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ABSTRACT

To help improve the performance of database-centric cloud-
based web applications, developers usually use caching frame-
works to speed up database accesses. Such caching frame-
works require extensive knowledge of the application to op-
erate effectively. However, all too often developers have lim-
ited knowledge about the intricate details of their own ap-
plication. Hence, most developers find configuring caching
frameworks a challenging and time-consuming task that re-
quires extensive and scattered code changes. Furthermore,
developers may also need to frequently change such config-
urations to accommodate the ever changing workload.

In this paper, we propose CacheOptimizer, a lightweight
approach that helps developers optimize the configuration
of caching frameworks for web applications that are imple-
mented using Hibernate. CacheOptimizer leverages readily-
available web logs to create mappings between a workload
and database accesses. Given the mappings, CacheOpti-
mizer discovers the optimal cache configuration using coloured
Petri nets, and automatically adds the appropriate cache
configurations to the application. We evaluate CacheOpti-
mizer on three open-source web applications. We find that
i) CacheOptimizer improves the throughput by 27-138%;
and ii) after considering both the memory cost and through-
put improvement, CacheOptimizer still brings statistically
significant gains (with mostly large effect sizes) in compar-
ison to the application’s default cache configuration and to
blindly enabling all possible caches.

1. INTRODUCTION

Web applications are widely used by millions of users
worldwide. Thus, any performance problems in such ap-
plications can often cost billions of dollars. For example, a
report published in 2012 shows that a one-second page load
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slowdown of the Amazon web applications can cost an aver-
age of 1.6 billion dollars in sales each year [25]. The complex-
ity and scale of modern database-centric web applications
complicate things further. As much as 88% of developers
find their applications’ performance is deeply impacted by
their reliance on databases [29]. Application-level caching
frameworks, such as Ehcache [54] and Memcached [3§], are
commonly used nowadays to speed up database accesses in
large-scale web applications. Unlike traditional lower-level
caches (e.g., hardware or web proxies) [3}7,/18]/34], these
application-level caching frameworks require developers to
instruct them about what to cache; otherwise these frame-
works are not able to provide any benefit to the application.

Deciding what should be cached can be a very difficult and
time-consuming task for developers, which requires in-depth
knowledge of the applications and workload. For example,
to decide that the results of a query should be cached, devel-
opers must first know that the query will be frequently exe-
cuted, and that the fetched data is rarely modified. Further-
more, since caching frameworks are highly integrated with
the application, these frameworks are configured in a very
granular fashion — with cache API calls that are scattered
throughout the code. Hence, developers must manually ex-
amine and decide on hundreds of caching decisions in their
application. Even worse, a recent study finds that most
database-related code is undocumented [37], which makes
manual configuration even harder.

Developers must continuously revisit their cache config-
uration as the workload of their application changes [22].
Outdated cache configurations may not provide as much per-
formance improvement, and they might even lead to perfor-
mance degradation. However, identifying workload changes
is difficult in practice for large applications [53}/61]. Even
knowing the workload changes, developers still need to spend
great effort to understand the new workload and manually
re-configure the caching framework.

In this paper, we propose CacheOptimizer, a lightweight
approach that automatically helps developers decide what
should be cached (and also automatically places the cache
configuration code) in web applications that are implemented
using Hibernate in order to optimize the configuration of
caching frameworks. Using CacheOptimizer, developers can
better manage the cost of their database accesses — greatly
improving application performance [6}[11}[13H16L[48].
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CacheOptimizer first recovers the workload of a web appli-
cation by mining the web server access logs. Such logs are
typically readily-available even for large-scale applications
that are deployed in production environments. CacheOpti-
mizer further analyzes the source code statically to identify
the database accesses that are associated with the recov-
ered workloads. To identify detail information about the
recovered database accesses, such as the types of the ac-
cess and the accessed data, CacheOptimizer leverages static
taint analysis [30] to map the input variables of the web
requests to the exact database accesses. Combining the re-
covered workload and the corresponding database accesses,
CacheOptimizer models the workload, the database accesses,
and the possible cache configurations as a coloured Petri net.
By analyzing the Petri net, CacheOptimizer is able to deter-
mine an optimal cache configuration (i.e., given a workload,
which objects or queries should be cached by the caching
frameworks). Finally, CacheOptimizer automatically adds
the appropriate configuration calls to the caching framework
API into the source code of the application.

