
An Exploratory Study of Performance Regression
Introducing Code Changes

Jinfu Chen
Department of Computer Science and Software Engineering

Concordia University - Montreal, QC, Canada
Email: fu chen@encs.concordia.ca

Weiyi Shang
Department of Computer Science and Software Engineering

Concordia University - Montreal, QC, Canada
Email: shang@encs.concordia.ca

Abstract—Performance is an important aspect of software
quality. In fact, large software systems failures are often due
to performance issues rather than functional bugs. One of the
most important performance issues is performance regression.
Examples of performance regressions are response time degra-
dation and increased resource utilization. Although performance
regressions are not all bugs, they often have a direct impact on
users’ experience of the system. Due to the possible large impact
of performance regressions, prior research proposes various auto-
mated approaches that detect performance regressions. However,
the detection of performance regressions is conducted after the
fact, i.e., after the system is built and deployed in the field or dedi-
cated performance testing environments. On the other hand, there
exists rich software quality research that examines the impact
of code changes on software quality; while a majority of prior
findings do not use performance regression as a sign of software
quality degradation. In this paper, we perform an exploratory
study on the source code changes that introduce performance
regressions. We conduct a statistically rigorous performance
evaluation on 1,126 commits from ten releases of Hadoop and
135 commits from five releases of RxJava. In particular, we
repetitively run tests and performance micro-benchmarks for
each commit while measuring response time, CPU usage, Memory
usage and I/O traffic. We identify performance regressions in each
test or performance micro-benchmark if there exists statistically
significant degradation with medium or large effect sizes, in
any performance metric. We find that performance regressions
widely exist during the development of both subject systems.
By manually examining the issue reports that are associated
with the identified performance regression introducing commits,
we find that the majority of the performance regressions are
introduced while fixing other bugs. In addition, we identify six
root-causes of performance regressions. 12.5% of the examined
performance regressions can be avoided or their impact may be
reduced during development. Our findings highlight the need for
performance assurance activities during development. Developers
should address avoidable performance regressions and be aware
of the impact of unavoidable performance regressions.

I. INTRODUCTION

The rise of large-scale software systems (e.g., Amazon.com
and Google Gmail) has posed an impact on people’s daily
lives from mobile devices users to space station operators.
The increasing importance and complexity of such systems
make their quality a critical, yet extremely difficult issue to
address. Failures in such systems are more often associated
with performance issues, rather than with feature bugs [1].
Therefore, performance assurance activities are an essential
step in the release cycle of large software systems.

Performance assurance activities aim to identify and elimi-
nate performance regressions in each newly released version. A
software system is considered to have performance regressions
when the performance of the system (or a certain feature of
the system) is worse than before. Examples of performance
regressions are response time degradation and increased re-
source utilization. Such regressions may compromise the user
experience, increase the operating cost of the system, and
cause field failures. We note that performance regression may
not be performance bugs, since the performance may still
meet the requirement, even though the performance is worse
than the previous version. However, detecting performance
regressions is an important task since such regressions may
have a direct impact on user experience of the software system,
leading to significant financial and reputational repercussions.
For example, Mozilla has a strict policy on performance regres-
sions [2], which clearly states that unnoticed and unresolved
performance regressions are not allowed.

Due to the importance of performance regression, extensive
prior research has proposed automated techniques to detect
performance regressions [3]–[7]. However, detecting perfor-
mance regressions remains a task that is conducted after
the fact, i.e., after the system is built and deployed in the
field or dedicated performance testing environments. Large
amounts of resources are required to detect, locate, understand
and fix performance regressions at such a late stage in the
development cycle; while the amount of required resources
would be significantly reduced if developers were notified
whether a code change introduces performance regressions
during development.

On the other hand, prior software quality research typically
focus on functional bugs rather than performance issues. For
example, post-release bugs are often used as code quality mea-
surement and are modeled by statistical modeling techniques
in order to understand the relationship between different soft-
ware engineering activities and code quality [8]. In addition,
bug prediction techniques are proposed to prioritize software
quality assurance efforts [9]–[11] and assess the risk of code
changes [12]. However, performance regressions are rarely
targeted in spite of their importance.

In this paper, we perform an exploratory study on the
performance regression introducing code changes. We conduct
a statistically rigorous performance evaluation on 1,126 com-
mits from ten releases of Hadoop and 135 commits from five
releases of RxJava. In particular, the performance evaluation
of each code commit with impacted tests or performance



micro-benchmarks is repeated 30 times independently. In total,
the performance evaluation lasts for over 2,000 hours. With
the performance evaluation results, we identify performance
regression introducing changes with statistical tests. To the
best of our knowledge, our work is the first that extensively
evaluates and studies performance at the commit level.

By examining the identified performance regression intro-
ducing changes, we find that performance regression introduc-
ing changes are prevalent during software development. The
identified performance regressions are often associated with
complex syndrome, i.e., multiple performance metrics have
performance regression. Interestingly, we find that performance
regression introducing changes also improve performance at
the same time. Such results show that developers may not
be aware of the existence of performance regressions, even
when they are trying to improve performance. By studying the
context and root-causes of performance regression introducing
changes, we find that performance regressions are mostly
introduced while fixing other functional bugs. Our manual
examination on the performance regression introducing code
changes identifies six code level root-causes of performance
regressions, where some root-causes (such skippable functions)
can be avoided. In particular, we find that 12.5% of the
examined performance regressions in the two subject systems
can be avoided or their impact on performance may be reduced
during development.

