
Information and Software Technology 126 (2020) 106365

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Simplifying the Search of npm Packages

Ahmad Abdellatif 1 , ∗ , Yi Zeng

2 , Mohamed Elshafei 1 , Emad Shihab

1 , Weiyi Shang

2

Department of Computer Science and Software Engineering Concordia University, Montreal, Canada

a r t i c l e i n f o

Keywords:

JavaScript

NPM

Node.js

NPMS

Code reuse

Empirical studies

a b s t r a c t

Context: Code reuse, generally done through software packages, allows developers to reduce time-to-market

and improve code quality. The npm ecosystem is a Node.js package management system which contains more

than 700 K Node.js packages and to help developers find high-quality packages that meet their needs, npms

developed a search engine to rank Node.js packages in terms of quality, popularity, and maintenance. However,

the current ranking mechanism for npms tends to be arbitrary and contains many different equations, which

increases complexity and computation.

Objective: The goal of this paper is to empirically improve the efficiency of npms by simplifying the used com-

ponents without impacting the current npms package ranks.

Method: We use feature selection methods with the aim of simplifying npms’ equations. We remove the features

that do not have a significant effect on the package’s rank. Then, we study the impact of the simplified npms on

the packages’ rank, the amount of resources saved compared to the original npms, and the performance of the

simplified npms as npm evolves.

Results: Our findings indicate that (1) 31% of the unique variables of npms’ equation can be removed without

breaking the original packages’ ranks; (2) The simplified npms, on average, preserves the overlapping of the

packages by 98% and the ranking of those packages by 97%; (3) Using the simplified npms saves 10% of packages

scoring time and more than 1.47 million network requests on each scoring run; (4) As the npm evolve through a

period of 12 months, the simplified-npms was able to achieve results similar to the original npms.

Conclusion: Our results show that the simplified npms preserves the original ranks of packages and is more

efficient than the original npms. We believe that using our approach, helps the npms community speed up the

scoring process by saving computational resources and time.

1

m

i

a

v

J

t

p

t

c

e

l

f

u

s

S

[

i

o

q

i

c

h

R

A

0

. Introduction

According to a recent Stack Overflow survey [1] , JavaScript is the
ost popular programming language today. One of the key reasons for

ts vast popularity is the fact that JavaScript provides developers with
 plethora of online resources [2–4] , including an ecosystem where de-
elopers can find and reuse packaged code.

The Node Package Manager (npm) is the largest repository of
avaScript packages [5,6] . It has been steadily gaining popularity over
he past few years, and currently hosts more than 700 thousand Node.js
ackages 3 . Although this large number of packages is a major benefit
o the developer community, it also brings with it some serious chal-
∗ Corresponding author.

E-mail addresses: a_bdella@encs.concordia.ca (A. Abdellatif), ze_yi@encs.

oncordia.ca (Y. Zeng), m_lshafe@encs.concordia.ca (M. Elshafei),

shihab@encs.concordia.ca (E. Shihab), shang@encs.concordia.ca (W. Shang).
1 Data-driven Analysis of Software (DAS) Lab.
2 Software Engineering and System Engineering (SENSE) Lab.
3 https://www.npmjs.com/

i

O

e

u

ttps://doi.org/10.1016/j.infsof.2020.106365

eceived 4 October 2019; Received in revised form 25 May 2020; Accepted 1 June 2

vailable online 7 June 2020

950-5849/© 2020 Elsevier B.V. All rights reserved.
enges. One of these challenges is finding the right package [7] . To help
acilitate the effective search of more than 700,000 npm packages, npm
ses npms 4 as its official search engine [8] . Developers use npms to
earch for an npm package to use in their software. Moreover, many
E researchers utilize npms to collect package metrics for their studies
9,10] .

Npms ranks packages based on a number of factors that are grouped
nto three main categories: quality, popularity, and maintenance. Each
f the aforementioned categories is composed of multiple metrics, where
uality and maintenance are composed of four metrics while popularity
s composed of three metrics. Finally, those metrics are aggregated to
ome up with the final score.

However, recent discussions have shown that sometimes npms scor-
ng may be out of date, hindering its up to date packages ranking [11] .
ne main reason for this is the fact that npms metrics take significant
ffort and time (more than 180 h) to calculate, causing npms to only
pdate its scoring every two weeks [12] .
4 https://npms.io/

020

https://doi.org/10.1016/j.infsof.2020.106365
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2020.106365&domain=pdf
mailto:a_bdella@encs.concordia.ca
mailto:ze_yi@encs.concordia.ca
mailto:m_lshafe@encs.concordia.ca
mailto:eshihab@encs.concordia.ca
mailto:shang@encs.concordia.ca
https://www.npmjs.com/
https://npms.io/
https://doi.org/10.1016/j.infsof.2020.106365

A. Abdellatif, Y. Zeng and M. Elshafei et al. Information and Software Technology 126 (2020) 106365

Final Score

Popularity
Score

Quality
Score

Maintenance
Score

Carefulness
Community

Interest Open Issues

License Stars Issues

...

...

Score
Evaluation

Aspects
Evaluation

Metrics
Evaluation

Package's
Attributes

Fig. 1. An overview of npms score evaluation hierarchy.

n

s

t

t

s

i

w

t

p

o

p

n

t

(

s

r

(

s

a

s

r

t

r

c

i

p

c

i

s

s

t

a

a

n

i

t

2

n

n

Observer RabbitMQ Consumer

CouchDBScoringElasticsearch

npms-apinpms-www npms-analyzer

Fig. 2. An overview of npms architecture.

e

(

T

m

t

T

F

T

c

Armed with the challenge, we set out to have a closer look at
pms scoring equation. We carefully reviewed npms documentation and
ource code to determine exactly why npms scoring is too resource in-
ensive. Our investigation showed that first, npms ranking equation, al-
hough comprehensive, is rather complex. Second, there is no clear rea-
oning behind the composition of the ranking equation or the attributes
t includes.

Hence, in this paper, we set out to achieve two main goals. Firstly,
e aim to examine the need and importance of each package attribute to

he existing npms scoring equations in order to simplify it. Secondly, we
erform an empirical study to examine the impact of our simplification
n common search results on npms (RQ1) . Next, we examine the im-
act of the change of the final score between the original and simplified
pms on the package rank in the search results (RQ2) . Then, we aim
o measure the impact of simplification on npms resources consumption
RQ3) . Finally, we study the impact of our simplification on the package
cores as npm evolves (RQ4) . Our findings show that (1) our approach
educed the number of used attributes in the package scoring by 31%
2) the difference in the package final score between the original and
implified npms increases/decreases the packages rank by one on aver-
ge. (3) the simplified equation (which we refer to as npms-simplified)
aves 19 h (10%) of the processing time for every npms scoring process
un (4) search results of the simplified equation are nearly identical to
he original npms results, having an overlapping score of 98.3% and a
anking similarity of 96.7% and (5) the simplified equation does not de-
ay as npm evolves. We believe that improving the efficiency of npms
ndirectly impacts the npm ecosystem, since npm uses npms to find the
ackages related to the search query. In addition, our study helps the
ommunity to understand the impact of different metrics on the rank-
ng score of the npms-original. Moreover, this paper provides the initial
teps for the npms community to further simplify and improve the npms
earch engine. We make our data publicly available to help advance fu-
ure research in the community [13] .

Paper organization. Section 2 provides the background to the npms
rchitecture and related concepts. Section 3 describes the simplification
pproach of npms. Section 4 explains the validation of the simplified
pms equations and presents our findings. Section 5 discusses our find-
ngs. Section 6 presents the related work. Section 7 discusses the threats
o validity, and concludes our paper in Section 8 .

. Npms background

Prior to delving into our empirical study, we provide an overview of
pms, its components, and ranking mechanism. As mentioned earlier,
pms is an open source search engine for npm. Npms analyzes the npm
cosystem, collects different packages attributes from different sources
e.g. GitHub) to compute different metrics (e.g. Community Interest).
hen, it uses the computed metrics to calculate the aspect scores (e.g.
aintenance). Finally, the packages’ final score are calculated based on

he computed aspects. The npms scores hierarchy is shown in Fig. 1 .
his process is done for every single npm package, every 15 days [12] .
ig. 2 shows an overview of the npms components and their modules.
here are three main components that are involved in the final score
alculation:

• npms-www is the interface of npms (i.e., website). It allows the
users to search for relevant packages through keyword search. So,
when a user types a search query, it sends the user query to the npms-
api component and presents back the search results to the users.