We have implemented our approach as a prototype tool

and evaluated it on three representative open-source database-

centric web applications (Pet Clinic [44], Cloud Store [20],
and OpenMRS [41]) that are based on Hibernate [21]. The
choice of Hibernate is due to it being one of the most used
Java platforms for database-centric applications in practice
today [58]. However, our general idea of automatically con-
figuring a caching framework should be extensible to other
database abstraction technologies. We find that after apply-
ing CacheOptimizer to configure the caching frameworks on
the three studied applications, we can improve the through-
put of the entire application by 27-138%.

The main contributions of this paper are:

1. We propose an approach, called CacheOptimizer, which
helps developers in automatically optimizing the con-
figuration of caching frameworks for Hibernate-based
web applications. CacheOptimizer does not require
modification to existing applications for recovering the
workload, and does not introduce extra performance
overhead.

2. We find that the default cache configuration may not
enable any cache or may lead to sub-optimal perfor-
mance, which shows that developers are often unaware
of the optimal cache configuration.

3. Compared to having no cache (NoCache), the default
cache configurations (DefaultCache), and enabling all
caches (CacheAll), CacheOptimizer provides a better
throughput improvement at a lower memory cost.

Paper Organization. The rest of the paper is organized
as follows. Section [2] first discusses related work to our pa-
per. Section [3] introduces background knowledge for com-
mon caching frameworks. Section [] describes the design
details of CacheOptimizer. Section [5| evaluates the benefits
and costs of CacheOptimizer. Section [6] discusses threats to
validity of our study. Finally, Section[7] concludes the paper.

2. RELATED WORK AND BACKGROUND

In this section, we discuss related work to CacheOpti-
mizer. We focus on three closely related areas: software en-
gineering research on software configuration, optimizing the
performance of database-centric applications, and caching
frameworks.

2.1 Software Configuration

Improving Software Configurations. Software config-
urations are essential for the proper and optimal operation
of software applications. Several prior software engineer-
ing studies have proposed approaches to analyze the con-
figurations of software applications. For example, Rabkin
et al. |47] use static analysis to extract the configuration
options of an application, and infer the types of these con-
figurations. Xu et al. |2| conduct an empirical study on the
configuration parameters in four open-source applications in
order to help developers design the appropriate amount of
configurability for their application. Liu et al. [57] focus on
configuring client-slide browser caches for mobile devices.

Detecting and Fixing Software Configuration Prob-
lems. Rabkin et al. [46] use data flow analysis to detect
configuration-related functional errors. Zhang et al. [59)
propose a tool to identify the root causes of configuration
errors. In another work, Zhang et al. |[60] propose an ap-
proach that helps developers configure an application such
that the application’s behaviour does not change as the ap-
plication evolves. Chen et al. [10] propose an analysis frame-
work to automatically tune configurations to reduce energy
consumption for web applications. Xiong et al. [56] au-
tomatically generate fixes for configuration errors using a
constraint-based approach.

Prior research on software configuration illustrates that
optimizing configurations is a challenging task. In this pa-
per, we propose CacheOptimizer, which particularly focuses
on helping developers optimize the cache configurations to
improve the performance of large-scale web applications.

2.2 Improving Application Performance by Re
ducing the Overhead of Database Accesses

Most studies in literature propose frameworks to reduce
the overhead of database accesses by batching [28], or re-
ordering [6] database accesses. Ramachandra et al. [48] pro-
pose a framework for pre-fetching data from the database
management system (DBMS) in batches in order to reduce
database access overheads. Similarly, Cheung et al. [16] pro-
pose a framework for delaying database accesses as late as
possible, and sending database access requests only when the
data is needed in the application. Chavan et al. [9] propose
a framework for sending queries asynchronously in order to
improve application performance.

Several proposed frameworks improve application perfor-
mance by analyzing the source code. In our prior work [12}
14], we propose a static analysis framework to detect and
rank database access performance anti-patterns. Develop-
ers can address these anti-patterns based on their priorities.
Cheung et al. |17] leverage static analysis and code synthe-
sis to automatically generate optimal SQL queries accord-
ing to post-conditions and loop invariants. Grechanik et
al. [31] propose a framework that combines both static and
dynamic analysis to prevent database deadlocks. Chaud-
huri et al. [8] use instrumented database access information
to find database-related performance problems in the code.

Compared to prior studies, we not do propose a new frame-
work. Instead, CacheOptimizer helps developers optimize
the configuration of the frameworks (in particular caching
frameworks) that are already in use in practice today. In-
depth knowledge of a software application is needed for soft-
ware developers to optimally configure such frameworks.
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Figure 1: An example of simplified Hibernate code,
Hibernate cache configuration code, and Hibernate
cache mechanism. The numbers and the arrows in-
dicate the flow for different workloads. The grey
User objects in the cache layer means the objects are
invalidated in the cache layer.