Our study results shed light on the characteristic of per-
formance regression introducing changes and suggest the lack
of awareness and systematic performance regression testing in
practice. Based on our findings, performance-aware change im-
pact analysis and designing inexpensive performance tests may
help practitioners better mitigate the prevalent performance
regression that is introduced during software development.

The rest of this paper is organized as follows: Section II
presents our subject systems and our approach to identifying
performance regression introducing code changes. Section III
presents the results of our case study. Section IV presents
the threats to the validity of our study. Section V presents
prior research that related to this paper. Finally, Section VI
concludes this paper.

II. CASE STUDY SETUP

In this section, firstly we discuss our subject systems and
our experimental environment. Then we present our approach
to identifying performance regression introducing changes.

A. Subject systems

We choose two open-source projects, Hadoop and RxJava
as the subject systems of our case study. Hadoop [13] is
a distributed system infrastructure developed by the Apache
Foundation. Hadoop performs data processing in a reliable,
efficient, high fault tolerance, low cost, and scalable manner.
We choose Hadoop since it is highly concerned with its
performance and has been studied in prior research in mining
performance data [14]. RxJava is a library for composing
asynchronous and event-based programs by using observable
sequences and it carries the JMH benchmarks test options.
RxJava is a Java VM implementation of reactive extensions.
RxJava provides a slew of performance micro-benchmarks,

making it an appropriate subject for our study. We choose the
most recent releases of the two subject systems. The overview
of the two subject systems is shown in Table I.

TABLE I: Overview of our subject systems.

Subjects Version Total lines
of code (K) # files # tests

Hadoop

2.6.0 1,496 6,086 1,664
2.6.1 1,504 6,117 1,679
2.6.2 1,505 6,117 1,679
2.6.3 1,506 6,120 1,681
2.6.4 1,508 6,124 1,683
2.6.5 1,510 6,127 1,685
2.7.0 1,552 6,413 1,771
2.7.1 1,556 6,423 1,775
2.7.2 1,562 6,434 1,784
2.7.3 1,568 6,439 1,786

RxJava

2.0.0 164 1,107 76
2.0.1 242 1,513 76
2.0.2 243 1,524 76
2.0.3 244 1,524 76
2.0.4 244 1,526 76

B. Identifying performance regression introducing changes

In this subsection, we present our approach to identifying
performance regression introducing changes. In general, we
extract every commit from the version control repositories
(Git) of our subject systems and identify impacted test cases
of each commit. Afterward, we chronologically evaluate the
performance of each commit using either the related test cases
(for Hadoop) or performance micro-benchmarks (for RxJava).
Finally, we perform statistical analysis on the performance
evaluation results to identify performance regression intro-
ducing changes. The overview of our approach is shown in
Figure 1.

1) Filtering commits: As the first step of our approach, we
start off by filtering commits in order to focus on commits
that are more likely to introduce performance regressions. In
particular, we use the git log command to list all the files that
are changed in each commit. We only extract the commits that
have source code changes, i.e., changes to .java files.

In practice, there may exist multiple commits that are made
to accomplish one task, making some of the commits tem-
porary. We would like to avoid considering the performance
regressions that are introduced in such temporary commits.
Since Hadoop uses JIRA as their issue tracking system and
RxJava uses the internal issue tracking system in Github, we
use the issue id that is mentioned in each commit message
to identify the task of each commit. If multiple commits are
associated with the same issue, we only consider the snapshot
of the source code after the last commit.

2) Preparing impacted tests: Identifying impacted tests. In
order to evaluate performance of each code commit, we use
the tests and performance micro-benchmarks that are readily
available in the source code of our subject systems. As mature
software projects, each subject system consists of a large
amount of test cases. For example, Hadoop release 2.7.3
contains 1,786 test cases in total. Exercising all test cases may
cause two issues to our performance evaluation: 1) the test
cases that are not impacted by the code change would dilute
the performance impact from the code changes and introduce



Fig. 1: An overview of our approach that identifies performance regression introducing changes.

noise in the performance evaluation and 2) the large amounts
of un-impacted test cases would require extra resources for
performance evaluation (e.g., much longer test running time).

Therefore, in this step, we leverage a heuristic to identify
impacted tests for each commit. In particular, we find that
Hadoop test cases follow a naming convention that the name
of the test files contains that same name of the source code files
being tested. For example, a test file named TestFSNamesys-
tem.java tests the functionality of FSNamesystem.java. Hence,
for each changed source code file in a commit, we automati-
cally identify the test files. If multiple commits are associated
with one issue, we consider all the tests that are impacted by
these commits, but will later only evaluate performance on the
last one of these commits.

Dealing with changed tests. Some commits may change source
code and test code at the same time. Such changed test cases
will bias the performance evaluation if ample testing logic
is added, removed or modified in the test cases. In order to
minimize the impact of changed test cases in performance
evaluation, we opt to use the test code before the code change.
Since the new version of the test cases may include new
features of the system, which is not the major concern of
performance regression. However, in the cases where old test
cases cannot compile or fail, we use the new test cases, since
the failure of the compilation or the tests indicates that the
old feature may be outdated. Finally, if both new and old test
cases are failed or un-compilable, we do not include this test
in the performance evaluation. In total, we have 132 tests with
106 commits that use the new tests to evaluate performance
and 21 test with 19 commits not included in our performance
evaluation. There exist only six commits that are not included
because all of their tests are either un-compilable or failed.

