
Bridging the Divide between Software Developers and Operators using Logs

Weiyi Shang

Software Analysis and Intelligence Lab (SAIL), Queen’s University, Canada

swy@cs.queensu.ca

Abstract—There is a growing gap between the software
development and operation worlds. Software developers rarely
divulge development knowledge about the software to opera-
tors, while operators rarely communicate field knowledge to
developers. To improve the quality and reduce the operational
cost of large-scale software systems, bridging the gap between
these two worlds is essential. This thesis proposes the use of
logs as mechanism to bridge the gap between these two worlds.
Logs are messages generated from statements inserted by
developers in the source code and are often used by operators
for monitoring the field operation of a system. However, the

rich knowledge in logs has not yet been fully used because of
their non-structured nature, their large scale, and the use of the
ad hoc log analysis techniques. Through case studies on large
commercial and open source systems, we plan to demonstrate
the value of logs as a tool to support developers and operators.

I. INTRODUCTION

Software developers are focused on developing feature-

rich and bug-free software, while software operators are

focused on ensuring a failure-free and scalable operation

of the software. In current practice, there is a gap between

software developers and operators. Software developers are

rarely given access to field knowledge (i.e., information

about the real-field deployments), while operators are rarely

aware of the development knowledge (e.g., internal details

about new features). For instance, developers need field

knowledge to understand whether their design and imple-

mentation perform well in the field, while operators need

development knowledge to help them resolve operational

problems. If development teams are aware that a particular

piece of code is critical based on field executions, then

they are more likely to improve the code and assign it

to more senior developers. If operators have more in-depth

knowledge about the design or the inner-meaning of error

messages, they might be able to resolve problems in a

timely fashion without needing to wait for the intervention

of developers.

Recent efforts [1] share our concerns about the divide

between these two worlds and have proposed the need to

bridge these two worlds through better documentation and

communication channels. We believe that logs are an ideal

medium to bridge the two worlds. Today, many large-scale

software systems produce gigabytes or terabytes of logs on

an hourly or daily basis, due to various legal and operational

requirements [2]. Logs are explicitly introduced due to 1)

developers needing to track information that is relevant from

a developmental point of view, or 2) operators needing

to track information that is relevant from an operational

point of view. Over the years, the logs contain a wealth of

information based on the needs of both worlds. Yet, these

logs are not used in a systematic manner due to:

• The large scale of field logs. This scale impacts the

field performance. It complicates and slows down the

analysis.

• The non-structured nature of logs compared to source

code. The logs are often analyzed using ad hoc un-

maintainable scripts.

• The limited awareness of the importance of logs by

either world. Developers feel they own the logs so

they are often changing them and updating them, while

operators are always updating their scripts to cope with

such changes.

In this thesis, we propose several techniques that make use

of logs to support developers and operators. To overcome the

unstructured nature, the ad hoc processes and the scalability

challenges of logs, we propose to use a scalable relational

algebra, built on top of a web mining framework (i.e.,

Pig [3]). We will demonstrate our proposed contributions

using several open source (e.g., Hadoop) and commercial

systems.

The rest of this paper is organized as follows: We present

the research hypothesis in Section II. A pilot empirical

study is presented in Section III. We propose approaches to

validate our research hypothesis in Section IV. In Section V,

we discuss the challenges of using our approach and how to

address the challenges. In Section VI, we present the state

of the art in practice. Section VII concludes our work.

II. RESEARCH HYPOTHESIS
✄

✂

�

✁

Logs are a rich source of information about the develop-

ment and operations of software systems. Yet today, this

source is rarely leveraged in a systematic manner by de-

velopers and operators of large systems. The development

of systematic and scalable log processing approaches

will lead to the improvement of the development and

operational quality of software systems.

We identify two sources of knowledge about software:

development knowledge and field knowledge. Development

knowledge, typically owned by developers, corresponds to

the historical information about the development of the soft-

ware. It resides in software historical data such as historical



code changes and bug reports. Field knowledge, typically

owned by operators, corresponds to the information about

how the system operates in the field. Throughout the thesis,

we attempt to bridge the gap between software developers

and operators by mining large-scale logs:

• For developers, we leverage field knowledge in logs

to improve the quality of software. 1) We propose

techniques to identify error-prone software components

based on log maintenance history. 2) We propose tech-

niques to empirically measure the field-test coverage

for large-scale systems.

• For operators, we leverage development knowledge

in logs to cope with the operational complexity of

software. 1) We propose techniques to automatically

document and explain log lines. 2) We propose tech-

niques to reduce logs using development history.

III. AN EXPLORATORY STUDY OF THE EVOLUTION OF

LOGS

As a pilot study, we performed a study on the execution

logs of 10 releases of an open source software system named

Hadoop and 9 releases of a legacy enterprise application [4].