2.3 Caching Frameworks

There are many prior studies on cache algorithms and
frameworks. Many cache algorithms such as least recently
used (LRU) [34], and most recently used (MRU) [18] are
widely used in practice for scheduling lower-level caches. For
example, such algorithms are used to improve the perfor-
mance of web applications by caching web pages through
proxies [7,|24]. Most of these caching algorithms operate in
an unsupervised dumb fashion, i.e., these low-level caching
algorithms do not require any application-level knowledge
to operate.

Many modern applications generate dynamic content, which

may be highly variable and large in size, based on data in the
DBMS. Therefore, many low-level cache frameworks are be-
coming less effective. Many recent caching frameworks cache
database accesses at the application level [27,40]. When us-
ing these application-level caching frameworks, developers
have full control of what should be cached in an application.
However, to leverage these caching frameworks effectively,
they must be configured properly.

Unlike most prior studies, CacheOptimizer does not try
to manage cache scheduling. Instead, CacheOptimizer is
designed to help developers optimize the configuration of
application-level caching frameworks, which must be config-
ured correctly for developers to fully leverage their benefits.

3. HIBERNATE AND CACHING MECHA-
NISMS

3.1 Hibernate

CacheOptimizer automatically configure the caching frame-
work for Hibernate-based web applications |21]. Hibernate
is one of the most popular Java frameworks for abstract-
ing database operations. Hibernate abstracts database ac-
cesses as object calls in Java instead of using SQL or JDBC
directly. Hibernate is very popular among developers, be-
cause it helps reduce the amount of boilerplate code and
development time [36]. For instance, a recent survey shows
that among the 2,164 surveyed Java developers, 67.5% use
Hibernate 58] instead of other database abstraction frame-
works (including JDBC).

Figure [I] shows an example of using Hibernate to ab-
stract database accesses in Java. In this example, anno-
tations (e.g., @Entity, @Table, and @Column) are added to
User.java to specify the mapping between tables in a rela-

tional database and objects in Java. Based on such anno-
tations, Hibernate automatically transforms user records to
user objects and vice versa, and automatically translates the
manipulation of the user object to the corresponding SQL
queries. Hibernate is often used along caching frameworks
like Ehcache [54]. These application-level caching frame-
works aim to improve the performance of database-centric
applications by reducing the number of database accesses.

3.2 Hibernate Caching Mechanism

Most caching frameworks act like an in-memory key-value
store. When using Hibernate, these caching frameworks
would store the database entity objects (objects that have
corresponding records in the DBMS) in memory and assign
each object a unique ID (i.e., the primary key). There are
two types of caches in Hibernate:

e Object cache. As shown in workflow 1 (Figure [1}),
if the requested user object is not in the cache layer,
the object will be fetched from the DBMS. Then, the
user object will be stored in the cache layer and can be
accessed as a key-value pair using its id (e.g., {id: 1,
User obj}). If the object is updated, the cached data
would be evicted to prevent a stale read (Workflow 2).

To cache database entity objects, developers must add
an annotation @Cachable at the class declaration (as
shown in User.java in Figure. Then, all database en-
tity object retrieved by ID (e.g., retrieved using find-
UserByld()) would be cached. These annotations con-
figure the underlying caching frameworks.

e Query cache. The cache mechanism for query cache
is slightly different from object cache. For example,
the cached data for a select all query on the user table
(Workflow 3) would look as follows:

select * from User — {id : 1,id : 2}
{id : 1,id : 2} — {id : 1, User obj}, {id : 2, User obj}

The cache layer stores the ids of the objects (i.e., id 1
and 2) that are retrieved by the query, and uses the
ids to find the cached objects (the corresponding User
obj). Thus, the object cache must be enabled to use
a query cache. When a user object is updated (work-
flow 4), the query cache needs to retrieve the updated
object from the DBMS to prevent a stale read. Thus,
if the queried entity objects are frequently modified,
using a query cache may not be beneficial, and may
even hinder performance [26].

To cache query results, developers must call a method
like cache() before executing the query (Main.java in
Figure [1). Such method is used to configure the un-
derlying caching frameworks.