Leveraging micro-benchmarks for RxJava. Fortunately, RxJava
provides a slew of micro-benchmarks with the goal of easing
performance evaluation. Micro-benchmark is used to evaluate
different small units’ performance in RxJava.We opt to run all
76 micro-benchmarks from RxJava. In the rest of this paper,
we also refer these micro-benchmarks as test cases to ease the
description of our results.

3) Evaluating performance: In this step, we exercise the
prepared test cases and the performance micro-benchmarks
to evaluate performance of each considered commit. Our
performance evaluation environment is based on Azure node
type Standard F8s (8 cores, 16 GB memory). We do not
create a cluster of machines to evaluate performance for
Hadoop since the exercised tests all run on local machine.
We do not opt to build Hadoop, deploy on a cluster and
run Hadoop jobs on the cluster to evaluate performance for
the following reasons: 1) not all commits can be built into
a deployable version of Hadoop; 2) running Hadoop jobs
to evaluate performance may not cover the changed code
in each commit; 3) it is challenging to locate the cause of
performance regressions from deployed Hadoop on clusters.
In addition, prior research [15] has leveraged repeated local
tests to evaluate performance.

In order to generate statistically rigorous performance
results, we adopt the practice of repetitive measurements [16]
to evaluate performance. In particular, each test or performance
micro-benchmark is executed 30 times independently. We col-
lect both domain level and physical level performance metrics
during the tests. We measure the response time of each test
case as domain level performance metric. A shorter response
time indicates better performance from the users’ perspective.
Sometimes performance regressions may not cause impact on



response time but rather cause a higher resource utilization.
The high resource utilization, may not directly impact user
experience, however, it may cause extra cost when deploying,
operating and maintaining the system, with lower scalability
and reliability. For example, systems that are deployed on
cloud providers (like Microsoft Azure) may need to choose
virtual machines with higher specification for higher resource
utilization. Moreover, a software release with a higher memory
usage is more prone to crashes from memory leaks. Therefore,
physical level performance metrics are also an important mea-
surement for performance regressions. We use a performance
monitoring software named psutil [17] to monitor physical
level performance metrics, i.e., the CPU usage, Memory usage,
I/O read, and I/O write of the software, during the test.

4) Statistical analyses on performance evaluation: Statis-
tical tests have been used in prior research and in practice to
detect whether performance metric values from two tests reveal
performance regressions [18]. After having the performance
evolution results, we perform statistical analyses to determine
the existence and the magnitude of performance regression
in a statistically rigorous manner. We use Student’s t-test
to examine if there exists statistically significant difference
(i.e., p-value < 0.05) between the means of the performance
metrics. A p-value < 0.05 means that the difference is likely
not by chance. A t-test assumes that the population distribution
is normally distributed. Our performance measures should be
approximately normally distributed given the sample size is
large enough according to the central limit theorem [19].

T-test would only tell us if the differences of the mean
between the performance metrics from two commits are sta-
tistically significant. On the other hand, effect sizes quantify
such differences. Researchers have shown that reporting only
the statistical significance may lead to erroneous results (i.e.,
if the sample size is very large, p-value can be small even
if the difference is trivial). We use Cohen's d to quantify the
effects [20]. Cohen's d measures the effect size statistically and
has been used in prior engineering studies [21], [22]. Cohen's
d is defined as:

Cohen′s d =
mean(x1)−mean(x2)

s

where mean(x1) and mean(x2) are the mean of two popula-
tions, and s is the pooled standard deviation [23].

effect size =


trivial if Cohen′s d 6 0.2
small if 0.2 < Cohen′s d 6 0.5
medium if 0.5 < Cohen′s d 6 0.8
large if 0.8 < Cohen′s d

III. CASE STUDY RESULT

In this section, we perform an exploratory study on the
extracted performance regressions from our subject systems
(Hadoop and RxJava). Our study aims to answer two research
questions. For each research question, we present the motiva-
tion of the question, the approach that we use to answer the
question, the results of the question and we discuss the results.

RQ1: How prevalent are performance regression introducing
changes?

Motivation: Prior research has conducted empirical studies
on performance bugs [24]–[27], using the reported perfor-

mance bugs in issue reports (like JIRA issues). However, there
may exist many more performance issues, such as performance
regressions, that are not reported as JIRA issues. On the other
hand, we evaluate performance on each code commit instead
of depending on JIRA issues. Intuitively, we may uncover
instances of performance regressions that are not reported, and
hence are not be able to be investigated using the approach
of prior studies. Therefore, in this research question, we start
off by examining how prevalent are detected performance
regression introducing changes.

Approach: With the approach presented in Section II, we
obtain the results of performance evaluation of the impacted
tests in every commit of our subject systems. Since one
commit may impact multiple tests, where there may exist
both performance regression and performance improvement.
However, from users’ perspective, having worse performance
in one feature may result in bad experiences, despite the
performance improvement in other features. Therefore, we
examine the existence of performance regression by each
impacted test separately, instead of considering a commit as a
whole.

We use both domain level performance metrics, i.e., re-
sponse time, and physical level performance metrics, i.e., CPU
usage, Memory usage, I/O read and I/O write, as measurements
of performance regressions. As explained in Section II, we
examine whether a commit would cause any test case to
complete with a statistically significantly longer response time,
or utilizing statistically significantly more resources. To ensure
the identified performance regressions are not negligible, we
only consider a test having performance regression if the effect
size is medium or large.

