
An Empirical Study of the Copy and Paste
Behavior during Development

Tarek M. Ahmed, Weiyi Shang, Ahmed E. Hassan
School of Computing

Queen’s University
ON, Canada

Email: {tahmed, swy, ahmed}@cs.queensu.ca

Abstract—Developers frequently employ Copy and Paste. How-
ever, little is known about the copy and paste behavior during
development. To better understand the copy and paste behavior,
automated approaches are proposed to identify cloned code.
However, such automated approaches can only identify the
location of the code that has been copied and pasted, but little
is known about the context of the copy and paste. On the other
hand, prior research studying actual copy and paste behavior is
based on a small number of users in an experimental setup.

In this paper, we study the behavior of developers copying
and pasting code while using the Eclipse IDE. We mine the
usage data of over 20,000 Eclipse users. We aim to explore
the different patterns of Copy and Paste (C&P) that are used
by Eclipse users during development. We compare such usage
patterns to the regular users’ usage of copy and paste during
non-development tasks reported in earlier studies. Our findings
instruct builders of future IDEs. We find that developers’ C&P
behavior is considerably different from the behavior of regular
users. For example, developers tend to perform more frequent
C&P in the same file contrary to regular users, who tend
to perform C&P across different windows. Moreover, we find
that C&P across different programming languages is a common
behavior as we extracted more than 75,000 C&P incidents across
different programming languages. Such a finding highlights the
need for clone detection techniques that can detect code clones
across different programming languages.

I. INTRODUCTION

Copy and Paste (C&P) is a well known practice that
is performed by developers in various documents and for
different purposes [10, 15]. Developers frequently C&P text
during development either by copying their own text or by
copying text from external sources. Developers may copy a
single variable name, a whole method, an entire class or even
an entire file.

Although C&P is a simple and basic action performed by
developers, it is believed that C&P is the main cause of
code cloning [10, 20]. Code cloning, the process of creating
duplicates of existing code, has gained attention in recent
years with several studies examining its benefits and harmful
side effects. Prior studies find that there is a relationship
between less maintainable or defect-prone code, and code
cloning [8, 9, 11, 18, 21, 26]. On the other hand, several studies
argue that code cloning may not be harmful. Developers may
well know the existence of code clones [4], and they may use
code clones as an effective design option [13, 15].

To study C&P, automated clone detection techniques are
employed in order to discover duplications across the source
code. These automated techniques only detect large duplicate
code fragments after they are copied and pasted [2, 3, 12, 16,
26]. However the context of such C&P, e.g., how are clones
propagated, cannot be detected using such automated clone
detection techniques.

To the best of our knowledge, there exists no large scale
empirical study on the C&P behavior of real users within a
software development IDE. Kim et al [15] explore the C&P
behavior of developers by examining the C&P behavior of
nine expert developers at IBM T. J. Watson Research Center.
The study was based on a small number of research-oriented
developers and a short observation period, thus it may not
reflect the common behavior of industrial developers.

In this paper, we perform a large empirical study on the
C&P behavior within the Eclipse IDE by mining the Eclipse
Usage Data Collector (UDC) dataset [1]. UDC is an Eclipse
extension that records the user interactions including all used
views and editors in addition to all executed commands within
the Eclipse IDE. The availability of the UDC data enables
us to perform a large scale study of the C&P behaviour. In
particular, we analyze the Eclipse UDC dataset for 20,000
users over 20 months, in order to answer the following two
research questions:

RQ1: Do IDE users follow the same C&P patterns as
regular users?
We find noticeable differences between IDE users
and regular users across all C&P patterns. For ex-
ample IDE users tend to perform more frequent
C&P within the same file in contrast to regular users
who tend to C&P across different windows. Future
empirical studies should explore within file C&P and
its impact on code quality.

RQ2: How do IDE users copy and paste code across
different file formats?
Our results show that C&P across different file for-
mats is frequent. Hence, techniques are needed to de-
tect clones among different file formats. Such results
suggest that automated clone detection techniques
and code cloning research should also consider code
clones across different languages (e.g., Javascript and
PHP).



The rest of the paper is organized as follows: Section II
overviews the recent related work. Section III explains the
setup of our case study. In section IV we show the results of
our two RQs. Sections V discusses Cut&Paste behavior during
development. Section VI discusses the threats to the validity
of our study. Finally, section VII concludes the paper.

II. RELATED WORK

A. Studies of C&P Behavior

Studies of C&P behavior are performed on a small number
of software developers or the studies are done within a non-
software engineering context. Kim et al. [15] perform an
ethnographic study of Eclipse developers. Kim et al. explore
how and why developers tend to C&P code. Two approaches
were used in their study, first, developers are observed during
development and their C&P actions are manually recorded.
Second, the behavior is studied by using a specially-developed
tool to capture developers usage of different Eclipse com-
mands. This tool captures two forms of information, the
commands executed by the developer, and the changes done
to each document corresponding to the recorded command.
Their results show some interesting findings about the usage of
C&P, Kim et al. report that some limitations in programming
languages make C&P unavoidable. For example, the lack of
multiple inheritance in Java would require the developer to
repeat some code segments. Moreover, they find that de-
velopers usually copy code snippets that contain structural
templates so they can reuse the templates. Although the
study revealed several findings on developers C&P behavior,
the study was performed on a small number of experienced
software developers in a research center, thus the results may
not be applicable to large scale projects or projects including
developers of different experience levels. This study and our
results complement each other because our results show a
more generalized view on the C&P behavior of IDE users
whereas the earlier study has a more detailed data of how
Eclipse users perform C&P.

Stolee et al. [22] study C&P behavior within a non-software
engineering context. They explore the ways that normal users
use the clipboard by automatically monitoring clipboard usage
for groups of users including administrators, teachers and
students. The captured data includes copies, cuts and pastes
within the same window and across different windows. Ad-
ditionally, Stolee et al.’s work defines a set of patterns that
describe the C&P behavior. The motivation behind this work is
to understand how the C&P behavior can negatively impact the
productivity of users by the continuous switching of windows
to move text. Finally, Stolee et al.’s work proposes new
clipboard strategies to overcome the limitations of traditional
C&P tools. In this paper, we examine whether C&P within
a software engineering context matches the observations of
Stolee et al’s work.