Adding caches incorrectly can introduce overhead to the
application. Caching a frequently modified object or query
will cause the caching framework to constantly evict and
renew the cache, which not only causes cache renewal over-
head but may also result in executing extra SQL queries.
Therefore, blindly adding caches without understanding the
workload may lead to performance degradation [51].



@RequestMapping(value="user/{id}",

method=GET) +@Cachable

public User getUserByld(int id){ @Entity
return findUserByld(id); public class Userf

public User findUserByld(int id){
Return entityManager.find(User.class, id);
}

Source code

127.0.0.1 [05/Aug/2015:10:38:38 -0400] “GET /user/1 HTTP/1.1" 200
127.0.0.1 [05/Aug/2015:10:38:40 -0400] “GET /user/1 HTTP/1.1" 200
127.0.0.1 [05/Aug/2015:10:38:42 -0400] “GET /user/2 HTTP/1.1" 200
127.0.0.1 [05/Aug/2015:10:38:45 -0400] “GET /user/1 HTTP/1.1" 200
127.0.0.1 [05/Aug/2015:10:38:47 -0400] “GET /user/1 HTTP/1.1" 200
127.0.0.1 [05/Aug/2015:10:38:50 -0400] “GET /user/1 HTTP/1.1" 200

Web access logs
Figure 2: A working example of CacheOptimizer.
The + sign in front of the @Cachable line indicates
that the caching configuration is added by CacheOp-
timizer.

4. CACHE OPTIMIZER

CacheOptimizer optimizes the configuration of caches that
are associated with database accesses that occur for a given
workload. Hence, our approach needs to recover the work-
load of an application then to identify which database ac-
cess occurs within that particular workload. In the following
subsections, we explain each step of the inner workings of
CacheOptimizer in detail using a working example. The in-
put of the working example shown in Figure 2] consists of two
parts: 1) source code of the application and 2) web access
logs. Figure [3]shows an overview of CacheOptimizer.

4.1 Recovering Control and Data Flow Graphs

We first need to understand the calling and data flow rela-
tionships among methods, and determine which application-
level methods are impacted by database caching (i.e., which
methods eventually lead to a database access). We therefore
extract the call and data flow graphs of the application by
parsing the source code of the application using the Eclipse
JDT. We opt to parse the source code instead of analyzing
the binary since we need to locate the Hibernate annotations
in the source code — such annotations are lost after compiling
the source code to Java byte code. We mark all Hibernate
methods that access the DBMS (e.g., query.execute()) in the
call and data flow graphs. Such methods are easy to iden-
tify since they are implemented in the same class (i.e., in
the EntityManager and the Query class of Hibernate). Once
such methods are marked, we are able to uncover all the
application-level methods that are likely to be impacted by
optimizing the database cache. In our working example, af-
ter generating the call and data flow graphs, and identifying
the Hibernate database access methods, we would know that
the method getUserByld contains one database access, and
the parameter is passed in through a web request.

4.2 Linking Logs to Application-Level Meth-
ods

We recover the workload of the application by mining its
web access logs. We leverage web access logs because of the
following reasons. First, web access logs are typically readily
available without needing additional instrumentation since
many database-centric applications rely on RESTFul web
service (based on HTTP web requests) [49] to accept re-
quests from users [5]. For example, large companies like
IBM, Oracle, Facebook and Twitter all provide RESTFul

APIﬂ Second, unlike application logs, web access logs
have a universal structure (the format of all log lines are
the same) [55]. Hence, compared to application logs, web
access logs are easier to analyze and do not usually change
as an application evolves [50].

Web access logs may contain information such as the re-
questor’s IP, timestamp, time taken to process the request,
requested method (e.g. GET), and status of the response.
An example web access log may look like:

127.0.0.1 [05/Aug/2015:10:38:88 -0400] 1202 “GET
Juser/1 HTTP/1.17 200

This web access log shows that a request is sent from the
local host at August 05, 2015 to get the information of the
user whose ID is 1. The status of the response is 200, and
the application took 1,202 milliseconds to respond to the
request.

In order to know which application-level methods will
be executed for each web request, we use static analysis
to match the web access logs to application-level methods.
CacheOptimizer parses the standard RESTful Web Services
(JAX-RS) specifications in order to find the handler method
for each web request [42]. An example of JAX-RS code is
shown below:

@RequestMapping(value = "/user/{id}", method=GET)

public User getUserById(int id) {
return findUserById(id);
}

In this example, based on the JAX-RS annotations, we know
that all GET requests with the URL of form “/user/{id}”
will be handled by the getUserByld method.