Our goal of this study is to see: 1) whether logs are static

or they evolve with code; 2) what is the rationale for the

evolution of logs; and 3) whether the evolution of logs

considers the needs of operators. We found that:

• Logs change at a rather high rate across versions,

leading to more work for operators who have already

built an ecosystem of Log Processing Apps around logs.

• 40% to 60% of these changes are not needed and can be

avoided. For example, simple rewording of log lines by

developers which lead to problems for operators who

have written analysis scripts.

• The impact of 15% to 50% of the changes can be

controlled through the use of the robust analysis tech-

niques.

• Logs that communicate development knowledge (e.g.,

low-level implementation details) change more often

than logs that communicate operational knowledge

(e.g., high-level domain concepts).

The results show that: 1) logs are a valuable source

of both development and field knowledge; 2) the logs are

continuously evolving; and 3) developers often change logs

without considering the dependence of operators on them,

leading to very fragile Log Processing Apps. The results of

this study show that more systematic approaches are needed

to leverage the rich development and field knowledge in logs.

IV. LOG ANALYSIS TO SUPPORT DEVELOPERS AND

OPERATORS

This section presents our proposed approaches based on

logs to support software developers and operators. For each

approach, we present the problem that we wish to solve,

the reason why development or field knowledge in logs can

help, and a brief overview of our proposed approach.

A. Leveraging field knowledge to improve the quality of

software for developers

Identifying error-prone software components using log

maintenance history

Problem: Software components that are vulnerable to

field errors are often hard to identify using traditional pre-

deployment testing or static analysis.

How field knowledge can help: In an effort to track and

diagnose such errors, operators often require changes or

additions to logs. Thus, we believe that frequent updates

to logs (i.e., high log churn) in particular components are

good signs of problems and future bugs.

Our proposed approach: Using the development history,

we will measure the amount of log churn for every software

component (e.g., class). We will then build statistical models

of post-release bugs for every component using the log churn

information and other traditional metrics, such as pre-release

bugs, total number of changes, and code complexity. We

will study the statistical model to understand the relation

between log churn and post-release bugs. We expect that

log churn will be statistically significant in explaining post-

release bugs and can complement traditional metrics. We

will perform case studies on several open source and com-

mercial systems to evaluate our approach.

Evaluating field-test coverage for large-scale systems

Problem: Testing of large-scale software system aims

to test all its functionalities. In practice, software testers

typically run software systems for a long time period to

achieve high test coverage. However, the high test coverage

still does not guarantee a reliable system in the field. It is

important for software testers to understand the coverage for

a system test based on field data.

How field knowledge can help: To determine the quality of

the test coverage, systems are often instrumented. However

such instrumentation is not feasible for field deployment.

Therefore, often such type of field-test coverage analysis is

not performed. We believe that we can leverage logs to give

us an approximation of instrumentations with no additional

performance impact. Software testers can then evaluate test

coverage by comparing logs from the test-runs and field

deployments. Our hypothesis is that the logs fro test-runs

can be used to evaluate the field-test coverage.

Our proposed approach: The first step of our approach

is to create field execution models from the field logs. A

log line typically contains several parameter values, such as

time stamp and session ID. We will group log lines that

have the same parameter value together into log sequences.

Each log sequence corresponds to a step-by-step high-level

summary of the run-time behaviour of the systems. We will

use such log sequences as our field execution model. In the

second step, we will use the same approach on testing logs

to derive a testing execution model. In the third step, we

will compare both models to find out how much of the

field execution model is covered by the testing execution



model. We plan to use approaches similar to the reflexion

model, proposed by Murphy et at. [5]. We will evaluate our

approach against extensive instrumentation to study whether

the two test coverage measurements are similar.

B. Leveraging development knowledge to cope with the

operational complexity of software for operators

Automated documentation of log lines

Problem: Other than the source code, there is no explicit

documentation for logs in current software engineering

practice. Furthermore, there is only limited communication

between developers and operators. However, ecosystems of

Log Processing Apps that depend on the logs have to be built

based on the operators’ assumptions on logs. Therefore, fully

understanding the rationale behind log lines is important to

ensure the correctness of such Log Processing Apps and to

assist operators in rapid diagnosis of field problems.

How development knowledge can help: The source code

context of a log line is rarely known by operators, yet that

context is recorded by developers in their changes to the

source code. The historical knowledge about these changes

can be used as a way to document and explain log lines.

Our proposed approach: Our approach is to attach the

development history as well as bug reports to every log line.