• npms-api is the conduit between the npms-www and the npms-
analyzer components. It receives the search query from the npms-
www and forwards it to the npms-analyzer component to retrieve
package information. Finally, it returns the query results to the
npms-www component to be presented to the users. The query re-
sults contain package information such as name, version, scores in
terms of quality, popularity, and maintenance.

• npms-analyzer is the npms core component, which is responsible
for collecting data and storing the npm packages. The npms-analyzer
is composed of five modules namely: Observer which continuously
pushes packages that need to be analyzed. It contains two types of
observers namely: (1) real-time observer, which monitors the npm
ecosystem and pushes new or updated packages to the RabbitMQ
and (2) stale observer, which pushes packages that have not been
analyzed for more than 15 days to the queue in order to be ana-
lyzed [14] . The RabbitMQ module maintains all the npm packages
that are waiting to be analyzed in a queue and supports automatic

A. Abdellatif, Y. Zeng and M. Elshafei et al. Information and Software Technology 126 (2020) 106365

Table 1

The 11 equations in the metrics evaluation level and their 22 unique variables at the package attribute level.

Aspect evaluation Metrics evaluation Package’s attributes Description Coefficients before

simplification

Coefficients after

simplification

Quality Score Carefulness License Evaluation of a package license 0.33 0.25

Readme Evaluation of a readme file 0.38 0.33

Linters Evaluation of code linters configuration 0.13 0.12

Gitignore Evaluation of gitignore file 0.08 0

Changelog Evaluation of changelog file 0.08 0

Tests Tests Size of tests 0.6 0.69

Status Build status evaluation 0.25 0

Coverage Test coverage evaluation 0.15 0.26

Health Outdated Number of outdated dependencies 0.5 0.5

Vulnerability Number of vulnerable dependencies 0.5 0.5

Branding Homepage Evaluation of custom homepage 0.4 0.63

Badges Package has badges 0.6 0

Popularity Score #Downloads Downloads30 Mean downloads per month 1 1

Downloads

Acceleration

Downloads60 Mean downloads rate per 2 months 0.25 0.59

Downloads180 Mean downloads rate per 3 months 0.25 0.64

Downloads365 Mean downloads rate per 12 months 0.5 0

Community Interest Stars Number of stars 1 1.03

Forks Number of forks 1 1.09

Subscribers Number of subscribers 1 0

Contributors Number of contributors 1 0

Maintenance Score Releases Frequency Releases30 Mean releases per month 0.25 0.25

Commits Frequency Commits30 Mean commits per month 0.35 0.31

Open Issues #Issues Number of issues 1 1

#Closed Number of closed issues 1 1

Distribution #Issues Number of issues 1 1

#Closed Number of closed issues 1 1

Conditioning Time to close an issue 1 1

n

c

M

s

a

a

e

t

i

p

n

t

p

𝐶

o

w

0

r

c

t

f

H

a

m

o

e

a

t

l

a

t

t

t

𝑝

𝑝

t

h

s

E

v

t

t

m

l

c

n

retries of package analysis process when it crashes or fails. The Con-

sumer module fetches the package metadata (e.g., package name,
version, author, etc.) from RabbitMQ, downloads the package source
code, and collects information about the package from GitHub (e.g.,
star count, fork count, issues count, etc.) and npm (e.g., download
count, dependency count, etc.). After the required information is col-
lected, the consumer evaluates the aspect scores of quality, popular-
ity, and maintenance for each package, and saves the collected infor-
mation and aspect scores in the CouchDB database. The consumer
repeats those steps for all the packages in the RabbitMQ. Finally,
the Scoring module retrieves the aspect scores (i.e., quality, pop-
ularity, and maintenance) of all analyzed packages from CouchDB.
Then, it calculates an aggregation value by normalizing the aspect
scores and uses the computed values to calculate the package final
score. Finally, the final score is stored in the Elasticsearch module,
which provides the search feature responding to requests from the
npms-api component.

Fig. 1 presents an overview of the score evaluation hierarchy that
pms-analyzer uses to evaluate the packages’ final score. The hierar-
hy consists of four levels bottom up: (1) 26 Package’s Attributes (2) 11
etrics Evaluation (3) 3 Aspects Evaluation (4) Score Evaluation (final

core). Table 1 shows the aspects, their associated metrics and package
ttributes that map to the metrics. Initially, the attributes of the pack-
ges are collected by npms-analyzer. For example, the license attribute
xamines whether there is a license specified in the package descrip-
ion, the stars attribute indicates the number of stars of the package
n GitHub, the issues attribute indicates the number of issues of the
ackage in GitHub. After all the package’s attributes are collected, the
pms-analyzer calculates the metrics for the package based on the at-
ributes. For example, the carefulness score is calculated based on a
redefined Eq. (1) :

𝑎𝑟𝑒𝑓𝑢𝑙𝑛𝑒𝑠𝑠 = (𝑙𝑖𝑐𝑒𝑛𝑠𝑒 ∗ 0 . 33 + 𝑙𝑖𝑛𝑡𝑒𝑟𝑠 ∗ 0 . 13 + 𝑟𝑒𝑎𝑑𝑚𝑒 ∗ 0 . 38

+ 𝑖𝑔𝑛𝑜𝑟𝑒 ∗ 0 . 08 + 𝑐ℎ𝑎𝑛𝑔𝑒𝑙𝑜𝑔 ∗ 0 . 08) ∗ 𝛼 (1)

The 𝛼 in Eq. (1) is a special constant that is used to adjust the weights
f the equation. It assigns different weights to the equation based on
hether the package is stable or deprecated. In particular, the values
, 0.5, 1 represents the fact that 𝛼 is deprecated, not stable, or stable,
espectively.

Note that the equations and their associated coefficients are de-
ided by npms. We have carefully read the documentation, examined
he source code and comments of npms and did not find any rationale
or the various coefficients and constants used in its implementation.
ence, we believe that a formal empirical investigation of the package
ttributes may help in deriving a simpler equation, reducing the perfor-
ance overhead, while at the same time maintaining the effectiveness

f npms.
To understand the npms ranking mechanism in the search results, we

xamine the npms source code to understand its package ranking mech-
nism since we did not find any documentation that explicitly explains
he packages ranking. Npms utilizes the package’s final score to calcu-
ate the ranking of the package in the search results page. Since npms is
 search engine, it also considers the semantic word similarity between
he user’s query and the package keywords. In particular, it uses one of
he following two equations (extracted from the npms code) to calculate
he packages’ rank that appears in the query search results

𝑎𝑐𝑘𝑎𝑔𝑒 _ 𝑟𝑎𝑛𝑘 _ 𝑠𝑐𝑜𝑟𝑒 = 100 , 000 + 𝑝𝑎𝑐𝑘𝑎𝑔𝑒 _ 𝑓𝑖𝑛𝑎𝑙 _ 𝑠𝑐𝑜𝑟𝑒 (2)

𝑎𝑐𝑘𝑎𝑔𝑒 _ 𝑟𝑎𝑛𝑘 _ 𝑠𝑐𝑜𝑟𝑒 = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 _ 𝑠𝑐𝑜𝑟𝑒 ∗ 𝑝𝑎𝑐𝑘𝑎𝑔𝑒 _ 𝑓𝑖𝑛𝑎𝑙 _ 𝑠𝑐𝑜𝑟𝑒 15 . 3 (3)

The packages shown in the search results are sorted according to
heir ranking score (package_rank_score) where the package with the
ighest score appears at the top of the search result. In case the user
earch query has an exact match with a package name, npms uses
q. (2) to calculate the ranking score of a package. The high constant
alue in the equation (i.e., 100,000) is added to the package’s final score
o ensure that the package appears at the top of the search results since
he user might search for that package.

On the other hand, if there is no npm package name that fully
atches the user’s search query, the package’s ranking score is calcu-

ated using Eq. (3) . The Elasticsearch component is responsible for cal-
ulating the similarity_score between the search query and the package’s
ame, keywords, and description using BM25 Algorithm [15] .

A. Abdellatif, Y. Zeng and M. Elshafei et al. Information and Software Technology 126 (2020) 106365

3

s

u

u

F

3

r

T

t

w

a

t

p

l

a

t

T

7

3

i

s

s

u

l

c

e
1

e

w

(

u

s

c

t

A

o

m

w

t

p

q

T

a

a

s

t

o

a

R

d

c

7

Table 2

Example of applying four rounds of forward selection method on

Carefulness equation.