For every line of web access log, CacheOptimizer looks for
the corresponding method that handles that web request.
After analyzing all the lines of web access logs, CacheOp-
timizer generates a list of methods (and their frequencies)
that are executed during the run of the application.

In our working example, we map every line of web access
log to a corresponding web request handling method, i.e.,
getUserByld method.

4.3 Database Access Workload Recovery

We want to determine which database accesses are exe-
cuted for the workload. Since application-level cache highly
depends on the details of the database accesses, we need to
recover the types of the database access (e.g., a query versus
a select/insert /update/delete of a database entity object by
id) and the data that is associated with the database access
(e.g., accessed tables and parameters). Such detailed in-
formation of database accesses helps us in determining the
optimal cache configurations. We first link each web access
log to its request-handler method in the code (as described
in Section . Therefore, for each workload, we know the
list of request-handler-methods that are executed (i.e., entry
points into the application). Then, we conduct a call graph
and static flow-insensitive interprocedural taint analysis on
each web-request-handler method, using the generated call
and data flow graphs (as describe in Section .

Our algorithm for recovering the database access work-
load is shown in Algorithm|[I] For each web-request-handler-
method, we identify all possible database accesses by travers-

"http:/ /www.programmableweb.com/apis/directory
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Figure 3: Overview of CacheOptimizer.

Algorithm 1: Our algorithm for recovering database ac-
cesses.

Input: CG, DG, Mthd /* call graph, data flow graph,

the request handler method */
Output: AccessInfo, Params /* accessed DB tables
and DB func type (query or key-value
lookup) and parameter of the request */

AccessInfo < 0; Params < 0;

/* Traverse the call graph from Mthd */

foreach path € CG.findAllPathFrom(Mthd) do
foreach call € path do

if isDBCall(call) then
AccessInfo < AccessInfoU
(get AccessedT able(call), get MthdType(call));

7 end
8 end
9 end
10 /* Track the usage of the input params */
11 foreach param € Mthd.getParams() do
12 foreach path € DG.findAllPathFrom(param) do

O AW N

13 foreach node € path do
14 node <— pointToAnalysis(node)
15 if usedInDBAccessCall(node) then
16 Params <
Params U (dbAccessCall, node)
17 end
18 end
19 end
20 end

ing all paths in the call graph, and recording the type of
the database access. After recovering the database access,
we traverse the data flow graph of each web-request-handler
method to track the usage of the parameters that are passed
in through the web requests. We want to see if the pa-
rameters are used for retrieving/modifying the data in the
DBMS. Such information helps us better calculate the opti-
mized cache configuration. For example, we would be able
to count the number of times a database entity object is
retrieved (e.g., according to the id that is specified in the
web requests), or how many times a query is executed (e.g.,
according to the search term that is specified in the web re-
quest). For POST, PUT, and DELETE requests, we track
the URL (e.g., POST /newUser/1) to which the request is
sent, which usually specifies which object the request is up-
dating. If there is no parameter specified, then we assume
that the request may modify any of the objects to be con-
servative on our advice on enabling the cache.

In our working example, we recover a list of database ac-
cesses. All of the accesses read data from the User table.
In five of the accesses, the parameter is 1 and in one of the
accesses, the parameter is 2.

4.4 Identifying Possible Caching Locations

After our static analysis step, we recover the location of all
the database access methods in the code, and the mapping
between Java classes and tables in the DBMS. Namely, we
obtain all potential locations for adding calls to the cache
configuration APIs. Thus, if a query needs to be cached,
we can easily find the methods in the code that execute the
query. If we need to add object caches, we can easily find
the class that maps to the object’s corresponding table in
the DBMS. In our example, we identify that the class User
is a possible location to place an object cache. Our static
analysis step is very fast (23-177 seconds on a machine with
16G RAM and Intel i5 2.3GHz CPU) for our studied appli-
cations (see Table , and is only required when deploying a
new release. Thus, the execution time has minimal impact.