To achieve this, we need to link source code with log lines

first. First, we adopt an approach proposed by Xu et al. [6]

to generate templates for logs (e.g., a regular expression

of log format) using static analysis on source code. Each

source code unit, i.e., method or class, now has a list of

log templates. We will match the log templates with the

actual logs to link every log line with the source code that

generates it. Therefore, together with the source code, the

entire software development knowledge, such as the history

of the source code and the bug reports, can all be linked

with the logs, similar to the sticky note approach by Hassan

and Holt [7]. To evaluate our approach, we will perform

qualitative studies and present the attached development

history to domain experts of several systems.

Log reduction using development history

Problem: When a new software release is deployed in the

field, operators need to examine all the logs to understand

the impact of the new release. However, typically not all

the functionality is affected in the new release, leading to a

waste of effort.

How development knowledge can help: The development

knowledge tells which source code snippets are changed. We

can derive the affected logs from the changed source code.

We can then filter the generated logs to only show logs

that are likely to be impacted by recent changes instead of

showing all generated logs. Our hypothesis is that the recent

changed logs are more critical to operators.

Our proposed approach: We will analyze the source

code changed in a new release and we identify the log

templates that are possibly impacted. Such impact includes

direct impact (e.g., the method that generates the log line is

modified) and indirect impact (e.g., the method generating

logs may be invoked by the changed method). We use

the information to create log filters that are based on the

development history. We will apply our approach on open

source and commercial systems and perform user studies

with operators to evaluate the usefulness of our approach.

V. LOG ANALYSIS CHALLENGES

In this section, we present the challenges of log analysis.

For each of the challenges, we present the challenge and our

proposed solution to address the challenge.

C1. Logs are non-structured.

Logs are generated by the statements inserted by develop-

ers to record valuable information about system execution.

Developers typically do not follow a certain format to

generate logs. Even if there is a format, developers do not

follow the format consistently [8].

We address the non-structured nature of logs by trans-

forming logs into a structured data model. Jiang et al. [9]

propose that execution logs can be abstracted into static

execution events and a list of dynamic parameter values. For

example, a log line “time=1, Trying to launch, TaskID=01A”

can be abstracted into an execution event “Trying to launch”

and two parameter values, “1” and “01A”. Based on this

existing log abstraction technique, we further generalize

logs into relations. The above example log line can be

transformed into a relation with 3 attributes: execution event,

time and TaskID. This particular tuple in the relation has the

value “(Trying to launch, 1, 01A)”. Therefore, a log corpus

can be structured as a list of relations.

C2. The processes for logging and the use of logs are

largely ad hoc.

Developers typically do not realize the extensive use of

logs by others. Operators typically have to use the logs in an

ad hoc fashion using Perl or shell scripts. Using such scripts

is not efficient because they are ad hoc and they can hardly

be adopted to solve other problems.

Relational algebra has been applied on software develop-

ment data [10]. The similarity between logs and software

development data leads us to exploit relational algebra [11].

C3. The large scale of logs.

One of the major challenges of log analysis is the large

scale of data. For example, a small testbed setup of a typical

Hadoop cluster already generates over 200 MB of logs per

second [12].

We propose to implement a query and manipulation lan-

guage on top of a web mining framework called Pig [3]. We

have already started implementing the approaches presented

in Section IV using this language. In our previous research,

we used the web mining framework to enable large-scale

Mining Software Repository studies [13].

VI. STATE OF THE ART AND PRACTICE

The following lines of research are closely related to the

work presented in this thesis.



Log analysis techniques to assist in development

Researchers have proposed various automated log analysis

techniques to assist in development. Jiang et al. [14] design

log analysis techniques to assist in functional verification

of software load tests. Beschastnikh et al. [15] develop

an automated tool that infers execution models from logs.

The models can be used by developers to diagnose bugs.

Yuan et al. [16] propose an approach to improve diagnosing

problems in software systems by enhancing the logging

code of the system. Nagappan et al. [17] design an efficient

algorithm to extract operational profiles from logs.

Our proposed approaches are similar to these techniques.

However, we aim to ensure that our approaches are scalable

for very large-scale systems. We will be working with an

industrial partner who will provide us access to a very large

corpus of logs.

Scalable and systematic log analysis platforms

Splunk [18] is a semi-structured time series database fre-

quently used today in practice as a log-processing platform.

Splunk indexes log data and supports scalable searching for

keywords in logs. Similarly, IBM InfoSphere Streams [19]

is designed to store, index and analyze massive volumes

of data at rates up to petabytes per day continuously.

Software execution logs are one of the major targets of IBM

InfoSphere Streams.

These existing platforms only support simple grep-like

operations but are not able to perform complex analyses. Our

work attempts to create a general log analysis framework

using a relational algebra formalism.

