regressions by building regression models on
clustered performance counters.

e Our approach can successfully detect both injected and
real-life performance regressions. The accuracy of our
approach is not heavily impacted by threshold.

e Our approach outperforms using statistical tests, such
as T-test, and building models against one performance
counter, such CPU, to detect performance regressions.
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