We use flow-insensitive static analysis approaches to iden-
tify possible caching locations, because it is extremely diffi-
cult to recover precise dynamic code execution paths with-
out introducing additional overhead to the application (e.g.,
using instrumentation). During our static analysis step, if
we choose to assign different probabilities to code branches,
we may under-count or over-count reads and writes to the
DBMS. Under-counting reads may result in failing to cache
frequently read objects, which has little or no negative per-
formance impact (i.e., the same as not adding a cache).
However, under-counting writes may result in caching fre-
quently modified objects and thus has significant negative
effects on performance. In contrast, we choose a conser-
vative approach by considering all possible code execution
paths (over-counting) to avoid under-counting reads and
writes. We may over-count reads and writes to the DBMS,
but over-counting reads has minimal performance impact,
since in such cases we would only place cache configuring
APIs on objects that are rarely read from the DBMS; over-
counting writes means that we may miss some objects that
should have been cached, but will not affect the system
performance (the same as adding no cache). Hence, our
conservative choice by intentionally considering all possi-
ble code execution paths (over-counting) ensures that the
caching suggestions would not have negative performance
impact after placing the suggested caches. Note that there
may be some memory costs when turning on the cache (i.e.,
use more memory), and in RQ2 we evaluate the gain of our
approach when considering such costs.

4.5 Evaluating Potential Cache Benefits Using
Coloured Petri Net

After linking the logs to handler methods and recovering
the database accesses, CacheOptimizer then calculates the
potential benefits of placing a cache on each database ac-



Figure 4: An example of modeling potential cache
benefits using a coloured Petri net. A red token
represents a read to a specific database entity ob-
ject (e.g., findUserByld(1)), and a blue token repre-
sents write to a specific database entity object (up-
dateUserByld(1)).

cess call. We use Petri nets [45], a mathematical modeling
languages for distributed applications, to model the activ-
ity of caches such as cache renewal and invalidation. Petri
nets allow us to model the interdependencies, so the reached
caching decisions are global optimal, instead of focusing on
top cache accesses (greedy). Petri nets model the transition
of states in an application, and a net contains places, tran-
sitions, and arcs. Places represent conditions in the model,
transitions represent events, and arcs represent the flow re-
lations among places. Formally, a Petri net IV can be defined
as:

N = (P,T,A)and A C (P x T)U (T x P),

where P is the set of places, T is the set of transitions, and A
is the set of arcs. Places may contain tokens, which represent
the execution of the net. Any distributions of the tokens
in the places of a net represent a set of configurations. A
limitation of Petri nets is that there is no distinction between
tokens. However, to use Petri nets to evaluate potential
cache benefits, we need to model different data types (e.g.,
a Hibernate query versus an entity lookup by id) and values
(e.g., query parameter). Thus, we use an extension of Petri
nets, called coloured Petri net (CPN) [33]. In a CPN, tokens
can have different values, and the values are represented
using colours. Formally, a CPN can be defined as:

CPN = (P,T,A,%,C,N,E,G,I),

where P, T, and A are the same as in Petri nets. ¥ repre-
sents the set of all possible colours (all possible tokens), C
maps P to colours in ¥ (e.g., specify the types of tokens that
can be in a place), and N is a node function that maps A
into (P x T)U (T x P). E is the arc expression function, G
is the guard function that maps each transition into guard
expressions (e.g., boolean), and finally I represents an ini-
tialization function that maps each place to a multi-set of
token colours.

In our CPN (shown in Figure [d), we define P to be the
states of the data in the cache. P3 is a repository that
stores the total number of database accesses, P4 stores the
total number of cache hits, and P5 stores the number of
invalidated caches. P2 is an intermediate place for deter-
mining whether the data would be cached or invalidated.
We define T' to be all database accesses that are recovered
from the logs. We define ¥ to distinguish the type of the
database access call (e.g., read/write using ids or queries),

and the parameters used for the access (obtained using Algo-
rithrn. Thus, our C' defines that P4 can only have colours
of database access calls that are reads, and P1, P2, P3, and
P5 may contain all colours in 3. The transition function
on T1 always forwards the tokens in the initial place P1 to
P2 and P3. There are two guard functions on T2, where
one allows a token to be moved to P4 if there are two or
more tokens of the same colour in P2 (i.e., multiple reads to
the same data, so a cache hit), and another guard function
makes sure that if there is a write in P2, all the same write
tokens and the corresponding read tokens are moved to P5
(e.g., the cache is invalidated).

In our example (Figure[4]), we let red tokens represent the
database access call findUserByld(1), and blue tokens repre-
sent updateUserByld(1). In (1), there are two red tokens, and
T1 is triggered, so the two red tokens are stored in P2 and
P3. Since there are two red tokens in P2, T2 is triggered,
and moves one red token to P4 (a cache hit). The resulting
CPN is shown in (2). When a blue token appears in P1, T1
is triggered and moves the blue token to both P2 and P3.
Since there is a blue token in P2, T2 is triggered, and we
move both the red and blue token to P5 (cache invalidation).
The final resulting Petri net is shown in (3). Note that T2
acts slightly different for tokens that represent query calls.
When an object is updated, the query cache needs to re-
trieve the updated object from the DBMS to prevent a stale
read. Thus, to model the behaviour, T2 would be triggered
to move the query token to P5 from P2 if we see any token
that represents a modification to the query table.