In order to understand whether each performance metric
can provide complementary information to others, we also
calculate the Pearson correlation between the effect sizes of
performance regressions calculated using different metrics.
Therefore, we would understand whether we can use a smaller
set of metrics to identify performance regressions.

Results: Performance regressions are not rare instances
and are often with large effects. We find 243 and 91 commits
that contain at least one test with performance regression
in at least one performance metric for Hadoop and RxJava,
respectively. In particular, we find 93 commits from Hadoop
and 91 commits from RxJava that contain at least one test
case with performance regression in response time. In fact,
some commits may have multiple test cases that demonstrate
statistically significantly slower response time as performance
regression. In the total of 1,270 executed tests from Hadoop
and 7,600 executed tests from RxJava, 129 and 1,410 have
statistically significantly slower response time with medium
or large effect sizes, respectively. The performance regres-
sions on response time may have a direct impact on users’
experiences, making these regressions higher priority to be
examined by developers. When examining the effect sizes of
the detected performance regressions, we find that there exist
more performance-regression-prone tests with large effect sizes
than medium (see Table II). Such results imply that developers
may not ignore these performance regressions since they may
have large impact on system performance. In addition, we
detect more tests with performance regressions in CPU and
Memory usage, than other performance metrics. Since CPU



and Memory usage both have large impact on the capacity of
the software systems, these regressions may impact reliability
or financial cost of the software system.

Physical performance metrics are important comple-
mentary indicators of performance regressions. We use the
four physical performance metrics, i.e., CPU usage, Memory
usage, I/O read and I/O write to measure performance re-
gression. We find that with the physical performance metrics,
we can identify more commits and tests with performance
regressions that are not identified with response time. In fact,
we find the low correlation between the effect sizes calculated
with response time and the physical metrics (see Table III).
On the other hand, the effect sizes calculated with the physical
metrics may have medium or large correlations with each other.
We believe that these correlations are often due to the nature
of the software itself (e.g., database accessing software may
have its CPU usage highly correlated with I/O).

Discussions: Performance regressions are often with
complex syndromes. One of the approaches in practice of
resolving performance regression is to examine syndrome
of the regression, i.e., which physical performance metrics
contain performance regression, with the consideration of code
changes. However, we find that such an approach can be
inefficient due to the complexity of performance regressions.
In our case study results, we find that 154 commits and 203
tests from Hadoop, 91 commits and 777 tests from RxJava,
have multiple physical performance metrics associated with
performance regressions. Moreover, there even exist one test
in one commits and one test in three commits of Hadoop
and RxJava having all four physical metrics with performance
regressions. Resolving these performance regressions may be
challenging and time-consuming.

Performance regression and performance improvement
co-exist. We find that although many commits contain per-
formance regressions, most of these commits also have per-
formance improvements at the same time. Figure 2 shows
the number of tests that have performance regression and im-
provement for each commit measured using response time1. In
Hadoop, 70 commits contain both performance improvement
and regression in different tests. Among these commits, 82
tests executed with these commits have performance regression
while 117 tests have performance improvement. In RxJava, all
91 performance-regression-prone commits have performance
improvement. Among the tests executed for these commits,
1,410 tests have performance regression and 1,545 tests have
performance improvement. It may be the case that such perfor-
mance regressions are side-effect of performance improvement
activities. However, our results suggest the possible trade-off
between improving performance and introducing performance
regression at the same time. Therefore, in-depth analysis on
these code changes is needed to further understand the context
and reason of introducing performance regressions (see RQ2).
In addition, our results illustrate the need for performance
regression testing in order to increase the awareness of in-
troducing performance regressions during other development
activities.

1Due to limited space, we do not show such results for other metrics.
Those results will be shared with our data online. https://jinfuchen.github.
io/icsmeData

Finding: We find that performance regression introducing
changes are prevalent phenomenon with complex syndromes,
yet lacking in-depth understanding from the current and
prior research. Moreover, these code changes mostly intro-
duce performance regressions while improving performance
at the same time.
Actionable implication: The findings suggest the need of
more frequent performance assurance activities (like perfor-
mance testing) in practice.

RQ2: What are the root-causes of performance regressions?

Motivation: In RQ1, we find that there exist prevalent
performance regressions that are introduced by code changes.
If we can understand what causes the introduction of these
performance regressions, we may provide guidance or auto-
mated tooling support for developer to prevent the regressions
during code change.

Approach: We follow two steps in our approach to discover
the reasons for introducing performance regressions. First,
we investigate the high-level context when these performance
regressions are introduced. We use the issue id in a commit
message to identify the issue report (JIRA issue report for
Hadoop and Github issue report for RxJava) that is associated
with a performance regression introducing code change. We
use the type of issues as the context (fixing a bug or developing
new features) that are related to the performance regression
introducing changes. Sometimes, in Hadoop, an issue may be
labeled as “subtask”. We manually look for the related issue
field in the issue report to for the issue type. However, there
still exist ”subtask” issues for which we cannot identify an
issue type.

The information in issue reports is about the entire com-
mit rather than the code change that impacts the tests with
regression. Therefore, in the second step, we would like to
know the code level root-causes (e.g., which code change) of
the performance regressions in each identified test from RQ1.
Shown in Table II, there exist 338 and 3,100 tests that have at
least one metric with performance regression, in Hadoop and
RxJava, respectively. For Hadoop, we manually examine all the
code changes that are associated with the corresponding tests
where performance regression are identified. For RxJava, we
take a statistically significant random sample (95% confidence
level and 5% confidence interval) from the 3,100 tests from
RxJava. Our random sample consists of 342 tests in total. We
follow an iterative approach to identify the root-causes that
the code change introduces performance regression, until we
could not find any new reasons. Based on our manual study,
we also try to examine whether the introduced performance
regression can be avoided or whether the perforamnce impact
from these regressions may be reduced.