Variable AIC

Round #1 Round #2 Round #3 Round #4

+ license 73 – – –

+ readme 76 63 – –

+ linters 77 69 59 –

+ ignore 97 88 68 65

+ changelog 103 95 85 68

/ none 115 73 63 59

Table 3

Example of applying three rounds of backward selec-

tion method on Carefulness equation.

Variable AIC

Round #1 Round #2 Round #3

- license 183 68 77

- readme 167 67 70

- linters 157 65 68

- ignore 136 59 –

- changelog 113 – –

/ none 195 113 59

i

v

t

a

t

n

t

a

d

r

m

s

a

i

c

w

e

d

c

a

s

c

m

t

c

t

w

n

3

. Simplifying npms

Since our goal is to examine whether the npms equations can be
implified or not, in this section, we first present the collected dataset
sed in the simplification process. Second, we explain the techniques
sed to simplify the npms equations, namely feature selection methods.
inally, we illustrate the process of the equations simplification.

.1. Experimental dataset

To conduct our study, we first needed to know the attributes, met-
ics, aspects, and final scores provided by npms for all the npm packages.
o obtain the dataset for our experiment, we develop a script to query
he npms API 5 and save the metadata into our database. In particular,
e replicate the npm registry 6 and generate a list of all the npm pack-
ges. The list contains the metadata (e.g., author, package name, etc.) of
he npm packages. The metadata is used to uniquely identify each npm
ackage when querying the npms API. Then, for each package in the
ist, we write another script to take the package metadata as input, send
 query to the npms API and retrieve the scores of each level (i.e., at-
ributes, metrics, aspects, and final score), and store it in our database.
he dataset was collected on July 12th, 2018 and contained data of
35,476 npm packages.

.2. Feature selection methods

In order to eliminate any unuseful attributes of a package while preserv-

ng its final score , we employ feature selection methods [16] . Generally
peaking, the purpose of feature selection methods is to identify the best
ubset among many variables to include in an equation. We choose to
se feature selection methods since they are a perfect fit for our prob-
em (i.e., removing attributes that are not useful, reducing noise and
omplexity) [16] , well studied in the literature, and have shown to be
ffective in many domains, including software engineering (e.g., [17–
9]).

There are several feature selection methods in the literature, how-
ver, we chose to employ the most commonly used ones, namely, for-
ard selection (FS), backward selection (BS), and stepwise selection

SW) [20,21] . To measure the performance of the statistical model, we
se the Akaike Information Criterion (AIC) [16] that has been used in
imilar studies [22–24] . AIC estimates the balance between the statisti-
al properties and parameters of a model. In other words, it measures
he trade-off between the goodness of a model fit and its simplicity.
nother advantage of using the AIC is that it discourages models from
ver-fitting as it includes a penalty on the increasing number of esti-
ated parameters [25] . Therefore, it is preferred to select the model
ith the smallest AIC. That is, the model with the lowest trade-off be-

ween its fit and simplicity has the best overall statistical properties and
arameter balance.

Forward selection (FS) : starts with just an intercept and then se-
uentially adds the package’s attributes which reduces the most of AIC.
he process terminates when no reduction can be obtained in the AIC by
dding more attributes. For example, to simplify the Carefulness (Eq. (1))
nd preserve the value of the equation. The forward selection technique
tarts with no attributes, then, adds one attribute at a time, as long as,
he added attribute reduces the model’s AIC. In other words, it adds
nly one attribute which keeps AIC at the lowest value in each round,
s shown in Table 2 . This table shows that at each round starting from
ound #1 to Round #4, each variable is tested to find how it may re-
uce the model’s AIC value if the variable is added. In Round #1, we
an see that variable license reduces the model’s AIC value from 115 to
3; therefore, it is added to the model. Then, each remaining variable
5 https://api-docs.npms.io
6 https://docs.npmjs.com/misc/registry

m

W

m

a
s tested to find how it reduces the model’s AIC value if an additional
ariable is added to model besides the existing ones “license ”. In Round
2, we can see that variable readme reduces the model’s AIC value to 63;

herefore, it is added to the model beside “license ”. In Round #3, vari-
ble linters reduces the model’s AIC value to 59; therefore, it is added to
he model beside “license ” and “readme ”. In Round #4, we can see that
one of the remaining variables reduce the model’s AIC value below 59;
hus, the FS terminates.

Backward selection (BS) : starts with a model that contains all pack-
ge attributes. Then, the attributes are deleted one by one until no re-
uction of AIC can be obtained by removing more attributes. In each
ound, the attribute that causes the biggest reduction in the AIC is re-
oved. Table 3 shows an example for the Carefulness equation where we

tart with a full model containing all the attributes of interest. Then, the
ttribute Changelog is removed so that the AIC value drops to 113 which
s the lowest possible value in Round #1. We keep repeating this pro-
ess, as long as, removing attributes reduces the model’s AIC. In other
ords, BS removes the attribute that reduces AIC to the lowest value in

ach round, as shown in Table 3 .
Stepwise selection (SW) : is a method that allows to move in either

irection, dropping or adding attributes at the various rounds in the pro-
ess. Stepwise selection involves starting off with a backward approach
nd then potentially adding back attributes if they later appear to be
ignificant. Stepwise selection reconsiders all the dropped variables (ex-
ept the recent one) after each round to introduce them again to the
odel and test their significance. For example, at round#n adding at-

ribute linters from the previously removed attributes (linters, ignore, and

hangelog) reduces the AIC to the lowest rather than removing any at-
ributes from the existing ones (license, readme), as shown in Table 4 .

After explaining the different simplification methods and how they
ork, we explain the process of simplifying the npms equations in the
ext subsection.

.3. Simplifying the npms equations

After describing the collected dataset and feature simplification
ethods, we present our simplification approach as shown in Fig. 3 .
e apply the simplification methods for every npms equation at the
etrics evaluation level to reduce the number of collected attributes

s there is a direct relation between the metric and attribute levels. In

https://api-docs.npms.io
https://docs.npmjs.com/misc/registry

A. Abdellatif, Y. Zeng and M. Elshafei et al. Information and Software Technology 126 (2020) 106365

Fig. 3. An overview of our approach to sim-

plify npms.

Table 4

Example of applying step-

wise selection method on

Carefulness equation.

Variable AIC

Round#n

- license 76

- readme 73

+ linters 59

+ ignore 68

+ changelog 85

/ none 63

p

A

t

p

e

e

o

‘

c

e

t

e

b

o

t

l

v

o

c

a

r

t

h

e

t

l

y

e

e

t

T

t

e

u

r

a

b

B

r

v

n

a

4

o

f

t

4

p

r

o

t

r

o

a

o

f

e

t

l

m

[

a

s

u

m

t

e

t

u

w

a

s

fi

e

c

articular, for each equation, we separately apply the FS, BS, and SW.
nd for each feature selection method, we select the result that leads to

he lowest AIC for that equation. Finally, we choose the equation (sim-
lified) that has the least number of attributes. For example, we apply
ach simplification method on the ‘Tests’ equation, then we select the
quation results from the SW because it has the lowest AIC compared to
ther simplification methods (i.e., FS and BS). The SW added ‘Tests’ and

Coverage’ packages attributes only to the new ‘Tests’ equation while
hanging their factors. As the ‘Status’ attribute is not added to the new
quation, we assign zero weight to it as shown in Table 1 . It is important
o emphasize that we repeat the process on all equations at the metric
valuation level. Table 1 shows the variable coefficients for attributes
efore and after the equation simplification using the FS, BS, SW meth-
ds at the metrics evaluation level. It is important to emphasize that
he feature selection methods remove the insignificant variables regard-
ess of their coefficients in an equation, then rebalance the remaining
ariable’s coefficients in order to maintain the same output value as the
riginal equation. For example, the attribute ‘coverage’ has the smallest
oefficient in the ‘Tests’ equation with coefficient value 0.15. However,
fter the simplification of the ‘Tests’ equation, the attribute ‘coverage’
emains in the equation with a different coefficient (0.26), while the at-
ribute ‘status’ which had a coefficient higher in the original equation,
as been removed in the simplified npms (i.e., 0).

In total, there are 22 unique attributes used to calculate the 11 metric
valuations as shown in Table 1 . It is important to note that some at-
ributes are used to calculate more than one metric. For example, ‘Down-
oads’ is an attribute that is presented in terms of a period of a month or
ear and is used to calculate the ‘#Downloads’ and ‘Downloads Accel-
ration’ metrics. By using the simplification methods, the new metrics
valuation level equations have 15 unique attributes (i.e., 31% of at-
ributes are removed), as shown in the “After Simplification ” column of
able 1 with zero values. During the simplification process, we notice
hat all of the selection methods give us the same results. This strength-
ns our conclusion that the removed packages attributes are actually
seless for the model.