We use the recovered database accesses of the workload to
execute the CPN. For all tokens that represent the database
access to the same data (e.g., a read and write to user by id
1), we examine their total counts in P3 and P4 to calculate
the miss ratio (MR) of the cache. MR can be calculated as
one minus the total number of cache hits in P4 divided by
the total number of calls in P3. We choose MR because it
is used in many prior studies to evaluate the effectiveness
of caching (e.g., [241[43}/62]). If MR is too high, caching the
data would not give any benefit. For example, if a table is
constantly updated, then data in that table should not be
cached. Thus, we define a threshold to decide whether a
database access call should be cached. In our CPN, if MR
is smaller than 35%, then we place the cache configuration
code for the corresponding query (query cache) or table (ob-
ject cache). Since object cache must be turned on to utilize
query cache, we enable query cache only if the MR of the
object cache is under the threshold. Such that, there would
not exist conflicting decisions for object and query cache.
We choose 35% to be more conservative on enabling caches
so that we know the cached data would be invalidated less
frequently (lower cache renewal cost). We also vary MR to
45% and do not see any difference in terms of the suggested
cache configurations. However, future work should further
investigate the impact of MR.

4.6 Configuring the Caching Frameworks

CacheOptimizer automatically adds the appropriate calls
to the cache configuration API. Since the locations that
require adding cache configuration APIs may be scattered
across the code, CacheOptimizer helps developers reduce
manual efforts by automatically adding these APIs to the
appropriate locations. For example, if the query that is
executed by the request “/user/?query=Peter” should be



cached, CacheOptimizer would automatically call the caching
framework’s API to cache the executed query in the corre-

sponding handler method searchUserByName. In our exam-

ple shown in Figure [2] the miss ratio of caching objects in

the User class is 0.33, which is smaller than our threshold

0.35. CacheOptimizer automatically adds the @Cachable

annotation to the source code to enable cache for the User

class.

5. EVALUATION

In this section, we present the evaluation of CacheOpti-
mizer. We first discuss the applications that we use for our
evaluation. Then we focus on two research questions: 1)
what is the performance improvement after using CacheOp-
timizer; and 2) what is the gain of CacheOptimizer when
considering the cost of such caches.

Experimental Setup. We evaluate CacheOptimizer on
three open-source web applications: Pet Clinic [44], Cloud
Store |20], and OpenMRS [41]. Table [1| shows the detailed
information of these three applications. All three applica-
tions use Hibernate as the underlying framework to access
database, and use MySQL as the DBMS. We use Tomcat as
our web server, and use Ehcache as our underlying caching
framework. Pet Clinic, which is developed by Spring [52],
aims to provide a simple yet realistic design of a web ap-
plication. Cloud Store is a web-based e-commerce appli-
cation, which is developed mainly for performance testing
and benchmarking. Cloud Store follows the TPC-W perfor-
mance benchmark standard [1]. Finally, OpenMRS is large-
scale open-source medical record application that is used
worldwide. OpenMRS supports both web-based interfaces
and RESTFul services.

We use one machine each for the DBMS (8G RAM, Xeon
2.67GHz CPU), web server (16G RAM, Intel i5 2.3GHz),
and JMeter load driver (12G RAM, Intel Quad 2.67GHz).
The three machines are all connected on the same network.
We use performance test suites to exercise these applications
when evaluating CacheOptimizer. Performance test suites
alm to mimic the real-life usage of the application and en-
sure that all of the common features are covered during the
test [4]. Thus, for our evaluation, performance test suites are
a more appropriate and logical choice over using functional
tests. We use developer written tests for Pet Clinic [23], and
work with BlackBerry developers on creating the test cases
for the other applications. For Cloud Store, we create test
cases to cover searching, browsing, adding items to shopping
carts, and checking out. For OpenMRS, we use its REST-
Ful APIs to create test cases that are composed of searching
(by patient, concept, encounter, and observation etc), and
editing/adding/retrieving patient information. We also add
randomness to our test cases to better simulate real-world
workloads. For example, we add randomness to ensure that
some customers may checkout, and some may not. We use,
for our performance tests, the MySQL backup files that are
provided by Cloud Store and OpenMRS developers. The
backup file for Cloud Store contains data for over 5K pa-
tients and 500K observations. The backup file for Cloud
Store contains about 300K customer data and 10K items.