Murphy-Hill et al. [19] mine the Eclipse UDC dataset as
well as three additional datasets to analyze user behavior in the
scope of code refactoring. Although the study was not related
to C&P directly, it revealed several facts about the behavior

of developers using refactoring commands that are related to
the use of C&P. They compare the usage behavior of the
developers of Eclipse refactoring commands to the behavior
of the users of these commands by analyzing the usage of a
large number of refactoring commands including “Rename”,
“Extract Method” and “Move”. They address common as-
sumptions about refactoring tools usage like that developers
repeat refactorings, and that they do not usually configure the
refactoring commands. In our paper, we mine the same Eclipse
UDC dataset, but we focus on C&P commands rather than
refactoring commands.

Finally, Yoon and Myers [27] propose the FLUORITE tool
to capture low level events in Eclipse. The tool captures ad-
ditional information about the recorded user interactions than
the UDC extension. For example, the Eclipse UDC dataset
does not capture moving within the code using the arrow keys
or deleting text using the backspace key. More importantly,
the FLUORITE captures the content of the executed action,
for example, it captures the text involved in each action
like the text deleted using the backspace key. Although such
information is very useful, the tool has a limited deployment.
Hence our study mines the Eclipse UDC dataset that records
the interactions of thousands of developers.

B. Studies of Code Cloning

Although there exists a plethora of work done in the detec-
tion of code clones [17, 20], little effort has been devoted
to understand the main mechanism for creating clones,
i.e., C&P. Prior studies of code cloning can be primarily
categorized along two broad goals: 1) studying the benefits
and the harmful effects of code cloning, and 2) proposing
new techniques for clone detection, management and removal.
Most of the studies in both categories focus on the post-
clone event (caused by a C&P) with minimal explanation
C&P process itself.

Studies on the effects of code cloning primarily used to
focus on its harmful side effects [8, 11, 18, 26]. These studies
suggest that developers should avoid creating code clones
due to their adverse effect on software maintainability and
code quality. For example, when a developer clones buggy
code, the bug is propagated across different code fragments
which makes the bug fixing process more difficult. Fowler [8]
considers duplicated code as the primary source of bad smells
in code. He describes situations where code refactoring is
required to decrease the amount of code duplicates caused
by C&P.

On the other hand, a few recent studies discuss the benefits
of code cloning and consider it as a useful software engineer-
ing practice [6, 13, 14]. Kapser and Godfrey [13] examine
the non-harmful side of code cloning by exploring the useful
patterns of creating duplicates. Their study presents several
situations where code cloning is a desirable practice rather
than a harmful one. One of these situations is Forking where
a developer intends that the cloned and original code fragments
would evolve independently.



Some studies propose tools for code clones management.
Code clones management is a way to keep track of the cloned
code to provide details about the clones to the IDE users.
Duala-Ekoko and Robillard [7] propose CloneTracker, a tool to
manage clones in the Eclipse IDE. The input to CloneTracker
is the output of SimScan tool, a tool to detect code clones
in Eclipse. CloneTracker tracks the occurrence and evolution
of code clones and have the ability to inform developers
when changes are applied to cloned regions. Similarly, Chiu
and Hirtle [5] propose Clonescape tool. Clonescape is an
Eclipse plugin that tracks code clones. Unlike CloneTracker,
Clonescape does not require the input from SimScan tool,
Clonescape can automatically tag C&P and mark them as code
clones. Toomim et al. [25] propose a Linked Editing technique
implemented in CodeLink prototype editor. The technique
requires that the developer manually links the cloned code to
the original code. The technique then calculates the differences
and visualizes them so that the developer is aware of all the
changes in the cloned code.

Our work focuses on the C&P behavior of Eclipse IDE
users in order to gain more insight about this practice in
Eclipse.

III. CASE STUDY SETUP

In this section we describe the Eclipse Usage Data Collector
(UDC) dataset. We present how this dataset captures the
behavior of Eclipse IDE users and we show the setup of our
study that explored the C&P behavior of the Eclipse IDE users.

A. Eclipse Usage Data Collector (UDC)

In this paper, we use the Eclipse Usage Data Collector
(UDC) dataset [1]. UDC is an extension that captures how
users use the Eclipse IDE by recording all performed actions.
This data can be used to help researchers to understand the
behavior of Eclipse users. We mine the UDC dataset that
has been collected between January 2009 to August 2010.
Typically, UDC captures four types of information:

1) Plug-ins: Information about all installed Eclipse plugins
that are started with the IDE.

2) Application commands: Information about the actions
done by the users. The actions include shortcut keys
and actions performed using menu items.

3) Changes in Perspectives: Information about the used
Eclipse perspectives like Java perspective or Debug
perspective.

4) Editor events: Information about when a user opens,
closes or gives focus to a specific editor. For example,
UDC would record when the Java or C editors are
activated.

Table I shows an example of the UDC data where a
developer activates a Java editor, performs a C&P and finally
saves the file. Each record consists of: 1) a unique user ID, 2)
the performed action (like activation or execution), 3) what the
action is performed on (like editor or command), 4) the Eclipse
bundle responsible for the action, 5) the bundle version, 6)
a description of the action, showing more details about the

performed action, and 7) the time when the action is performed
(in milliseconds).

B. Data Pre-Processing

In this sub-section, we discuss our data pre-processing. Our
pre-processing consists of four steps: 1) Creating Development
Sessions, 2) Finding Active Sessions, 3) Finding Frequent
Users, and 4) Finding C&P.

1) Creating Development Sessions: First, we define the
concept of a development session. A development session is
calculated by extracting the commands of a specific user until
one of two conditions is encountered: either the user closes
the Eclipse IDE, or an idle duration of at least two hours is
found between two consecutive records. We revisit this limit
in Section V.

2) Finding active sessions: Second, we find the active
development sessions. A development session can be very
short and not meaningful because the user may turn off the
UDC extension or may open the IDE without considerable
activity. We define the notion of an active session where a
session is considered active if it has more than 10 commands
of any type. We only consider a session active if it has more
than 10 commands such that we have a more realistic view
about the users’ behavior by eliminating sessions with very
small number of user actions. We note that the sessions having
less than 10 commands have 0.346 C&P incidents on average
and standard deviation of 0.79. Therefore we decide to exclude
these sessions. Our data has 7,653,647 active sessions for
826,609 users. The median number of sessions for all users in
the dataset is five sessions, the average is 9.25 sessions and
the standard deviation is 13.26 sessions.