Results: A majority of the performance regressions
are introduced with bug fixing, rarely with new features.
Figure 3 presents the number of performance regression intro-
ducing commits that are associated with different issue types.
We find that 176 out of 243 (72%) of the commits from
Hadoop and 48 out of 91 commits (53%) from RxJava are
associated with issue type bug. Such results show that these
performance regressions are often introduced during bug fixing
tasks. But manually examining all these issues, we find that

https://jinfuchen.github.io/icsmeData
https://jinfuchen.github.io/icsmeData


TABLE II: Results of identifying performance regression introducing changes.
Number of commits that have at least one test with

performance regressions in different metrics.
Any metric Response time CPU Memory I/O read I/O write

Hadoop 243 93 175 138 90 82
RxJava 91 91 91 91 91 90

Total number of tests with performance regressions in different metrics.
Total

executed tests
Any

metric
Response time CPU Memory I/O read I/O write

large
effect

medium
effect

large
effect

medium
effect

large
effect

medium
effect

large
effect

medium
effect

large
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medium
effect

Hadoop 1,270 338 87 42 202 97 167 74 75 28 75 17
RxJava 7,600 3,100 745 665 659 487 919 489 657 449 38 0
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(b) Hadoop.
Fig. 2: Performance regression and improvement measured using response time for each commit from Hadoop and RxJava. The
commits are ordered chronologically from left to right.

all such issues are fixing functional bugs. For example, issue
HADOOP-11252 is associated with type bug. The goal of the
issue is to control the timeout of RPC client. While performing
functional bug fixing, developers may introduce performance
issues at the same time.

We only observe three commits that are associated with
having new features. We think the reason is that when having
new features, developers typically would create a new test,
or modify existing test to include the new feature. However,
in our approach to identifying performance regressions (see
Section II), we ensure to use the exact same test cases with
prioritizing on using the old test to eliminate the chance of
detecting new feature as performance regression.

Performance regressions may be introduced by tasks
with typically low impact. Another interesting finding is
that performance regressions can also be introduced during
tasks that are not generally considered with high impact. For
example, 12 commits are associated with issue type cleanup
and 6 commits are associated with issue type documentation.
We manually investigate these commits and find that, all too
often developers label the issue as documentation or cleanup
while committing code changes for other small tasks (like
bug fixes) on the side. In RxJava, issue #4987 is labeled
as documentation but developers fix additional input sources
problems on this issue. Issue #4706 is labeled as cleanup
but fix minor mistakes for operators. Such small tasks may



TABLE III: Pearson correlation between effect sizes measured
using different performance metrics.

Hadoop
Response CPU Memory I/O I/O

time read write
Response time 1 -0.02 0.04 0.01 0.06

CPU -0.02 1 0.60 0.32 -0.02
Memory 0.04 0.60 1 0.27 0.04
I/O read 0.01 0.32 0.27 1 0.06
I/O write 0.06 -0.02 0.04 0.06 1

RxJava
Response CPU Memory I/O I/O

time read write
Response time 1 -0.01 0.01 0.01 -0.01

CPU -0.01 1 0.39 0.46 0.06
Memory 0.01 0.39 1 0.57 -0.26
I/O read 0.01 0.46 0.57 1 0.06
I/O write -0.01 0.06 -0.26 0.06 1
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Fig. 3: Number of performance regression introducing commits
associated with different issue types.

introduce unexpected performance regressions. Therefore, de-
velopers should not ignore such commits that are labeled with
low-impact task when evaluating performance regressions.

We identify six code level root-causes of introducing
performance regressions. Based our manual analysis on all
commits that are identified with performance regressions, we
discover six code level root-causes. The distribution of each
root-cause is presented in Table IV.

Changing function calls. The regression may be introduced
by changed function calls in the source code. For example, in
class Mover.java of commit #c927f938 in Hadoop. Developers
added an API call shuffle of Collections inside a loop, leading
to the performance regression. In particular, we identify four
patterns of changing function calls that may introduce perfor-
mance regression: 1) new functionality, 2) external impact, 3)
changing algorithm and 4) skippable function. In particular,
the performance regressions that are introduced by changing
algorithm and skippable function should be avoided or resolved
by developers. On the other hand, some code changes that
introduce new functionality and depend on external resources
may not be avoidable. In total, among the 334 identified
regression in this root-cause, we find 36 of them are avoidable.
Developers should still be aware of the un-avoidable regression
and consider possible alternatives if they have large impact on

users.

Changing parameters. The regression may be introduced
by changing parameters. For example, in commit #81a445ed
in Hadoop. The developer added new parameter conf into the
function doPreUpgrade in file FSImage.java. The parameter
conf contains a large number of variables such that initial-
ization can cause memory overhead when calling function
doPreUpgrade. Making it worse, the function is called inside
a loop, leading to large performance regression. We identify
three patterns of changing parameters that may introduce
performance regressions: 1) using more expensive parameter,
2) changing condition parameter and 3) changing configuration
parameter. In particular, using more expensive parameter is the
case when a parameter is more expensive than before. If all
the data in the new parameter is indeed needed, developer may
not be able to resolve this regression, while on the other hand,
if developers can identify unneeded data in the parameter,
the performance impact from the identified regression may be
reduced. Similarly, changing condition parameter and changing
configuration parameter may both be due to the need of other
code change. Among the 100 identified regression in this root-
cause, we find 18 of them are avoidable or reducible.