One might think that simplifying the aspect evaluation level would
educe npms’ complexity more by removing the insignificant metrics
nd their attributes. However, we argue that there is no direct relation
etween the aspect evaluation level and the package attributes level.
ecause the package’s aspects values are calculated based on the met-
ics evaluation values of the package itself and the aggregated metric
alues of all packages [26] . Hence, the complexity of assessing the sig-
ificance of the attributes at the aspect level is increased because of the
ggregation.

. Empirical case study

In this section, we perform an empirical study to examine the impact
f our simplified npms equations. We formalize our case study with the
ollowing three research questions:

• RQ1: How well can we preserve the search results?
• RQ2: How is the final package ranking affected by the simplified

npms?
• RQ3: How many resources can we save by simplifying npms?
• RQ4: How will our equations perform as npm evolves?

For each research question, we detail the motivation, approach, and
hen present the results.

.1. RQ1: How well can we preserve the search results?

Motivation: One of the first questions that comes to mind after sim-
lifying the npms equations is whether our simplification impacts the
anking/output of npms. Consequently, we want to examine the impact
f the removed package attributes on the search results. In particular,
his research question investigates the differences of the returned search
esults between the npms-simplified (before simplification) and npms-
riginal (after simplification).

Approach: To address this research question, we run the Consumer
nd Scoring modules on all packages using both equations: npms-
riginal and npms-simplified. Then, we save the final scores obtained
rom each equation into two separate database tables (one for each
quation). The first database table contains the calculated scores using
he npms-original equation while the second table contains the calcu-
ated scores using the npms-simplified equation. We searched for the
ost widely used packages at the time we performed our study in npm

27] which are nine packages in total listed by npm namely, lodash,

sync, bluebird, request, express, commander, chalk, react, debug . We as-
ume that those packages have the most used functionalities. Therefore,
sers and developers are going to search for those packages to use or
odify their functionalities based on their needs. Next, two of the au-

hors read the selected packages’ description and keywords in order to
xtract search keywords. They extract 20 keywords that are related to
he main functionality of the packages as shown in Table 5 . Then, we
se those search words in npms and extract the top 100 returned hits,
hich correspond to 4 pages of results (npms displays 25 npm pack-
ges per page). We choose to focus on the top 4 pages since prior work
howed that users typically do not consider results that are not in the
rst 4 pages [28] .

We run the search process using the original and simplified npms
quations and store the results of each into a separate table. Then, we
ompute two different metrics:

• Package overlap: the results overlapping (packages intersection)
between the npms-original and npms-simplified search results.

A. Abdellatif, Y. Zeng and M. Elshafei et al. Information and Software Technology 126 (2020) 106365

Table 5

The percentage of the preserved overlapping and ranking qual-

ity per keyword search results for the top 100 packages.

Search words Overlapping (%) Ranking quality (%)

asynchronous 98 96

build user interface 100 99

callback 98 96

container state 100 98

create directory 100 99

date format 100 99

debug 97 96

environment 98 94

future 100 98

http API 99 95

http request 98 96

http 93 93

jQuery parser 100 100

js bundler 100 98

mongodb 97 94

parser 94 94

route 94 93

terminal style 100 99

test framework 100 98

version parser 100 99

Average 98.3 96.7

R

n

o

t

a

p

r

i

h

n

i

o

i

t

a

T

a

d

c

t

4

n

l

Fig. 4. The affect of differences in the final scores (𝑑𝑒𝑙𝑡𝑎 _ 𝐹 𝑆) on the ranking

quality (NDCG).

d

o

b

t

t

s

r

t

n

n

s

s

s

o

1

c

(

f

t

w

a

t

m

n

e

(

fi

t

c

o

r

f

2
h

<

s

r
• Ranking quality: using the normalized discounted cumulative gain
(nDCG) which is a popular method for measuring the quality of a
ranking set of search results and used previously in the software
engineering research [29] . We used nDCG to measure the quality
of ranking for the search results obtained from npms-simplified in
reference to the ranking for the search results obtained from npms-
original [29] .

esult: Table 5 shows the results overlapping (similarity) between the
pms-original and npms-simplified for each keyword. The percentage
f results overlapping varies depending on the keyword and ranges be-
ween 93% and 100%, and with an average of 98%. The ranking quality
lso varies between 93% and 100%, with an average of 97%.

We dive into the results to better understand the decrease in the
ackages overlapping percentages, e.g., in the cases where overlapping
eached only 93%. We find that the reason behind that can be explained
nto two ways (1) the deeper we go through search results pages, the
igher the overlapping becomes. The rationale behind that is, as the
umber of search results pages increases, it is more likely to find sim-
lar packages in the results obtained from npms-simplified and npms-
riginal. In fact, the 93% overlapping percentage for “http ” was actually
ncreasing as we go from the first page to the fourth page (2) we find
hat going through more search results pages means having more pack-
ges to rank. Therefore, it is more likely to miss rank some packages.
his shows the rationale behind decreasing the ranking quality percent-
ge to 93% for some keywords such as “route ” where it was actually
ecreasing as we encounter more packages from page one to four. We
onsider the achieved overlapping and ranking quality to be good, since
he averages are 98% and 97%, respectively.

The simplified npms equations preserve the results overlapping
and the packages ranks in the search results by an average of
98% and 97%, respectively.

.2. RQ2: How is the final package ranking affected by the simplified

pms?

Motivation: Since npms is a search engine, it might consider the simi-
arity between the user’s search query and a package name (or its meta-
ata) more than the final score which leads to the high ranking and
verlapping results as shown in the RQ1. In other words, npms might
e robust enough to maintain the packages’ ranks even if the scores be-
ween the original and simplified npms are different. Therefore, we want
o study the impact of the final scores of the packages that appear in the
earch results for the original and simplified equations on the packages
ank scores. In particular, we want to examine how the differences in
he final scores of the packages computed by the original and simplified
pms equations impact the packages’ ranks.

Approach: To accomplish this, we use the original and simplified
pms equations along with the 20 keywords listed in Table 5 and their
earch results from RQ1. Then, we remove the packages that have the
ame rank in the search results of npms-original and npms-simplified
ince we want to examine the effect of changing the package final score
n the ranking score results. For each package that appears in the top
00 search results of the original and modified npms equations, we cal-
ulate the differences in the final score (𝑑𝑒𝑙𝑡𝑎 _ 𝐹 𝑆) and ranking quality
 NDCG). Next, we run ANOVA analysis to examine the effect of the dif-
erence in the final score (𝑑𝑒𝑙𝑡𝑎 _ 𝐹 𝑆) on the ranking quality (NDCG) for
he search results. We repeated the previous steps for all the 20 key-
ords. It is important to emphasize that the final score of a package,
nd not the semantic word similarity, is the only factor that changes
he packages’ ranking scores in our experiment. This is because the se-
antic word similarity between the user’s query and the packages does
ot change whether we are using the npms-original or npms-simplified
quations to calculate the packages’ final scores.

Result: Fig. 4 shows the impact of differences in the final scores
 𝑑𝑒𝑙𝑡𝑎 _ 𝐹 𝑆) and ranking quality (NDCG) between the original and simpli-
ed npms of the 20 keywords search results. We notice from the figure
hat the difference in the final scores (𝑑𝑒𝑙𝑡𝑎 _ 𝐹 𝑆 ≤ 0.1) changes (in-
reases or decreases) the ranking scores of packages by at least one rank
n average. For example, in the case of the package ‘Fluture’, which is
eturned in the search results of ‘asynchronous’, we find that the dif-
erence in the package’s final score is 0.003, which lowers its rank by
. Furthermore, the results of all ANOVA analyses show that 𝑑𝑒𝑙𝑡𝑎 _ 𝐹 𝑆
as a statistically significant impact on the ranking quality (i.e., p-value
 0.01). Our results clearly show that the difference in the package final
core between the original and simplified npms impacts the package’s
ank. We believe that our approach helps the community by simplifying

A. Abdellatif, Y. Zeng and M. Elshafei et al. Information and Software Technology 126 (2020) 106365

t

t

4

t

t

s

p

a

a

e

q

M

s

B

m

e

s

a

o

e

5

m

o

a

a

m

p

e

o

t

b

t

b

fi

s

a

o

l

c

h

n

w

I

8

a

s

s

t

s

t

a

t

p

4

u

n

t

o

s

n

e

e

t

o

o

i

e

a

t

o

R

t

r

n

r

s

d

u

w

i

t

t

t

s

t

e

d

t

o

t

2

o

s

p

he data collection process from npms with almost identical results to
he original npms.