3) Finding frequent users: Third, we find users who use
the IDE frequently. We consider a user having more than 50
hours of IDE activity as a frequent user. The motivation behind
selecting users with more than 50 hours is that we compare
C&P behavior in the Eclipse UDC dataset with results of
regular users as reported in an earlier study, in which the
authors report the results for users with an average of 50 hours
of observation [22]. Our data has 21,770 users with more than
50 hours of activity. These users have a median of 70 hours of
activity and a standard deviation of 35 hours. Table II shows
the five-number summary and the mean value of the hours of
activity of all users.

4) Finding C&P: Finally, we extract all C&P incidents
performed by the set of active and frequent users. During the
extraction process, we record the currently used editor type and
the time that this editor was activated in order to keep track of
the different files and editors that the developer copies from
and pastes into.

TABLE II
FIVE-NUMBER SUMMARY AND THE MEAN VALUE OF THE HOURS OF

ACTIVITY OF ALL USERS WITH MINIMAL 50 ACTIVE HOURS

Min 1st Qu. Median Mean 3rd Qu. Max

50 58.22 70.6 82.11 93.38 684.4



TABLE I
EXAMPLE OF UDC DATASET

User ID What Kind Bundle Bundle Version Description Timestamp

382620 activated editor org.eclipse.jdt.ui 3.4.0.v20080603-2000 org.eclipse.jdt.ui.CompilationUnitEditor 1246397908385

382620 executed command org.eclipse.ui 3.4.0.I20080610-1200 org.eclipse.ui.edit.copy 1246397917867

382620 executed command org.eclipse.ui 3.4.0.I20080610-1200 org.eclipse.ui.edit.paste 1246397920110

382620 executed command org.eclipse.ui 3.4.0.I20080610-1200 org.eclipse.ui.file.save 1246397920846

We extracted more than 4 million C&P incidents. A C&P
incident is defined as a copy followed by one or more pastes.
We also capture a special type of paste incident where a
user activates the IDE followed by a paste command which
means the user may have copied from an external source and
pasted into the Eclipse IDE. We find that 23.96% of the C&P
incidents consists of pastes from external sources.

We find that the average number of C&P incidents is 2.72
per hour, while as reported in earlier studies [15, 22], 3 to 4
C&P incidents per hour are performed by regular users and 16
C&P incidents per hour are performed by experienced Eclipse
users. Table III shows the 5-number summary+mean value of
the C&P incidents per user per hour.

TABLE III
FIVE-NUMBER SUMMARY AND THE MEAN VALUE OF CLIPBOARD

INTERACTIONS PER HOUR

Min 1st Qu. Median Mean 3rd Qu. Max

0.004 1.122 2.1 2.72 3.65 21.43

IV. CASE STUDY RESULTS

RQ1: DO IDE USERS FOLLOW THE SAME C&P PATTERNS
AS REGULAR USERS?

Motivation. The motivation behind this RQ is that Eclipse
IDE does not provide more support for C&P other than the
very basic C&P functionality. Therefore, we study whether
the C&P behavior of IDE users is the same as regular users
in order to explore the need for special C&P support tools in
the Eclipse IDE. We perform a study on the C&P behavior
of IDE users where we explore the different patterns of usage
and compare the C&P behavior of IDE users to that of regular
users. We compare our results with the results reported in
a previous study that studies the C&P behavior of regular
computer users [22].
Approach. A prior study of the C&P behavior for regular
users defines two different types of patterns: Elementary
Patterns and Complex Patterns [22]. The elementary patterns
are composed of a single C&P interaction involving one or
more files. On the other hand, complex patterns are composed
of two or more C&P incidents involving more than two files.

The elementary patterns are broken into two sub-types:
“Between” and “Within”.

• Between: A pattern that involves a C&P incident such
that both the copy and the paste commands are performed

in two different windows. This pattern consists of a de-
veloper opening a file, performing a copy command, then
opening another file and performing a paste command.
As the Eclipse UDC dataset does not provide a unique
identifier for files, we consider opening an editor window
as opening a new file.

• Within: A pattern that involves a single file where both
C&P commands are executed. This pattern consists of
a developer opening a file, performing a copy command
then performing one or more paste commands in the same
file.

In addition to the two previously identified patterns for regular
users, we propose two new patterns:

• Within and between: A pattern that captures an incident
where the code is pasted both in the same file from which
it was copied, in addition to one or more other files.

• External paste: A pattern that involves an IDE user
activating the Eclipse IDE followed by one or more pastes
without performing any other C&P incidents.

We present below the definitions of the five sub-types of
complex patterns as mentioned in the previous study [22] and
discuss whether the available UDC dataset can be used to
detect each of these pattern.

• Repeat: A repeat pattern is defined as two or more
consecutive C&P incidents such that both the source and
destination windows are the same in all incidents. The
Eclipse UDC dataset does not provide a unique identifier
for each file, thus we assume that a set of C&P incidents
that are performed during a short period of time can
be considered as a repeat pattern. We detect two or
more consecutive patterns having the following sequence
[Activate editor - Copy - Activate editor - Paste] in a short
period of time (two minutes) as a repeat incident. We
choose two minutes heuristically because we are unable
to identify exactly how the IDE user repeats C&P.

• Distribution: A distribution pattern involves a copy
from a common source file and two or more pastes in
different distinct files. The Eclipse UDC dataset does
not guarantee the uniqueness of the editor being pasted
into, so a distribution pattern in this case can be detected
when a developer first activates an editor and performs
a copy command, then repeat a sequence of [Activate
editor - Paste] without performing any other clipboard
interactions.