Changing conditions. Changing condition can change the
code that is executed and may cause more operation eventually
executed by the software, leading to performance regres-
sions. For example, in class AccessControlList.java of commit
#3c1b25b5 in Hadoop, developers changed the else condition
to else if. So every time the function isEmpty inside the
condition has to execute. More execution inside the else if
will execute and it will cause more operations. We identified
13 avoidable or reducible regression out of 85 regressions this
root-cause.

Having extra loops. Changing loops may significantly
slow down performance. For example, in commit #94a9a5
in Hadoop, developers added a for loop into the file
LeafQueue.java, which adds an item to a queue repetitively,
while such action can be done as a batch process. If the
functionality of a loop can be achieved by batch process,
developers may consider implementing batch to minimize the
regression. Such solutions can make this regression avoidable
or may reduce the performance impact from the loop. All the
identified regressions in this root-cause are un-avoidable.

Using more expensive variables. Some variables are more
expensive to be held in memory and need more resources
to visit or operate. For example, it is recommended to use
local variables and to avoid static variables. If the keyword
static is used to declare a variable, the lifetime of the variable
will be longer, costing more memory. Developer should avoid
performance regressions that are introduced by unnecessary
expensive variables in the code. We find 9 out of 48 regressions
avoidable or reducible in this root-cause.

Introducing locks and synchronization. Locks are expen-
sive actions for software performance. Introducing locks and
synchronization can suspend threads waiting on a lock until
released, causing performance degradation on response time.
For example, in commit #2946621a in Hadoop, developers
added synchronized operation to lock the block in class Met-
ricsSourceAdapter.java, in order to protest the shared resources
used by the two functions inside the block. synchronized



operation introduces performance regression to the software.
Indeed, it is often necessary to have locks in the source code
to protect shared resources. On the other hand, developers
should always only lock the necessary resource to minimize
performance regression. All the identified regressions in this
root-cause are un-avoidable.

Discussion: A considerable amount of performance
regressions are avoidable. Based on our manual study on the
root-causes of performance regression, even though only few
regressions are due to having new features, many regressions
cannot be avoided. For example, if new function calls or more
data is needed to fix a bug, such performance regressions
may not be avoidable. However, there also exist performance
regressions that should be entirely avoided by developers, such
as having skippable functions. Such performance regressions
may eventually become performance bugs. Nevertheless, de-
velopers should still be aware of the impact from un-avoidable
performance regressions, and minimize the impact on users’
experiences by either providing more hardware recourses or
considering alternative solutions. Among the total 680 manu-
ally examined performance regressions, we find 85 of them are
avoidable or their impact may be reduced. With more frequent
and thorough performance assurance activity, the impact from
these performance regressions can be minimized.

Functional bugs and performance regressions. We find
that performance regressions are mostly introduced during
fixing functional bugs. Such findings may be due to two
reasons. First of all, performance regression testing is not
enforced during development. After developers fix a func-
tional bug, there is no systematic mechanism to prevent the
introduction of performance regression at the same time. Al-
though thorough performance regression testing can help avoid
such performance regressions, these tests are often resource
intensive. Designing inexpensive performance testing can help
developers better avoid performance regressions in practice.
Second, the performance regressions can be ignored due to the
pressure or trade-off of fixing functional bug. Developers may
consider the high importance of fixing a functional bug while
choose to sacrifice performance for the ease of bug fixes. It
is important to make such choices wisely based on the impact
of functional bugs and performance regressions. In-depth user
studies and field data analysis may help developers minimize
the impact from these choices.

Finding: We find that the majority of performance regres-
sions are introduced with fixing functional bugs, while sur-
prisingly, tasks that are typically considered with low impact
also may introduce performance regression. In addition, we
identify six root-causes of performance regressions, some of
which are avoidable.
Actionable implication: Developers should always be aware
of the possible performance regression from their code
change, in order to address avoidable regressions or min-
imize the impact from un-avoidable regressions.

IV. THREAT TO VALIDITY

A. External Validity

Generalizing our results. In our case study, we only
focus on fifteen releases from two open source systems,
i.e., Hadoop and RxJava. Both of the subject systems are

mainly written in Java languages. Some of the findings might
not be generalizable to other systems or other programming
languages. Future studies may consider more releases from
more systems and even different programming languages (such
as C#, C++).

B. Internal Validity

Subjective bias of manual analysis. The manual analysis
for root-causes of performance regression is subjective by
definition, and it is very difficult, if not impossible, to ensure
the correctness of all the inferred root-causes. We classified
the root-causes into six categories; however, there may be
different categorizations. Combining our manual analysis with
controlled user studies on these performance regressions can
further address this threat.

Causality between code changes and performance re-
gressions. By manually examining the code changes in each
commit, we identify the root-causes of each performance
regression. However, the performance regression may be not
caused by the particular code change but due to unknown
factors. Furthermore, the performance regression may not be
introduced by one change to the source code but a combination
of confounding factors. In order to address this threat, future
work can leverage more sophisticated causality analysis based
on code mutation can be leveraged to confirm the root-cause
of the performance regression.