The final score of a package has a statistically significant im-
pact on its ranking where the difference in the final score be-
tween the original and simplified npms increases/decreases the
package’s rank by one on average.

.3. RQ3: How many resources can we save by simplifying npms?

Motivation: The main purpose of simplifying the npms ranking equa-
ion is to reduce complexity and save resources. In our case, we define
he performance as the time required to collect packages attributes (e.g.
tars count) and evaluate the metrics values (e.g. carefulness) for all npm
ackages. Npms runs its package scoring process every 15 days, hence,
ny resource savings will have a lasting impact in terms of time-saving
nd computation power.

Since we already showed that the equations can be simplified, we do
xpect some resource savings. However, exactly how much savings is a
uestion that needs to be answered.

Approach: To address this research question, we leveraged 2 Virtual
achines (VMs) on Amazon Web Services [30] to run the npms con-

umer component for evaluating all npm packages (735,476 packages).
oth VMs have the same specifications where each instance is of type
4.xlarge [31] with 4-core CPU, 16GB memory, and Ubuntu 16.04 op-
rating system. Next, we setup the same npms environment (e.g. con-
umer) on both machines using the same configurations to run the pack-
ge scoring process. We used one of the VMs (VM1) to run the npms-
riginal equations and the other VM (VM2) to run the npms-simplified
quations. Two of the authors ran both VMs to calculate the scores of
0 packages and compared the output score against the score calculated
anually by writing a script that calculated the packages’ score based

n the npms-original and npms-simplified equations. This was done as
 sanity check to ensure that the environment setup and configuration
re correct.

We used the same approach on Section 3 to collect the attributes,
etrics, aspects, and final scores for each npm package. Finally, to com-
are the performance of both equations, we ran the scoring process on
ach VM and used a script to record the time it took to finish the scoring
f the collected packages. It is important to note that we did not include
he last step where the final scores are calculated, when recording time
ecause there is no change to the scoring components. So, the time taken
o calculate the final score based on the individual package score will
e the same in both npms-original and npms-simplified.

Result: We compared the recorded time required for both VMs to
nish the scoring process of all packages. The results show that the con-
umer module in VM1 took 184 h and 9 min, while in VM2 took 165 h
nd 12 min. So, our simplifications (npms-simplified) saves 19 h (10%)
f the time required for each npms run to calculate the packages’ score.

It is obvious that one of the reasons for the time reduction in the col-
ection and metrics calculation is the number of attributes involved in
omputing those equations. In particular, the npms-simplified equations
ave less attributes (StatusEvaluation and ContributorsCount) than the
pms-original equation. Consequently, npms-simplified makes less net-
ork requests to GitHub API 7 for getting the values of those attributes.

n total, after we reviewed the npms code, we found that there are 10 and
 network requests to collect the packages attributes for npms-original
nd npms-simplified, respectively. In other words, the code for npms-
implified saves 2 network requests for each package scoring. As a re-
ult, the npms-simplified saves 1.47 million network requests compared
7 https://developer.github.com/v3/repos/

t

d

w
o using the npms-original. As we have mentioned earlier, npms runs the
coring algorithm every 15 days, therefore, using npms-simplified equa-
ion will save at least 19 h (10%) and 1.47 million requests of collecting
nd evaluating time compared to the npms-original equation. Finally,
he saving increases in time and number of requests as the number of
ackages in npm grows.

The npms-simplified equations save 10% of scoring time and
1.47 million requests compared to npms-original equations for
each run of the npms package scoring process.

.4. RQ4: How will our approach perform as npm evolves?

Motivation: Since the npm ecosystem is rapidly evolving, the features
sed to rank the packages may also change (e.g., frequency of commits,
umber of stars, etc.). Hence, this research question aims to test whether
he npms-simplified does not decay as the package features changed
ver time. In other words, we would like to know how the search re-
ults from the npms-simplified deviate from the npms-original as the
pm ecosystem changes and grows. Answering this research question
valuates our simplification approach and the validity of the simplified
quations across the time.

Approach: To fully answer this research question, we performed two
ypes of complementary analyses. First, we obtained an older dataset
f npms, from 2017 [32] and performed the simplification process to
btain a npms-simplified equation. Our goal of performing this compar-
son (between npms-simplified 2017 vs. 2018) is to see if the simplified
quations will hold due to the evolution of the npm packages.

It is important to note that npms equations in 2017 and 2018 are
lmost the same. However, to determine the impact on the ranking of
he packages, we ran the consumer and scoring modules for both npms-
riginal and npms-simplified based on the 2017 data. Then, similar to
Q1, we measured the overlapping and the ranking quality across the

op 100 packages (first 4 pages) of the same 20 searched words. The
ationale behind this, is to simulate a 2017 npms-simplified running on
pm packages from the same year and then measure its overlapping and
anking quality with reference to the npms-original in 2017.

Second, we ran the consumer and scoring modules for the npms-
implified in 2017 to calculate the score for all packages in the 2018
ataset. The idea of this analysis is to simulate what would happen if we
sed a simplification on a new dataset. In essence, we want to observe
hether the 2017 npms-simplified will diverge from the npms-original

n terms of overlapping and the ranking quality for each keyword as
he packages evolved since 2017 to 2018, or not. Again, we measured
he overlapping and the ranking quality across the first 100 packages of
he same 20 searched words. This helps us to test how the 2017 npms-
implified would decay as npm packages are evolving. Fig. 5 summarizes
he used approach to answer this research question.

Result: When we simplified npms based on the 2017 dataset, we
nded up removing the same 7 variables reported in Table 1 which in-
icates the generalizability of the simplifying approach. Also, it proves
hat the removed variables are not very useful, regardless of the time
f removal. On average, as the npm packages evolve, the similarity in
erm of overlapping and ranking quality between the original and the
017 npms-simplified results remain almost identical with an average
f 99.998% and 99.995%, respectively. This indicates that the npms-
implified equations in 2017 were resilient enough to evaluate the npm
ackages in 2018 similar to the original npms equation.

To ensure that the high ranking and overlapping is not due to
he high similarity in the package attributes between 2017 and 2018
atasets, we investigate those attributes in both datasets. In particular,
e perform ANOVA test to measure the difference in all non-boolean at-

https://developer.github.com/v3/repos/

A. Abdellatif, Y. Zeng and M. Elshafei et al. Information and Software Technology 126 (2020) 106365

Fig. 5. The workflow for examining the evolution

of npms-simplified.

Fig. 6. The change of attributes values as the npm packages evolve.

t

s

F

2

a

5

u

s

a

T

t

n

s

a

n

b

a

a

Table 6

The percentage of the preserved overlapping and ranking

quality for the random keywords search results for the

top 100 packages.

Search words Overlapping (%) Ranking quality (%)

animations 99 98

auth 95 93

connector 100 99

crawl 100 99

editor 96 95

emoji 96 95

font 99 98

gulp 100 99

httpserver 100 97

ink 96 95

log 100 100

observer 94 93

queue 99 98

redis 98 97

render 98 97

scan 99 98

strip 95 94

terminal 95 94

test 96 95

twitter 96 95

Average 97.6 96.5

i

s

k

a

i

v

o

c

t

r

a

w

t

u

r

W

a

6

d

a

s

ributes (e.g., stars) that exist after the simplification process. The results
how that the difference is statistically significant (i.e., p-value ≤ 0.01).
ig. 6 , shows the bean-plot of the mostly changed attributes values from
017 to 2018. We notice that there is a substantial change in some of the
ttributes such as commits per month with a median of 410K commits.

Our npms-simplified equations are not impacted by the evo-
lution of npm packages. Moreover, we find that rank-quality
and overlap are slightly impacted based by the evolution of
npm packages.

. Discussion

We examined the impact of our simplification on the search results
sing 20 keywords extracted from the most widely used packages as
hown in RQ1 (Section 4.1). This might bias our results since the pack-
ge usage is one of the inputs to the simplified npms (e.g., Downloads).
o confirm our results, we randomly selected 20 packages from the en-
ire list of npm packages, then extracted one keyword per package. The
ewly derived 20 keywords are shown in Table 6 . Next, we followed the
ame approach discussed in RQ1 to compute the package overlapping
nd ranking quality between the original and simplified npms using the
ew keywords.