• Composition: A composition pattern is defined as two or



TABLE IV
C&P ELEMENTARY PATTERNS. µ IS THE AVERAGE PERCENTAGE OF EACH PATTERN AND σ IS THE STANDARD DEVIATION

Pattern Definition C&P Usage For IDE users C&P Usage for End-Users

Per User Overall Per User Overall

Within File

A pattern involving a C&P within
the same file µ = 60.26%

σ = 15.89%
63.52% µ = 23%

σ = 18%
35%

Between Files

A pattern involving a copy and
one or more pastes in a different
file

µ = 15.35%
σ = 9.55%

15.39% µ = 77%
σ = 18%

65%

Within and Between
Files

A pattern involving a copy
followed by two or more pastes
both in the same file and in
different files

µ = 0.42%
σ = 0.88%

0.39% N/A N/A

External Paste

A pattern involved by a user
activating Eclipse IDE followed
by a paste command directly

µ = 23.96%
σ = 14.8%

20.69% N/A N/A

more C&P incidents with text that is copied from multiple
files and pasted into a single destination file. This pattern
cannot be detected using the Eclipse UDC dataset because
there is no unique identifier for each file.

• Isolation: A pattern that involves a incident where the
source and destination files are different from the files
that are involved in the previous or following incident.
This pattern cannot be detected because there is no way
to determine whether the files that are involved in the
incident are different from the other incidents (due to
privacy protection of UDC users).

• Relay: This pattern involves two consecutive incidents
where the destination of the first incident is the source
of the second incident. This pattern can be detected
when a developer first activates an editor, performs a
copy command, then activates an editor, performs a paste
followed by a copy, and finally opens another editor
and pastes in it. This sequence can be summarized as
[Activate Editor - Copy - Activate Editor - Paste - Copy -
Activate Editor - Paste]. However the original definition is
that all the windows are different, which is not detectable
using UDC dataset [22].

In particular, we explore three complex patterns: Repeat,
Distribution and Relay in addition to an extra Unknown pattern

where a C&P incident does not belong to any of the other
complex patterns. Therefore, a C&P incident is classified as
Unknown if it does not have a relation to either its previous
or next C&P incidents.
Results. We extract 4,058,046 incidents, 3,218,437 (76.04%)
of which are internal C&P incidents and 839,609 are external
paste incidents.

Elementary patterns analysis shows a noticeable differ-
ence between the behavior of IDE users and regular users.
We observe that IDE users tend to more frequently perform
C&P in the same file rather than across different files. We
find that 60.62% of the incidents belong to “Within” pattern
compared to 23% for regular users. Moreover, the percentage
of “Between” pattern is 15.35% compared to 77% for regular
users. Table IV shows the percentages of occurrence of ele-
mentary patterns relative to the total number of incidents. The
table shows two types of results in C&P usage column. First in
Per User results, we calculate the percentages of incidents for
each user and we report the mean and standard deviation for
these percentages. Second Overall results is the percentage
of occurrence across the whole dataset. Moreover the table
shows a comparison with the behavior of regular users except
for “Within and Between” and “External Paste” patterns which
were not reported for regular users.



TABLE V
C&P COMPLEX PATTERNS. µ IS THE AVERAGE PERCENTAGE OF EACH PATTERN AND σ IS THE STANDARD DEVIATION

Pattern Description C&P Usage For IDE Users C&P Usage For End-Users

Per User Overall Per User Overall

Repeat
A pattern formed when a user activates an editor and copies then opens
another editor and pastes and repeat this operation more than once in a short
period of time (less than two minutes)

µ = 8.94%
σ = 6.2%

10.95% µ = 32%
σ = 18%

37%

Distribution A pattern formed when a user activates an editor and perform a copy
command then perform paste command in two or more different files

µ = 0.82%
σ = 1.28%

0.7% µ = 36%
σ = 16%

32%

Relay
A pattern formed when a user activates an editor, performs a copy then opens
another editor and pastes. Finally the user copies from the same editor and
pastes in a third editor

µ = 32.94%
σ = 15.65%

39.43% µ = 2%
σ = 2%

3%

Unknown A single C&P interaction that doesn’t fit in any of the above patterns µ = 57.29%
σ = 16.85%

48.92% N/A N/A

Complex pattern analysis shows major differences be-
tween C&P behavior of IDE users and regular users. For
example a repeat pattern is found on average in 8.94% of the
incidents compared to 32% for regular users. A distribution
pattern is much less used by IDE users where we only
find 0.82% of the incidents where a user pastes in two or
more different files. Finally, a relay pattern seems to be used
frequently as an IDE user pastes some code in a specific file
then copies from the same file and pastes in other files. Table V
shows the percentages of occurrence of each complex pattern
relative to the overall number of incidents.

One difference between IDE users and regular users is that
IDE users perform more relay patterns while regular users
perform more distribution patterns. The reason behind this
phenomenon is that the copied text needs more edit in case
of source code since code usually does not work if it is just
copied to another location. The relay pattern gives IDE users
a chance to edit the code unlike the distribution pattern which
the pasted code is not edited.

The relay pattern appears frequently for IDE users. One
explanation of the frequent appearance of a relay pattern is
after a developer clones a method or variable, this method or
variable is then copied and pasted to be involved or referenced
in other locations in the source code. To better understand how
the relay pattern affects the code, we calculate the difference
in duration between the end of the first C&P incident and the
start of the second C&P incident involved in the same relay
pattern. We find that the median duration is 20.86 seconds, the
average duration is 126.64 seconds and the third quartile of the
duration is 64.16 seconds. This implies that although IDE users
relay their code frequently, there is a small time difference
within the relay incident that does not give the developer a
chance to make major code changes.

Additionally we notice a small frequency of the repeat
pattern. Our detected repeat patterns are an over estimation
of the actual repeat patterns because of the absence of the file
identifier. If there is a file identifier for each opened file, the
detected repeat patterns will be fewer. We explain the small
percentage of repeat pattern by the fact that information in

the code is less scattered than other sources. For example if
a developer is willing to copy line 10 to line 20 and line 50
to line 60, he may just copy line 10 to 60 and remove the
unwanted lines in the pasted file.

The unknown pattern includes C&P incidents that do not
belong to any of the other complex patterns. However, we
investigated these incidents in order to extract other patterns
of interest. One of the patterns that we observed is “within-
file repeat”, where the IDE user opens a file, performs a copy
command and follows it with multiple paste commands in the
same file. We could not find a specific rationalization for such a
pattern thus we decided to only report it as one of the unknown
patterns.