VII. CONCLUSION

Our pilot empirical study on large software systems

highlights the growing gap between software developers

and operators during software maintenance activities. This

thesis contributes to the software engineering and system

community by proposing to leverage logs to bridge the

gap. To benefit developers, we will use the field knowledge

in logs to identify error-prone software components and

evaluate test coverage. To benefit operators, we will attach

the development history to logs as a way to automate the

documentation of logs and to support log reduction. To

overcome the challenges of log analysis, we will develop

a relational-algebra based language as our infrastructure.

ACKNOWLEDGMENT

The author thanks Dr. Ahmed E. Hassan and Dr. Bram

Adams for their comments on earlier drafts. The author

appreciates the generosity of the Performance Engineering

team at Research In Motion (RIM). Working with the

team as an embedded researcher, the author has gained an

appreciation of the current practice and the daily challenges

of mining large-scale software execution logs.

REFERENCES

[1] “Devops,” http://www.devopsdays.org/.
[2] “Summary of sarbanes-oxley act,” http://www.soxlaw.com/.

[3] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins,
“Pig latin: a not-so-foreign language for data processing,” in
SIGMOD ’08: Proc. of the 2008 ACM SIGMOD Int. Conf.
on Management of data, pp. 1099–1110.

[4] W. Shang, Z. M. Jiang, B. Adams, A. E. Hassan, M. Godfrey,
M. Nasser, and P. Flora, “An Exploratory Study of the
Evolution of Communicated Information about the Execution
of Large Software Systems,” in WCRE ’11: Proc. of the 18th
Working Conf. on Reverse Eng., October, pp. 335 –344.

[5] G. C. Murphy, D. Notkin, and K. Sullivan, “Software reflex-
ion models: bridging the gap between source and high-level
models,” in FSE ’95: Proc. of the 3rd ACM SIGSOFT Symp.
on Foundations of software engineering, pp. 18–28.

[6] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan,
“Detecting large-scale system problems by mining console
logs,” in SOSP ’09: Proc. of the ACM SIGOPS 22nd symp.
on Operating systems principles, 2009, pp. 117–132.

[7] A. Hassan and R. Holt, “Using development history sticky
notes to understand software architecture,” in IWPC ’04:
Proc. of 12th IEEE Int. Workshop on Program Comprehen-
sion, pp. 183 – 192.

[8] M. Bruntink, A. van Deursen, M. D’Hondt, and T. Tourwé,
“Simple crosscutting concerns are not so simple: analysing
variability in large-scale idioms-based implementations,” in
AOSD ’07: Proc. of the 6th Int. Conf. on Aspect-oriented
software development, pp. 199–211.

[9] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “An au-
tomated approach for abstracting execution logs to execution
events,” J. Softw. Maint. Evol., vol. 20, no. 4, pp. 249–267,
2008.

[10] R. C. Holt, “WCRE 1998 Most Influential Paper: Grokking
Software Architecture,” in WCRE ’08: Proc. of the 2008 15th
Working Conf. on Reverse Engineering, pp. 5–14.

[11] A. Tarski, “On the calculus of relations,” The J. of Symb.
Logic, vol. 6, no. 3, pp. 73–89, 1941.

[12] A. Rabkin and R. Katz, “Chukwa: a system for reliable large-
scale log collection,” in LISA’10: Proc. of the 24th Int. Conf.
on Large installation system administration, pp. 1–15.

[13] W. Shang, B. Adams, and A. E. Hassan, “Using Pig as a
data preparation language for large-scale mining software
repositories studies: An experience report,” J. of Sys. and
Softw,, 2011, in Press.

[14] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Auto-
matic identification of load testing problems,” in ICSM ’08:
Proc. of 24th IEEE Int. Conf. on Softw. Maint., pp. 307–316.

[15] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D.
Ernst, “Leveraging existing instrumentation to automatically
infer invariant-constrained models,” in ESEC/FSE ’11: Proc.
of the 19th ACM SIGSOFT Symp. and the 13th Euro. Conf.
on Foundations of software engineering, pp. 267–277.

[16] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Im-
proving software diagnosability via log enhancement,” in
ASPLOS ’11: Proc. of the 16th Int. Conf. on Arch. support
for programming languages and oper. sys., pp. 3–14.

[17] M. Nagappan, K. Wu, and M. A. Vouk, “Efficiently extracting
operational profiles from execution logs using suffix arrays,”
in ISSRE ’09: Proc. of the 2009 20th Int. Symp. on Software
Reliability Engineering, pp. 41–50.

[18] L. Bitincka, A. Ganapathi, S. Sorkin, and S. Zhang, “Optimiz-
ing data analysis with a semi-structured time series database,”
in SLAML’10: Proc. of the 2010 workshop on Managing sys.
via log analysis and machine learning tech., pp. 7–7.

[19] “Infosphere streams,” http://goo.gl/nI1a4.