Table 6 shows that the overlapping and ranking quality results vary
etween 93% and 100% based on the keywords. The results show, on
verage, the overlapping and ranking quality between the npms-original
nd npms-simplified are 97.6% and 96.5%, respectively. These are sim-
lar to the results obtained from RQ1. To determine whether there are
tatistically significant differences in the results from RQ1 and the 20
eywords extracted from the random packages, we performed ANOVA
nalysis in the overlapping quality results, and then on the ranking qual-
ty results. We could not observe a statistically significant difference (p -
alue > 0.01) in the overlapping and ranking quality results. Thus,
ur findings show that our results are not significantly impacted by the
hoice of search keywords.

The main goal of this paper is to reduce the complexity and improve
he efficiency of the current npms implementation while preserving its
esults. Our next step is to perform a large-scale study in the future by
sking real developers to rank the importance of the packages attributes
hen selecting a certain package. This would remove the arbitrariness of

he used attributes and assign more weights to the important attributes
sed by npms. Consequently, npms would provide search results that are
elevant to the user’s search query and contain high quality packages.
e believe that our study provides the initial steps to further simplify

nd improve npms.

. Related work

In this section, we discuss the work most related to our study. We
ivide the prior work into three main areas; studies related to pack-
ge dependencies, work related to ecosystems evolution, and packages
earching engine.

A. Abdellatif, Y. Zeng and M. Elshafei et al. Information and Software Technology 126 (2020) 106365

6

i

i

r

n

p

o

t

a

e

e

d

b

a

h

j

i

t

6

g

o

t

t

a

m

t

p

i

s

t

o

6

d

S

l

v

m

s

e

p

n

w

t

t

F

s

7

t

e

7

r

w

n

d

t

f

f

2

o

f

p

m

c

[

a

s

t

f

m

I

r

a

t

t

2

i

fi

m

T

e

a

p

s

r

7

m

c

p

l

o

m

s

7

c

b

s

p

n

o

d

s

s

o

o

H

i

e

.1. Packages dependencies

Package inter-dependency has been the focus of recent stud-
es [33,34] . For example, Lertwittayatrai et al. [35] leverage topolog-
cal methods to visualize the high-dimensional datasets of npm. Their
esults show that the dependencies between packages are shaping the
pm topology which indicates their importance. Decan et al. [36] ex-
lore the software ecosystem of R packages, focusing on the problem
f inter-repository package dependencies in particular. They find that
he R package-based software ecosystem would strongly benefit from an
utomatic package installation and dependency management tool. Kula
t al. [37] examine the impact of micro-packages in the npm JavaScript
cosystem. In particular, they aim to understand the number of depen-
encies inherited from micro-packages and the developers’ usage set-
acks of using a micro-package. Their results show that micro-packages
re a significant portion of the npm ecosystem. However, micro-packages
ave a large number of dependencies. Generally, these packages incur
ust as much usage costs as other npm packages. These studies show the
mportance of dependencies between packages in the ecosystem since
he dependency is included in one of the npms equations.

.2. Ecosystem evolution

Prior research on the evolution of the ecosystems shows that they
row quickly. For example, Bavota et al. [38] investigate the evolution
f project interdependencies in the Java subset of the Apache ecosys-
em. The authors indicate that the interdependencies are increasing and
he ecosystem size grows exponentially. Wittern et al. [5] examine and
nalyze the npm packages to understand its evolution. They analyze the
etadata (e.g. download count) and dependencies for all packages be-

ween Oct 2010 and Sep 2015. The results show that the number of
ackages and dependencies are growing super-linearly. These studies
nspired us to take the rapid evolution of npm ecosystem into our con-
iderations when applying our simplification approach. Also, they mo-
ivated RQ4 in our study to ensure that the simplified equations of the
riginal npms will be valid as npm ecosystem grows.

.3. Packages searching engine

There are researchers who developed search engines that provide
evelopers with the packages they need. Imminni et al. [39] introduce
emantic Python Search Engine (SPYSE), a web-based search engine that
ays in the combination of three different aspects meant to provide de-
elopers with relevant, and at the same time high quality code through
etrics such as code semantics, popularity, and code quality. Other re-

earchers collect different data for their studies using npms [40–42] . For
xample, Abdalkareem et al. [32] studied the popularity of the trivial
ackages usage among developers using the npms metrics.

However, to the best of our knowledge, no prior work focused on
pms or simplifying its equations, our work complements the previous
ork in different ways. First, it helps researchers to focus on the metrics

hat have a significant effect on the package final score. Also, it reduces
he effort of the other researchers in collecting the npm data using npms.
inally, we believe that npms has a potential for further improvement,
o we encourage the research community to focus on it more.

. Threats to validity & limitations

In this section, we discuss the threats to internal, construct, and ex-
ernal validity of our study. Also, we discuss the limitation of practical
valuation.

.1. Internal validity

It concerns confounding factors that could have influenced our study
esults [43] . First, we measured whether the quality of our equations
ould decline as npm ecosystem evolves over time by comparing the
pms-original and npms-simplified when applied to the 2017 and 2018
atasets. The time period might not be long enough to cause a nega-
ive effect on our equations. However, it is difficult to get the data be-
ore 2017. Furthermore, we measured the mean progression per month
or the search results in term of package’s attributes between 2017 and
018. Table 7 shows the amount of monthly progression for the results
f each search words in terms of releases, downloads (100 K), stars (1 K),
orks, and commits (1 K).

We selected the top 100 packages returned in our analysis of the
ackages overlapping and ranking quality in RQ1. Therefore, including
ore packages might impact our results. However, most users (77%)

lick-through rate on search engine results go to the first three pages
44,45] . In our study, we selected the first four pages (top 100 pack-
ges). To be more confident in our approach and results, we ran the
ame test using the first 40 results pages (top 1000 packages). We found
hat the overlapping remained (98%) because more similar packages are
ound in different ranks. However, the nDCG decreases (91%) because
ore packages are ranked differently by the end of the search results list.

n the future, we plan to include all the packages shown in the search
esults.

We used 20 keywords extracted from the most depended-upon pack-
ges on the npm website. Therefore, using different keywords may lead
o different results. Nevertheless, we included the top 100 packages from
he search results in our analysis and extract another 20 keywords from
0 random npm packages. The findings showed that there are high sim-
larity in terms of ranking and packages overlapping between the modi-
ed and the original npms. Also, we plan to expand our study to include
ore keywords.

We applied FS, BS, and SW techniques to simplify the npms equation.
here are other variable selection techniques which may produce differ-
nt results. However, the variable selection techniques that we perform
re popularly used in software engineering domain [17–19] and have
roven their reliability [16] . Also, we are confident in our approach
ince we applied it on different datasets and gave very high similarity
esults.

.2. Construct validity

It concerns the relation between theory and observation [43] . We
easured the performance of our modified npms in terms of attributes

ollection and metrics evaluation time, and the number of requests. The
erformance test is conducted one time due to the time and resources
imitations. Other researchers are interested in the usage of CPU, mem-
ry and energy savings. However, running the performance test requires
uch time and effort. Therefore, we intend to conduct performance test

everal times and use different measures in the future.

.3. External validity

It considers the generalizability of our results [43] . First, our study is
onducted specifically on npms , while there are other search engines can
e used for npm such as Google, the results might be different on these
ystems. According to the npm website [6] , the official search feature is
owered by npms . Therefore, our improvement on npms could benefit the
pm community on a large scale. Moreover, our approach can be applied
n different package managers’ search engines. The results might be
ifferent on packages manager systems of other programming languages
uch as Python and R. Researchers and practitioners can replicate our
tudy on other non-JavaScript platforms. On the other hand, we applied
ur approach using 2017 and 2018 npms datasets. Therefore, replicating
ur study using a new data in the future may lead to different results.
owever, we tested that generalizability of our approach and results

n RQ4. Our findings show that using the original and simplified npms
quations return almost identical results.

A. Abdellatif, Y. Zeng and M. Elshafei et al. Information and Software Technology 126 (2020) 106365

Table 7

The mean progression per month for the search results in term of package’s attributes between

2017 and 2018.