Our results can be used to improve C&P support in Eclipse.
For example, Eclipse can track the source and the multiple
destinations of each C&P incident. Therefore, IDE users can
perform the distribution and relay patterns without worrying
about forgetting where they have pasted.

In summary, unlike regular users, IDE users tend to use
C&P in a different manner. Therefore the C&P support tools
for regular users may not be as beneficial for IDE users [23].�

�

�

�

The C&P behavior of Eclipse IDE users is different
from the behavior of regular users. Accordingly, Eclipse
IDE requires tailored C&P support tools that differ
from regular users’ C&P tools. For example, because
of the large number of relay pattern, users may need to
know where they have pasted. Therefore IDEs should
track the C&P incident source and destinations

RQ2: HOW DO IDE USERS COPY AND PASTE CODE ACROSS
DIFFERENT FILE FORMATS?

Motivation. IDEs (like Eclipse) typically support different
types of editors. IDE users are able to copy and paste text
across different editors. However, clone detection techniques
often do not consider code clones between different lan-
guages [20]. We want to investigate whether IDE users copy
and paste text across different editors and across which editors
do IDE users copy and paste text.



Approach. In order to answer this RQ, first we extract all
the editor types that are recorded in the Eclipse UDC dataset.
Some editor types correspond to a programming language like
Java, C or Python. Other editor types can be used across
languages and for different purposes like the XML, Text
and Compare editors. Second, we record the current opened
editor type for each clipboard interaction. For example, a user
activates a Java editor, and performs a copy command, then
he/she activates a JSP Editor and performs a paste command.
We record that the source of this incident is a Java editor and
the destination is a JSP Editor. Table VI shows an example of
a developer who copies from a Java editor and pastes into a
JSP Editor.

We classify C&P incidents into three patterns: “Within
Editor”, “Between Editors” and “Within and between Editors”.

• Within Editor: One C&P incident includes both the copy
and the paste commands in the same type of editor.

• Between Editors: A copy is performed in editor A and
the paste is performed in a different type of editor B.

• Within and between Editors: A developer copies from
editor A then performs two or more pastes in the same
editor type A and in a different type of editor B.

In addition, we examine which editors are more frequently
used to perform C&P between and within editors, respectively.
Results. IDE users usually use multiple types of editors.
The Eclipse UDC dataset contains 18 types of editors. On
average a developer uses three different editor types (with
some users using as much as 12 editors).

Most of the C&P are in the same type of editors.
Among all the 3,218,437 C&P incidents, we find that more
than 97% of these incidents are within the same editor while
2.36% of the incidents are between different editors (shown
in Table VII). Although the percentage of “Between Editor”
pattern is low, there are still more than 75,000 C&P incidents.
Hence we decide to explore the different patterns of C&P
occurrences for these incidents.

TABLE VII
C&P USAGE IN EDITOR TYPES. µ IS THE AVERAGE PERCENTAGE OF EACH

PATTERN AND σ IS THE STANDARD DEVIATION

Pattern Definition C&P Usage

Per User Overall

Within
Editor A pattern involving a

C&P within the same
editor type

µ = 97.55%
σ = 4.15%

97.62%

Between
Editors A pattern involving a copy

and one or more pastes in
a different editor types

µ = 2.36%
σ = 4.08%

2.31%

Within and
Between
Editors

A pattern involving a copy
followed by two or more
pastes both in the same
editor type and in different
editor types

µ = 0.07%
σ = 0.4%

0.06%

There is a large number of C&P between Java and
XML editors, as well as Java and JSP editors. Despite
that both languages have a completely different syntax, the
XML editor is the destination of 33.62% of the copy instances
from the Java editor. This can be explained by the fact that
there is a large usage of XML in Java frameworks (e.g.,
Spring1). IDE users may share code between XML and Java
editors by C&P. Moreover, IDE users may copy Java code
from a Java class and paste it into a JSP page since the JSP
editor is the destination for 22.55% of the incidents where the
source is a Java editor. For example, a developer can duplicate
some code that validates an input from a Java class to a JSP
page, the validation may be on a date format or email format
or any other form of validation. The duplication makes the
code harder to maintain as the application evolves, thus, clone
detection techniques need to handle this type of clones.

There is a considerable amount of C&P across editors
that are used in web development. For example, the PHP ed-
itor has many C&P with the Javascript editor (21.38%) and the
HTML editor (13.52%). Code used in web development can
exist interchangeably in several file types. The interchangeable
code may increase the effort needed to maintain such web
applications. Additionally, the interchangeable code would
increase the expense of maintenance of the web application.
For example an HTML developer needs to know Javascript as
well, to be able to maintain the application.

The C language editor has the least percentage of “Across
Editors” incidents relative to the total number of incidents
where the C editor is the source of the C&P. Additionally,
the destination of these incidents is a Text editor in more
than 65% of the incidents and is a Java editor in 11% of the
incidents. Therefore, the interaction between the C language
and other editor types is minimal because of the nature of
the C language itself which is primarily used to develop
standalone applications that do not require text to be moved
across different editor types. On the other hand, Java is heavily
used in web applications development that require moving text
across different editors.

Although C&P across different editors has a small per-
centage compared to C&P within the same editor type. This
behavior may result in code clones across different languages
highlighting the need for clone detection techniques to detect
clones across different languages.�
�

�
�

IDE users may use C&P across different editors. Clone
detection techniques should also consider detect clones
across different languages.

V. DISCUSSION

In this section we further discuss our results, first by extend-
ing our analysis to Cut&Paste as a tool of code movement.
Second, we compare our results of the average rate of C&P
per hour to what is reported in earlier studies.