Selection of performance metrics. Our approach requires
performance metrics to measuring performance. In particular,
we pick one commonly used domain level and four commonly
used physical level performance metrics based on the nature of
the subject systems. There exist a large number of other per-
formance metrics. However, practitioners may require system-
specific expertise to select an appropriate set of performance
metrics that are important to their specific software. Future
work can include more performance metrics based on the
characteristic of the subject systems.

C. Construct Validity

Monitoring performance of subject systems. Our study
is based on the ability to accurately monitor performance of
our subject systems. This is based on the assumption that
the performance monitoring library, i.e. psutil can success-
fully and accurately providing performance metrics. This tool
monitoring library is widely used in performance engineering
research [16], [28]. To further validate our findings, other
performance monitoring platforms (such as PerfMon [29]) can
be used.

Noise in performance monitoring results. There always
exists noise when monitoring performance [30]. For example,
the CPU usage of the same software under the same load
can be different in two executions. In order to minimize
such noise, for each test or performance micro-benchmark,
we repeat the execution 30 times independently. Then we
use a statistically rigorous approach to measuring performance
regressions. Further studies may opt to increase the number of
repeated executions to further minimize the threat based on
their time and resource budget.

Issue report types. We depend on the types of issues that
are associated with each performance regression introducing



TABLE IV: Number of tests with different root-causes of performance regressions with the number of avoidable or reducible
ones in brackets.

Changing function call Changing parameters Using more Having Changing Introducing Others
New External Changing Skippable Expensive Condition Configuration expensive extra condition locks and

functionality impact algorithm function parameter parameter parameter variables loops synchronization
Hadoop 125 (11) 32 (6) 15 (2) 6 (6) 12 (4) 15 (2) 22 (5) 22 (5) 6 (0) 37 (8) 6 (0) 40 (5)
Rxjava 119 (6) 18 (3) 19 (2) 0 22 (3) 21 (3) 8 (1) 26 (4) 8 (0) 48 (5) 0 53 (4)

commit. The issue report type may not be entirely accurate.
For example, developers include extra code changes in issue
reports with type documentation. Firehouse-style user stud-
ies [31] can be adopted to better understand the context of
performance regression introducing changes.

The effectiveness of the tests. In our case study, we lever-
age test cases and performance micro-benchmarks to evaluate
performance of each commit. In particular, for Hadoop our
heuristic of identifying impacted tests are based on naming
conventions between source code files and test files. In addi-
tion, we also rely on the readily available performance micro-
benchmarks in RxJava. Our heuristic and the performance
micro-benchmarks both may not cover all the performance
impacts from code changes. However, the goal of our paper is
not to detect all performance regression in the history of our
subject systems, but rather collect a sample of performance
regression introducing commits for our further investigation.
Future work may consider using more sophisticated analysis
to identify the impacted tests [32] or manually adapting the
tests to address this threat. Moreover, conducting systematic
long-lasting performance tests may minimize this threat, the
long-lasting time of these test (often more than eight hours)
make it almost impossible for every commit. It is still an
open research challenge of how to design in-expensive yet
representative performance tests, which our case study signifies
the importance of breakthrough in such research area.

In-house performance evaluation. We evaluate the perfor-
mance of our subject systems with our in-house performance
evaluation environment. Although we minimize the noise in the
environment to avoid bias, such an environment is not exactly
the same as in-field environment of the users. There is a threat
that the performance regressions identified in our case study
may not be noticeable in the field. To minimize the threat, we
only consider the performance regressions that have non-trivial
(turn out to be mostly large in our experiment) effect sizes. In
addition, with the advancing of DevOps, more operational data
will become available for future mining software repository
research. Research based on field data from the real users can
address this threat.

V. RELATED WORK

In this section, we present the related work to this paper.

A. Performance regression detection

A great amount of research has been proposed to detect per-
formance regression. Ad hoc analysis selects a limited number
of target performance counters (e.g., CPU and memory) and
performs simple analysis to compare the target counters. Heger
et al. [5] present an approach to support software engineers
with root cause analysis of the problems. Their approach
combines the concepts of regression testing, bisection and

calls tree analysis to detect performance regression root cause
analysis as early as possible.

Pair-wise analysis compares and analyzes the performance
metrics between two consecutive versions of a system to detect
the problem. Nguyen et al. [6], [33], [7] conduct a series of
studies on performance regressions. Nguyen et al. propose an
approach to detect performance regression by using a statistical
process control technique called control charts. They construct
the control chart and apply it to detect performance regressions
and examine the violation ratio of the same performance
counter. Malik et al. [34] propose approaches that combine
one supervised and three unsupervised algorithms to help
performance regression detection. They employ feature selec-
tion methods named Principal Component Analysis (PCA) to
reduce the dimensionality of the observed performance counter
set and validate their approach through a large case study on
a real-world industrial software system [35].

Model-based analysis builds a limited number of detected
models for a set of target performance counters (e.g., CPU and
memory) and leverages the models to detect performance re-
gressions. Xiong et al. [36] propose a model-driven framework
to diagnose the application performance in cloud condition
without manual operation. In the framework, it contains three
modules consisting of sensor module, model building module,
and model updating module. It can automatically detect the
workload changes in cloud environment and lead to root
cause of performance problem. Cohen et al. [37] propose
an approach that builds a promising class of probabilistic
models (Tree-Augmented Bayesian Networks or TANs) to cor-
relate system level counters and systems average-case response
time. Cohen et al. [38] present that performance counters
can successfully be used to construct statistical models for
system faults and compact signatures of distinct operational
problems. Bodik et al. [39] employ logistic regression with
L1 regularization models to construct signatures to improve
Cohen et al.'s work.