Search

words

Mean/month

Releases Downloads (100 K) Stars (1 K) Forks Commits (1 K)

asynchronous 4 38 4 7 0.5

build user interface 2 23 12 9 1.4

callback 11 26 14 1 0.5

container state 2 56 19 4 0.3

create directory 10 40 29 2 0.3

date format 1 26 35 1 0.5

debug 1 39 2 13 0.4

environment 2 26 5 2 6.4

future 1 20 14 1 1.5

http API 1 200 9 8 0.4

http request 6 3 14 4 7.7

http 1 9 23 6 0.8

jQuery parser 5 6 25 4 0.2

js bundler 7 13 4 2 6.8

mongodb 7 11 1 1 0.5

parser 1 37 31 6 0.4

route 15 29 4 1 0.3

terminal style 1 64 7 2 0.5

test framework 0 58 22 1 0.4

version parser 1 32 15 8 0.6

7

o

i

n

a

n

b

p

l

a

t

a

p

r

w

a

8

d

a

q

t

e

r

f

c

t

a

w

e

l

l

n

n

r

m

9

s

p

h

s

a

b

a

t

R

[

[

[

[
.4. Limitation of practical evaluation

One of the main challenges in our study is to evaluate the relevance
f the results from the simplified npms in a practical setting (i.e., hav-
ng developers comment on the packages prioritized using the simplified
pms). One way to accomplish this is to conduct a user study where we
sk developers to search for keywords using the original and simplified
pms and use the results of that user study for evaluation. However, we
elieve that such a study will yield very similar results between the sim-
lified and the original npms in most cases. This is due to the high over-
apping (97%) and ranking quality (96%) between the returned pack-
ges from the original and simplified npms. Therefore, it is unlikely that
he developers would encounter a difference in the outputs of original
nd simplified npms. It is important to note that the main goal of our ap-
roach is to reduce the complexity and improve the efficiency of the cur-
ent npms implementation while preserving its search results. In other
ords, we are not proposing an approach that would return more useful
nd relevant search results to developers.

. Conclusion

The number of npm packages has seen a steady and sharp increase
uring recent years. As there are many choices of packages related to
 specific requirement, developers use npms to search and compare the
uality, maintenance and popularity of different packages, then select
he one that suits their needs. However, running npms to collect data and
valuate scores for around 730,000 packages requires more time and
esources because the evaluation relies on different variables collected
rom different data sources. After examining the documentation, source
ode and comments of npms, we find that there is no rationale behind
he selection of variables and their coefficients.

In order to help to save processing time, npms resources and to give
n insight into the impact of different metrics in packages’ final scores,
e performed a statistical analysis to improve the performance of npms

quations while preserving their search results. By applying variable se-
ection methods, we reduce 31% of the variables that npms uses, which
eads to a decrease 19 h (10%) of scoring time and 1.47 million of
etwork requests that npms needs to collect data and evaluate the fi-
al score for the packages. By comparing the packages overlapping and
anking quality when performing search on the original npms and our
odified npms, we preserve the overlapping and ranking of packages by
8.3% and 96.7%, respectively. The discrepancy in the packages’ final
cores between the original and simplified npms increases/decreases the
ackages’ ranks by one on average. We also find that as npm evolves, it
as a weak impact in reducing the ranking and inclusion of the npms-
implified equations.

Our work helps to improve the performance of npms and provides
 better understanding of software metrics. The npms community can
enefit from our findings by saving time and computation resources. In
ddition, our work also sheds light on potential research areas related
o the impact of software metrics on the packages’ final scores.

eferences

[1] Stack overflow developer survey 2018, (https://insights.stackoverflow.com/survey/
2017). (Accessed on 01/15/2019).

[2] P. Mohagheghi, R. Conradi, Quality, productivity and economic benefits of software
reuse: a review of industrial studies, Empir. Softw. Eng. 12 (5) (2007) 471–516,
doi: 10.1007/s10664-007-9040-x .

[3] V.R. Basili, L.C. Briand, W.L. Melo, How reuse influences productiv-
ity in object-oriented systems, Commun. ACM 39 (10) (1996) 104–116,
doi: 10.1145/236156.236184 .

[4] W.C. Lim, Effects of reuse on quality, productivity, and economics, IEEE Softw. 11
(5) (1994) 23–30, doi: 10.1109/52.311048 .

[5] E. Wittern, P. Suter, S. Rajagopalan, A look at the dynamics of the JavaScript package
ecosystem, in: Proceedings of the 13th International Conference on Mining Software
Repositories, MSR 2016, Austin, TX, USA, May 14–22, 2016, 2016, pp. 351–361,
doi: 10.1145/2901739.2901743 .

[6] npm, (https://www.npmjs.com/). (Accessed on 08/07/2019).
[7] npms, (https://npms.io/about). (Accessed on 08/07/2019).
[8] NPM, Searching for and choosing packages to download | npm documenta-

tion, (https://docs.npmjs.com/searching-for-and-choosing-packages-to-download).
(Accessed on 03/28/2019).

[9] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, E. Shihab, Why do de-
velopers use trivial packages? An empirical case study on npm, in: Proceed-
ings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, Paderborn, Germany, September 4–8, 2017, 2017, pp. 385–395,
doi: 10.1145/3106237.3106267 .

10] T. Dey, A. Mockus, Are software dependency supply chain metrics useful in
predicting change of popularity of npm packages? in: Proceedings of the 14th
International Conference on Predictive Models and Data Analytics in Soft-
ware Engineering, PROMISE’18, ACM, New York, NY, USA, 2018, pp. 66–69,
doi: 10.1145/3273934.3273942 .

11] Some modules show an older version issue #69 npms-io/npms-analyzer, (https://
github.com/npms- io/npms- analyzer/issues/69). (Accessed on 01/15/2019).

12] npms-analyzer - github, (https://github.com/npms- io/npms- analyzer/tree/
103d6209ed62ffb7a2ece26d72e87e5c6be17a86/lib/observers). (Accessed on
04/12/2018).

13] Npms results, (https://www.dropbox.com/sh/isbebtsc2a2rhkr/AABBez1pXqbOLNq
Md76G1cHHa?dl = 0). (Accessed on 05/03/2019).

https://insights.stackoverflow.com/survey/2017
https://doi.org/10.1007/s10664-007-9040-x
https://doi.org/10.1145/236156.236184
https://doi.org/10.1109/52.311048
https://doi.org/10.1145/2901739.2901743
https://www.npmjs.com/
https://npms.io/about
https://docs.npmjs.com/searching-for-and-choosing-packages-to-download
https://doi.org/10.1145/3106237.3106267
https://doi.org/10.1145/3273934.3273942
https://github.com/npms-io/npms-analyzer/issues/69
https://github.com/npms-io/npms-analyzer/tree/103d6209ed62ffb7a2ece26d72e87e5c6be17a86/lib/observers
https://www.dropbox.com/sh/isbebtsc2a2rhkr/AABBez1pXqbOLNqMd76G1cHHa?dl=0

A. Abdellatif, Y. Zeng and M. Elshafei et al. Information and Software Technology 126 (2020) 106365

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[
14] npms io, npms-analyzer, (https://github.com/npms- io/npms- analyzer/blob/
103d6209ed62ffb7a2ece26d72e87e5c6be17a86/lib/observers/stale.js). (Accessed
on 07/27/2018).

15] Practical bm25 - part 2: The bm25 algorithm and its variables | elastic blog,
(https://www.elastic.co/blog/practical-bm25-part-2-the-bm25-algorithm-and-its-
variables). (Accessed on 03/10/2019).

16] I. Guyon , A. Elisseeff, An introduction to variable and feature selection, J. Mach.
Learn. Res. 3 (2003) 1157–1182 .

17] S. Lessmann, B. Baesens, C. Mues, S. Pietsch, Benchmarking classification models for
software defect prediction: a proposed framework and novel findings, IEEE Trans.
Softw. Eng. 34 (4) (2008) 485–496, doi: 10.1109/TSE.2008.35 .

18] H. Wang, T.M. Khoshgoftaar, A. Napolitano, A comparative study of ensemble
feature selection techniques for software defect prediction, in: 2010 Ninth Inter-
national Conference on Machine Learning and Applications, 2010, pp. 135–140,
doi: 10.1109/ICMLA.2010.27 .

19] K. Gao, T.M. Khoshgoftaar, H. Wang, N. Seliya, Choosing software metrics for defect
prediction: an investigation on feature selection techniques, Software 41 (5) (2011)
579–606, doi: 10.1002/spe.1043 .

20] B. Ghotra, S. McIntosh, A.E. Hassan, A large-scale study of the impact of feature
selection techniques on defect classification models, in: 2017 IEEE/ACM 14th In-
ternational Conference on Mining Software Repositories (MSR), 2017, pp. 146–157,
doi: 10.1109/MSR.2017.18 .