1http://projects.spring.io/spring-framework/



TABLE VI
EXAMPLE OF A DEVELOPER PERFORMING C&P IN DIFFERENT EDITORS

User ID What Kind Bundle Bundle Version Description Timestamp

104526 activated editor org.eclipse.jdt.ui 3.4.0.v20080603-2000 org.eclipse.jdt.ui.CompilationUnitEditor 1231303687537

104526 executed command org.eclipse.ui 3.4.0.I20080610-1200 org.eclipse.ui.edit.copy 1231303691532

104526 activated editor org.eclipse.jst.jsp.ui 1.1.300.v200805152207 org.eclipse.jst.jsp.core.jspsource.source 1231303694442

104526 executed command org.eclipse.ui 3.4.0.I20080610-1200 org.eclipse.ui.edit.paste 1231303706041

TABLE VIII
INTERACTION BETWEEN DIFFERENT EDITORS

% Destination % Across Editor
Java PHP C JSP XML Javascript HTML Text Others

Source

Java - 0.1424 0.3165 22.5545 33.6182 2.0950 2.9526 24.1147 14.2061 1.56

PHP 0.6585 - 0.0760 0.2026 3.1278 21.3752 13.5241 37.6472 23.3886 1.23

C 11.2431 0.2375 - 0 5.7007 0.7918 0.3167 65.3207 16.3895 0.39

JSP 46.2807 0.0512 0 - 9.7848 19.0779 3.5143 1.7418 19.5492 5.98

XML 63.6494 3.2680 0.6446 8.8817 - 1.8892 1.6385 5.7660 14.2627 8.44

Javascript 9.3380 28.1894 0.0219 29.1977 3.6826 - 16.6813 4.1210 8.7681 4.89

HTML 12.0815 28.9283 0.0354 10.1151 3.1532 20.9212 - 4.2161 20.5492 8.63

Text 36.4180 21.1442 7.4467 3.7097 9.6073 4.7968 4.0766 - 12.8007 6.46

A. Code Movement (Cut&Paste)

We further extend our analysis to compare the usage of
code movement (Cut&P) to code cloning (C&P). We perform
the same analysis with Cut command rather than Copy. We
find 623,369 Cut&P incidents, which is around 85% less than
the number C&P incidents. We notice that the percentage of
Cut&P within the same file is more than 90%, which indicates
that moving code is a common practice within the same file
rather than between different files. Table IX shows the Cut&P
patterns identified with the Eclipse UDC dataset. There is a
considerable difference between the results of code movement
and code cloning tools where IDE users cut and paste in
the same file more frequently than C&P (93% compared to
60.62% for C&P).

We also repeat the analysis of the complex patterns in
Table X. We notice that the average percentage of the Cut&P
repeat pattern is higher than the C&P repeat pattern. However,
the other Cut&P patterns are in the same range as the C&P.

As discussed in RQ1, IDE users do not perform a large
number of C&P repeat patterns. However, in the case of
Cut&P, if a developer is willing to move lines 10 to 20 and
lines 50 to 60 from file A to file B, the developer typically
would perform this process in two steps: first moving lines 10
to 20, then moving lines 50 to 60, in order to not delete lines
20 to 50 from file A.

B. Difference between our results and earlier studies

An earlier study of the C&P behavior of experienced Eclipse
users reported an average 16 C&P incidents per hour [15], on
the other hand, our study reports an average of 2.73 C&P
incidents per hour. The difference of our results compared

TABLE IX
CUT & PASTE ELEMENTARY PATTERNS. µ IS THE AVERAGE PERCENTAGE

OF EACH PATTERN AND σ IS THE STANDARD DEVIATION

Pattern Definition Cut&P Usage

Per User Overall

Within File A pattern involving a cut
and paste within the same
file

µ = 93.57%
σ = 10.53%

93.68%

Between
Files A pattern involving a cut

and one or more pastes in
a different file

µ = 6.02%
σ = 10.26%

15.39%

Within and
Between
Files

A pattern involving a cut
followed by two or more
pastes both in the same
file and in different files

µ = 0.02%
σ = 2.32%

0.34%

to other studies is because we perform a large scale study
on a large number of users of different levels of expertise.
Moreover, the choice of our threshold of session idle time of
2 hours may impact the rate of C&P.

In order to further explore our result, we perform an analysis
on the rate of C&P in heavy editing sessions. We define a
heavy editing session as a session having a total number of
commands exceeding the average number of commands per
session (µ) by a multiple of the standard deviation of the
number of commands per session (σ). Additionally, we modify
the threshold of two hours to be ten minutes and perform the
heavy editing analysis. We show the results in Table XI. The
results show that when we minimize the idle time in the heavy



TABLE X
CUT&P COMPLEX PATTERNS. µ IS THE AVERAGE PERCENTAGE OF EACH PATTERN AND σ IS THE STANDARD DEVIATION

Pattern Description Cut&P Usage

Per User Overall

Repeat A pattern formed when a user activates an editor and cuts then opens another editor and pastes and
repeat this operation more than once in a short period of time (less than two minutes)

µ = 16.02%
σ = 13.14%

21.4%

Distribution A pattern formed when a user activates an editor and perform a cut command then perform paste
command in two or more different files

µ = 0.27%
σ = 2.45%

0.18%

Relay A pattern formed when a developer user an editor, performs a cut then opens another editor and pastes.
Finally the user cuts from the same editor and pastes in a third editor

µ = 26.99%
σ = 16.86%

33.68%

Unknown A single Cut&P interaction that doesn’t fit in any of the above patterns µ = 56.71%
σ = 21.01%

44.74%

editing sessions, we obtain a C&P rate close to the results
reported in the earlier study [15].

TABLE XI
ANALYSIS OF THE RATE OF C&P PER HOUR

Average rate of C&P per hour for
heavy editing sessions

µ+ σ µ+ 2σ

Sessions with less than
two hours idle time

7.6 C&P/hour 8.88 C&P/hour

Sessions with less than
ten minutes idle time

11.39 C&P/hour 13.18 C&P/hour

C. Challenges of studying C&P behavior of IDE users

More studies are needed to fully understand the C&P
behavior of IDE users on a large scale. However, such studies
may face several challenges. The first challenge is the privacy
of the recorded data; for example, the Eclipse UDC dataset
does not track two important sources of information, the file
identifiers and the content of the event. The creation of one
way hashes for file identifiers and event contents and the
tracking of such hashes might be a middle ground to enable
more elaborate large scale studies while ensuring the privacy
of Eclipse users.