Multi-models based analysis builds multiple models from
performance counters and uses the models to detect perfor-
mance regressions. Foo et al. [40] propose an approach to
detect potential performance regression using association rules.
They utilize data mining to extract performance signatures
by capturing metrics and employ association rules techniques
to collect correlations that are frequently observed in the
historical data. Then use the change to the association rules
to detect performance anomalies. Jiang et al. [41] present two
diagnosis algorithms to locate faulty components: RatioScore
and SigScore based on component dependencies. They identify
the strength of relationships between metric pairs by utilizing
an information-theoretic measures and track system state based
on in-cluster entropy. A significant change in the in-cluster
entropy is considered as a sign of a performance fault. Shang
et al. [4] propose an approach that first clusters performance
metric based on correlation. Each cluster of metrics is used to



TABLE V: Comparing this work with the four prior stud-
ies [24]–[27]

Jin et al. [25] Huang et
al. [24]

Zaman et
al. [26], [27]

This work

Data source Issue reports Issue reports Issue reports Code commits
Granularity Patch Performance

issue
Performance
issue

Performance
micro-
benchmarks or
impacted tests

# instances 109 100 100 3,438 (680 for
manual study)

Main
approach

Dynamic
rule-based
checker

Static analy-
sis and risk
modeling

N/A Repeated mea-
surement

build a statistical model to detect performance regressions.

The vast amounts of research on performance regression
detection signify its importance and motivate our work. Prior
research on performance regressions are all designed to be
conducted after the system is built and deployed. In this paper,
we explore performance regressions at commit level, i.e., when
they are introduced.

B. Empirical studies on performance

Empirical studies are conducted in order to study perfor-
mance issues [24]–[27]. Jin et al. [25] study 109 real world
performance issues that are reported from five open source
software. Based on the studied 109 performance bugs, Jin
et al. [25] develop an automated tool to detect performance
issues. Zaman et al. [26], [27] conducted both qualitative and
quantitative studies on performance issues. They find that de-
velopers and users face problems in reproducing performance
bugs. More time is spent on discussing performance bugs than
other kinds of bugs. Huang et al. [24] studied real world
performance issues and based on the findings. They propose an
approach called performance risk analysis (PRA), to improve
the efficiency of performance regression testing.

Table V summarizes the comparison between this work
and the four prior studies [24]–[27]. In particular, prior studies
only study a small amount (around 100) of performance issues
often due to the lower number of such issues reported. On the
contrary, since our study does not depend on the existence of
performance issue reports, we observe a much higher preva-
lence of performance regressions that are introduced during
development. Therefore, our results suggest that maintaining
the performance of software may be more challenging. Without
an efficient feedback channel from the end users, the devel-
opers may overlook possible performance regressions. Our
findings suggest the importance of the awareness of possible
performance regressions introduced during development.

Luo et al. [3] propose a recommendation system, called
PerfImpact, to automatically identify code changes that may
potentially be responsible for performance regression between
two releases. Their approach searches for input values that
expose performance regressions and compare execution traces
between two releases of a software to identify problematic
code changes. Hindle et al. [42] present a general methodol-
ogy to measure the impact of different software metrics on
power consumption. They find the effect of software change
on power consumption regressions. Hasan et al. [43] create
energy profiles as a performance measurement for different
Java collection classes. They find that the energy consumption

can have large difference depending on the operation. Lim et
al. [44] use performance metrics as a symptom of performance
issues and leverage historical data to build the Hidden Markov
Random Field clustering model. Such a model has been used
to detect both reoccurring and unknown performance issues.

Prior studies on performance typically are based on either
limited performance issue reports or release of the software.
However, the limit amount of issue reports and releases of the
software hides the prevalence of performance regressions. In
our paper, we evaluate performance at commit level. Therefore,
we are able to identify more performance regressions and
are able to observe the prevalence of performance regression
introducing changes in development.

VI. CONCLUSION

Automatically detected performance regressions are often
difficult to fix at the late stage. In this paper, we conduct an
empirical study on performance regression introducing changes
in two open source software Hadoop and RxJava. We evaluate
performance of every commit by executing impacted tests or
performance micro-benchmarks. By comparing performance
metrics that are measured during the tests or performance
micro-benchmarks, we identify and study performance regres-
sions introduced by each commit. In particular, this paper
makes the following contributions:

• To the best of our knowledge, our work is the one
of the first to evaluate and to study performance
regressions at the commit level.

• We propose a statistically rigorous approach to
identifying performance regression introducing code
changes. Further research can adopt our methodology
in studying performance regressions.

• We find that performance regressions widely exist, and
often are introduced after bug fixing.

• We find six root-causes of performance regressions
that are introduced by code changes. 12.5% of the
manually examined regressions can be avoided or their
performance impact may be reduced.

Our findings call for the need of frequent performance as-
surance activities (like performance testing) during software
development, especially after fixing bugs. Although such activ-
ities are often conducted before release [45], while developers
may find it challenging since many performance issues may
be introduced during the release cycle. In addition, developers
should resolve performance regressions that are avoidable. For
the performance regressions that cannot be avoided, developers
should evaluate and be aware of their impact on users. If there
exist a large impact on users, strategies, such as allocating more
computing resources, may be considered. Finally, in-depth
user studies and automated change impact on performance are
future directions of this work.
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