21] X. Chen , Y. Shen , Z. Cui , X. Ju , Applying feature selection to software defect pre-
diction using multi-objective optimization, in: 2017 IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC), 2, 2017, pp. 54–59 .

22] M. Kuutila, M.V. Mäntylä, M. Claes, M. Elovainio, B. Adams, Using experience sam-
pling to link software repositories with emotions and work well-being, in: Proceed-
ings of the 12th ACM/IEEE International Symposium on Empirical Software Engi-
neering and Measurement, ESEM 18, Association for Computing Machinery, New
York, NY, USA, 2018, doi: 10.1145/3239235.3239245 .

23] J. Chi, K. Honda, H. Washizaki, Y. Fukazawa, K. Munakata, S. Morita, T. Uehara,
R. Yamamoto, Defect analysis and prediction by applying the multistage software
reliability growth model, in: 2017 8th International Workshop on Empirical Software
Engineering in Practice (IWESEP), 2017, pp. 7–11, doi: 10.1109/IWESEP.2017.16 .

24] D. Posnett, V. Filkov, P. Devanbu, Ecological inference in empirical software engi-
neering, in: 2011 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011), 2011, pp. 362–371, doi: 10.1109/ASE.2011.6100074 .

25] H. Akaike , A new look at the statistical model identification, IEEE Trans. Autom.
Control 19 (6) (1974) 716–723 .

26] npms-analyzer/architecture.md at master npms-io/npms-analyzer, (https://
github.com/npms- io/npms- analyzer/blob/master/docs/architecture.md . (Ac-
cessed on 01/16/2019).

27] npm, npm, (https://www.npmjs.com/browse/depended). (Accessed on
04/17/2018).

28] G.E. Dupret , B. Piwowarski , A user browsing model to predict search engine click
data from past observations., in: Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’08,
ACM, New York, NY, USA, 2008, pp. 331–338 .

29] Y. Wang , L. Wang , Y. Li , D. He , W. Chen , T.-Y. Liu , A theoretical analysis of NDCG
ranking measures, in: Proceedings of the 26th Annual Conference on Learning The-
ory (COLT 2013), 2013 .

30] Amazon, Amazon web services (aws) - cloud computing services,
(https://aws.amazon.com/).(Accessed on 08/07/2019).
31] Amazon, Amazon ec2 instance types, (https://aws.amazon.com/ec2/
instance-types/). (Accessed on 08/07/2019).

32] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, E. Shihab, Why do developers
use trivial packages? An empirical case study on npm, in: Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, ACM,
New York, NY, USA, 2017, pp. 385–395, doi: 10.1145/3106237.3106267 .

33] A. Decan, T. Mens, P. Grosjean, An empirical comparison of dependency network
evolution in seven software packaging ecosystems, Empir. Softw. Eng. (2018),
doi: 10.1007/s10664-017-9589-y .

34] A. Decan, T. Mens, E. Constantinou, On the impact of security vulnerabilities in
the npm package dependency network, in: Proceedings of the 15th International
Conference on Mining Software Repositories, MSR ’18, ACM, New York, NY, USA,
2018, pp. 181–191, doi: 10.1145/3196398.3196401 .

35] N. Lertwittayatrai , R.G. Kula , S. Onoue , H. Hata , A. Rungsawang , P. Leelaprute ,
K. Matsumoto , Extracting insights from the topology of the JavaScript package
ecosystem, in: 24th Asia-Pacific Software Engineering Conference, APSEC 2017,
Nanjing, China, December 4–8, 2017, 2017, pp. 298–307 .

36] A. Decan, T. Mens, M. Claes, P. Grosjean, When GitHub meets cran: an analysis
of inter-repository package dependency problems, in: 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), 1, 2016,
pp. 493–504, doi: 10.1109/SANER.2016.12 .

37] R.G. Kula, A. Ouni, D.M. Germán, K. Inoue, On the impact of micro-packages: an
empirical study of the npm JavaScript ecosystem, CoRR abs/1709.04638 (2017).

38] G. Bavota, G. Canfora, M.D. Penta, R. Oliveto, S. Panichella, How the apache com-
munity upgrades dependencies: an evolutionary study, Empir. Softw. Eng. 20 (5)
(2015) 1275–1317, doi: 10.1007/s10664-014-9325-9 .

39] S.K. Imminni, M.A. Hasan, M. Duckett, P. Sachdeva, S. Karmakar, P. Kumar,
S. Haiduc, SPYSE: a semantic search engine for python packages and mod-
ules, in: Proceedings of the 38th International Conference on Software Engi-
neering Companion, ICSE ’16, ACM, New York, NY, USA, 2016, pp. 625–628,
doi: 10.1145/2889160.2889174 .

40] T. Dey, A. Mockus, Are software dependency supply chain metrics useful in
predicting change of popularity of npm packages? in: Proceedings of the 14th
International Conference on Predictive Models and Data Analytics in Soft-
ware Engineering, PROMISE’18, ACM, New York, NY, USA, 2018, pp. 66–69,
doi: 10.1145/3273934.3273942 .

41] A. Trockman, S. Zhou, C. Kästner, B. Vasilescu, Adding sparkle to social coding: an
empirical study of repository badges in the npm ecosystem, in: Proceedings of the
40th International Conference on Software Engineering, ICSE ’18, ACM, New York,
NY, USA, 2018, pp. 511–522, doi: 10.1145/3180155.3180209 .

42] K.C. Chatzidimitriou, M.D. Papamichail, T. Diamantopoulos, M. Tsapanos,
A.L. Symeonidis, Npm-miner: an infrastructure for measuring the quality of the
npm registry, in: Proceedings of the 15th International Conference on Mining
Software Repositories, MSR ’18, ACM, New York, NY, USA, 2018, pp. 42–45,
doi: 10.1145/3196398.3196465 .

43] S.B. Merriam , Qualitative Research and Case Study Applications in Education. Re-
vised and Expanded from ” Case Study Research in Education. ”, ERIC, 1998 .

44] P. Petrescu, M. Ghita, D. Loiz, Google organic ctr study. 2014, 2014.
45] B. Clifton , Advanced Web Metrics with Google Analytics, John Wiley & Sons, 2012 .

https://github.com/npms-io/npms-analyzer/blob/103d6209ed62ffb7a2ece26d72e87e5c6be17a86/lib/observers/stale.js
https://www.elastic.co/blog/practical-bm25-part-2-the-bm25-algorithm-and-its-variables
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0007
https://doi.org/10.1109/TSE.2008.35
https://doi.org/10.1109/ICMLA.2010.27
https://doi.org/10.1002/spe.1043
https://doi.org/10.1109/MSR.2017.18
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0012
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0012
https://doi.org/10.1145/3239235.3239245
https://doi.org/10.1109/IWESEP.2017.16
https://doi.org/10.1109/ASE.2011.6100074
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0016
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0016
https://github.com/npms-io/npms-analyzer/blob/master/docs/architecture.md
https://www.npmjs.com/browse/depended
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0017
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0018
https://aws.amazon.com/
https://aws.amazon.com/ec2/instance-types/
https://doi.org/10.1145/3106237.3106267
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1145/3196398.3196401
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0022
https://doi.org/10.1109/SANER.2016.12
http://arxiv.org/abs/1709.04638
https://doi.org/10.1007/s10664-014-9325-9
https://doi.org/10.1145/2889160.2889174
https://doi.org/10.1145/3273934.3273942
https://doi.org/10.1145/3180155.3180209
https://doi.org/10.1145/3196398.3196465
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0029
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30133-6/sbref0030

	Simplifying the Search of npm Packages
	1 Introduction
	2 Npms background
	3 Simplifying npms
	3.1 Experimental dataset
	3.2 Feature selection methods
	3.3 Simplifying the npms equations

	4 Empirical case study
	4.1 RQ1: How well can we preserve the search results?
	4.2 RQ2: How is the final package ranking affected by the simplified npms?
	4.3 RQ3: How many resources can we save by simplifying npms?
	4.4 RQ4: How will our approach perform as npm evolves?

	5 Discussion
	6 Related work
	6.1 Packages dependencies
	6.2 Ecosystem evolution
	6.3 Packages searching engine

	7 Threats to validity & limitations
	7.1 Internal validity
	7.2 Construct validity
	7.3 External validity
	7.4 Limitation of practical evaluation

	8 Conclusion
	References