Terry et al. [24] explore a similar approach on an open
source software for image manipulation (GIMP). In particular,
Terry et al. examine a version of GIMP software called
Instrumental GIMP (ingimp). This version contains a UDC-
like extension that records the users’ usage information. The
recorded data includes a more detailed usage information
than the Eclipse UDC dataset, including file identifiers and
information about the used images. Hence, the authors discuss
the recorded information and how they tackle the privacy
concerns of such information. For example, ingimp records
whether the user works on the same file or different files.
Therefore, a file identifier has to be recorded. Ingimp generates
an arbitrary 32-bit number for each file name in addition to a
32-bit hash associated to the number. The association between
the hash and the number is stored on the user’s machine,

and only the arbitrary number is recorded in the log file.
This allows the data to contain distinct file identifiers while
preventing other third party software from reconstructing the
original file name.

The second challenge is the performance of the recording
tool and its effect on the usability of the IDE. Capturing more
data leads to more processing on the user’s machine. In a
large scale study it is more likely that users with computers of
different capabilities use the IDE. Therefore the recording tool
should be able to capture data with the minimal performance
overhead.

VI. LIMITATIONS AND THREATS TO VALIDITY

In this section we discuss the threats to validity of our study.

A. Internal Validity

In this study, we perform a large scale analysis of thousands
of Eclipse users performing C&P. We analyze the usage of
C&P in different files and in different editors. We compare the
C&P patterns of IDE users to C&P patterns of regular users,
however both studies are not directly comparable. The study
of regular users was done on the window level, so if a specific
application has an internal tabbing functionality then we would
not get any idea how C&P is done within this application.
Hence, it is essential for us to look into the Eclipse UDC
dataset to get an IDE focused view of C&P.

B. External Validity

In this paper, we study the Eclipse UDC dataset only.
Although Eclipse is a widely used IDE by millions of users,
our results may not generalize to other popular IDEs like
IntelliJ and Netbeans.

Moreover, Eclipse is used by users of different programming
languages, however, its main focus is on Java. We tried
to extract information about the usage of C&P in different
programming languages in Eclipse but due to the small scale
of usage, our results may not generalize to other programming
languages.

The Eclipse UDC dataset was collected during the period
from January 2009 to August 2010. This is the latest publicly



available snapshot of the UDC dataset. The practice of C&P
may have changed since the collection of the dataset, therefore,
in case of the availability of another dataset containing the
same type of information, more research may be done to verify
our results.

C. Construct Validity

Although the Eclipse UDC dataset is a rich dataset and
contains valuable information about the usage of the IDE,
however, the Eclipse UDC dataset has drawbacks that may
cause some limitations in our analysis. In the following
subsections, we categorize the limitations of our analysis and
show the impact of such limitations on our results.

1) Assumptions: In this study, we make several assumptions
about the data. First, a copy or paste command may mean
copying code or copying a whole file. The Eclipse UDC
dataset does not provide enough information to differentiate
between both actions, to mitigate this risk, we consider copy
commands only if the user activates a specific editor to obtain
more accurate results. Second, We assume the end of devel-
opment session either when the user closes the workbench
or if we find an idle duration of two hours between two
consecutive records, this may not be realistic in case that a user
is restarting the IDE. In addition, our data filtration is based
on our own analysis of the UDC dataset. Hence adopting a
different filtration setup may produce different results.

Due to dataset limitations, some of the most common
complex C&P patterns cannot be detected or can be detected
by adopting specific assumptions. For example, the isolation
pattern cannot be detected because the UDC dataset does not
provide any identifier for the opened file, thus, a unique key
does not exist for the opened file and there is no way to identify
if the files that are involved in a specific C&P incident differ
from the files in a previous C&P incident.

2) Dataset limitations: In this subsection, we discuss the
various UDC dataset limitations.
Missing File identifiers. The Eclipse UDC dataset does
not provide a unique identifier for each file. This impacts
the validity of our study. Consider the following two usage
scenarios: Scenario 1: User opens file f1, performs a copy,
opens file f2, then opens file f1 again then performs a paste.
In this scenario, we consider this event as “between” C&P
although actually it is a “within” event. This leads to an
overestimation of the “between” pattern.

Scenario 2: User opens file f1, performs a copy, opens file
f2 and pastes, then returns back to f1 and performs another
paste. In this scenario, we consider this as a “between” pattern
although it is a “within and between” pattern. This may
overestimate “between” pattern.
Missing C&P content. The Eclipse UDC dataset does not
track the actual content of C&P incident due to privacy
concerns. Our analysis is based solely on the incidents of
C&P themselves rather than the copied code, which limits
our analysis in various ways. For example, we are unable
to differentiate between the trivial C&P incidents involving a

variable name or a code comment and the major ones involving
a method, a class or a whole file.

Additionally, consider the following scenario: A user opens
file f1, performs a copy, then leaves the IDE, he returns to
the IDE again and pastes, we consider this as an external
paste event because the user is assumed to bring code from
an external source as we do not know the event content. This
will overestimate external C&P events.
Missing the content of other commands. We find that paste
commands are sometimes followed by delete commands, it
is not known if the delete commands are related to parts
of the pasted code or simply deleting blank lines to format
the code. Moreover, we find evidence of undo commands
being executed after a paste command in 2.38% of the C&P
incidents, however we argue that this percentage does not
affect the overall accuracy of our results.
Missing some keyboard commands. UDC does not capture
some commands like arrow keys and backspace, this will
not affect our analysis of C&P events because the missing
commands are not directly related to the C&P commands.
Missing drag and drop commands. UDC does not capture
when the IDE user drags code in the same file which acts as a
Cut&P incident. This will result in underestimation of within
Cut&P events presented in the discussion but it will not affect
our C&P analysis.

Table XII shows a summary of the dataset limitations threats
and the impact of each threat on the results.

TABLE XII
THREATS IN OUR ANALYSIS AND THEIR IMPACT ON THE RESULTS

Threat Impact

Missing File Identifiers Overestimation of between files pattern

Missing C&P content Overestimation of external C&P incidents

Missing content of other
commands Unable to identify if the user deletes code

or blank lines

Missing some keyboard
commands No effect on the results

Missing drag and drop
commands Underestimation of within Cut&P incidents

VII. CONCLUSION

In this paper we perform a large empirical study on the
C&P behavior of Eclipse users. We observe several differences
between the C&P behavior of IDE users and regular users. IDE
users tend to perform C&P within the same file unlike regular
users who perform C&P across different files. We also find
that IDE users frequently perform C&P across different editor
types. Our findings imply that Eclipse IDE requires C&P
support tools tailored for IDE users because of the different
patterns of usage. Moreover, clone detection techniques should
consider locating clones across different file types rather than
primarily focusing on clones within the same file type.



REFERENCES

[1] “Eclipse usage data collector (udc).” [Online]. Available:
https://eclipse.org/epp/usagedata/

[2] B. Baker, “On finding duplication and near-duplication in
large software systems,” in Proceedings of 2nd Working
Conference on Reverse Engineering (WCRE ’95), Jul
1995, pp. 86–95.

[3] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier, “Clone detection using abstract syntax trees,”
in Proceedings of International Conference on Software
Maintenance (ICSM ’98), Nov 1998, pp. 368–377.

[4] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y. Zou,
and A. Hassan, “An empirical study on inconsistent
changes to code clones at release level,” in Proceedings
of 16th Working Conference on Reverse Engineering
(WCRE ’09), Oct 2009, pp. 85–94.

[5] A. Chiu and D. Hirtle, “Beyond clone detection,” Cheri-
ton School of Computer Science, University of Waterloo,
Apr 2007.

[6] E. Duala-Ekoko and M. Robillard, “Tracking code clones
in evolving software,” in Proceedings of 29th Interna-
tional Conference on Software Engineering (ICSE ’07),
May 2007, pp. 158–167.

[7] E. Duala-ekoko and M. P. Robillard, “Clonetracker: Tool
support for code clone management,” in Proceedings of
the 30th International Conference on Software Engineer-
ing (ICSE ’08). ACM, 2008, pp. 843–846.

[8] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts, Refactoring: Improving the Design of Ex-
isting Code, ser. Addison-Wesley Object Technology
Series. Pearson Education, 2012.

[9] A. Hunt and D. Thomas, The Pragmatic Programmer:
from Journeyman to Master. Addison-Wesley Profes-
sional, 2000.

[10] P. Jablonski, “Managing the copy-and-paste program-
ming practice in modern IDEs,” in Companion to the
22nd Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA ’07). New York, NY, USA: ACM,
October 2007, pp. 933–934.

[11] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wag-
ner, “Do code clones matter?” in Proceedings of IEEE
31st International Conference on Software Engineering
(ICSE ’09), May 2009, pp. 485–495.

[12] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a
multilinguistic token-based code clone detection system
for large scale source code,” IEEE Transactions on
Software Engineering, vol. 28, no. 7, pp. 654–670, 2002.

[13] C. Kapser and M. Godfrey, ““Cloning Considered Harm-
ful” considered harmful,” in Proceedings of 13th Working
Conference on Reverse Engineering, (WCRE ’06), Oct
2006, pp. 19–28.

[14] C. J. Kapser and M. W. Godfrey, “Supporting the analysis
of clones in software systems: Research articles,” Journal
of Software Maintenance and Evolution: Research and

Practice, vol. 18, no. 2, pp. 61–82, Mar 2006.
[15] M. Kim, L. Bergman, T. Lau, and D. Notkin, “An ethno-

graphic study of copy and paste programming practices
in oopl,” in Proceedings. of International Symposium on
Empirical Software Engineering (ISESE’04), 2004, pp.
83–92.

[16] K. A. Kontogiannis, R. Demori, E. Merlo, M. Galler,
and M. Bernstein, “Reverse engineering,” L. Wills and
P. Newcomb, Eds. Norwell, MA, USA: Kluwer Aca-
demic Publishers, 1996, ch. Pattern Matching for Clone
and Concept Detection, pp. 77–108.

[17] R. Koschke, “Identifying and removing software clones,”
in Software Evolution. Springer Berlin Heidelberg,
2008, pp. 15–36.

[18] A. Lozano and M. Wermelinger, “Assessing the effect
of clones on changeability,” in Proceedings of IEEE In-
ternational Conference on Software Maintenance (ICSM
’08), Sept 2008, pp. 227–236.

[19] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we
refactor, and how we know it,” in Proceedings of the
31st International Conference on Software Engineering
(ICSE ’09). Washington, DC, USA: IEEE Computer
Society, 2009, pp. 287–297.

[20] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison
and evaluation of code clone detection techniques and
tools: A qualitative approach,” Science of Computer
Programming, vol. 74, no. 7, pp. 470 – 495, 2009, special
Issue on Program Comprehension (ICPC ’08).

[21] G. Selim, L. Barbour, W. Shang, B. Adams, A. Hassan,
and Y. Zou, “Studying the impact of clones on software
defects,” in Proceedings of 17th Working Conference on
Reverse Engineering (WCRE ’10), Oct 2010, pp. 13–21.

[22] K. T. Stolee, S. Elbaum, and G. Rothermel, “Revealing
the copy and paste habits of end users,” in Proceedings
of IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC ’09). IEEE, 2009, pp.
59–66.

[23] J. Stylos, B. A. Myers, and A. Faulring, “Citrine: Pro-
viding intelligent copy-and-paste,” in Proceedings of the
17th Annual ACM Symposium on User Interface Software
and Technology (UIST ’04). Santa Fe, NM, USA: ACM
Press, Oct 2004, pp. 185–188.

[24] M. Terry, M. Kay, B. Van Vugt, B. Slack, and T. Park,
“Ingimp: Introducing instrumentation to an end-user
open source application,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’08). New York, NY, USA: ACM, 2008, pp. 607–
616.

[25] M. Toomim, A. Begel, and S. Graham, “Managing dupli-
cated code with linked editing,” in Proceedings of IEEE
Symposium on Visual Languages and Human Centric
Computing (VL/HCC ’04), Sept 2004, pp. 173–180.

[26] V. Wahler, D. Seipel, J. W. von Gudenberg, and G. Fis-
cher, “Clone detection in source code by frequent itemset
techniques,” in Proceedings of 4th IEEE International
Workshop on Source Code Analysis and Manipulation



(SCAM ’04), vol. 4, Chicago, IL, USA, 2004, pp. 128–
135.

[27] Y. Yoon and B. A. Myers, “Capturing and analyzing
low-level events from the code editor,” in Proceedings

of the 3rd ACM SIGPLAN Workshop on Evaluation
and Usability of Programming Languages and Tools
(PLATEAU ’11). New York, NY, USA: ACM, 2011,
pp. 25–30.