RQ1: What is the performance improvement after
using CacheOptimizer?

Motivation. In this RQ, we want to examine how well
the performance of the studied database-centric web appli-

Table 1: Statistics of the studied applications.

Total lines Number of

of code Java files

Pet Clinic 3.8K 51
Cloud Store 35K 193
OpenMRS 3.8M 1,890

Table 2: Performance improvement (throughput)
against NoCache after applying different cache con-
figurations.

Throughput
NoCach,e[ CacheOptimizer CacheAll DefaultCache

Pet Clinic 98.7 125.1 (+27%)  108.4 (+10%) —
Cloud Store 110.7 | 263.4 (+138%) 249.3 (+125%) 114.7 (+4%)
OpenMRS 21.3 30.8 (+45%)  25.5 (+20%) 27.7 (+30%)

cations can be improved when using CacheOptimizer to con-
figure the caching framework.

Approach. We run the three studied applications using the
performance test suites under four different sets of cache con-
figurations: 1) without any cache configuration (NoCache),
2) with default cache configuration (DefaultCache, cache
configurations that are already in the code, which indicates
what developers think should be cached), 3) with enabling
all possible caches (CacheAll), and 4) with configurations
that are added by CacheOptimizer. We compare the perfor-
mance of the applications when configured using these four
different sets of cache configurations. We work with perfor-
mance testing experts from BlackBerry to ensure that our
evaluation steps are appropriate, accurate, and realistic. We
use throughput to measure the performance. The through-
put is measured by calculating the number of requests per
second throughout the performance test. A higher through-
put shows the effectiveness of the cache configuration, as
more requests can be processed within the same period of
time.

There may exist many possible locations to place the calls
to the cache configuration APIs. Hence, configuring the
caching framework may require extensive and scattered code
changes, which can be a challenging and time-consuming
task for developers. Therefore, to study the effectiveness of
CacheOptimizer and how it helps developers, we also com-
pare the number of cache configurations that are added by
CacheOptimizer relative to the total number of all possible
caching configurations that could be added, and the number
of cache configurations that exist in DefaultCache.

Results. CacheOptimizer outperforms DefaultCache
and CacheAll in terms of application performance
improvement. Table [2| shows the performance improve-
ment of the applications under four sets of configurations.
We use NoCache as a baseline, and calculate the throughput
improvement after applying CacheOptimizer, CacheAll, and
DefaultCache. The default cache configuration of Pet Clinic
does not enable any cache. Therefore, we only show the
performance improvement of DefaultCache for Cloud Store
and OpenMRS. Using CacheOptimizer, we see a through-
put improvement of 27%, 138% and 45% for Pet Clinic,
Cloud Store and OpenMRS, respectively. The throughput
improvement of applying CacheOptimizer is always higher
than that of DefaultCache and CacheAll for all the stud-
ied applications. Figure [5| further shows the cumulative
throughput overtime. We can see that for the three stud-
ied applications, the throughput is about the same at the
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Table 3: Total number of possible places to add
cache in the code, and the number of location that
are enabled by CacheOptimizer and that exist in the
DefaultCache.

Object Cache
Total CacheOptimizer DefaultCache

Query Cache
Total CacheOptimizer DefaultCache

Pet Clinic 11 6 (55%) 0 4 3 (75%) 0
Cloud Store 33 2 (6%) 10 (30%) | 24 9 (38%) 1 (4%)
OpenMRS 112 16 (14%) 7(6%)| 229 2 (0.9%) 0

beginning regardless of us adding cache or not. However,
as more requests are received, the benefit of caching be-
comes more significant. The reason may be that initially
when the test starts, the data is not present in the cache.
CacheOptimizer is able to discover the more temporal local-
ities (reuse of data) in the workload and help developers con-
figure the application-level cache more optimally. Therefore,
as more requests are processed, frequently accessed data is
then cached, which significantly reduces the overhead of fu-
ture accesses. We see a trend that the longer the test runs,
the more benefit we get from adding cache configuration
code using CacheOptimizer. We also observe that the per-
formance of Cloud Store with DefaultCache is close to the
performance with no cache. Such an observation shows in
some instances developers do not have a good knowledge of
optimizing cache configuration in their own application.
CacheOptimizer enables a small number of caches
to improve performance. CacheOptimizer can help de-
velopers change cache configurations quickly without man-
ually investigating a large number of possible cache loca-
tions. Table |3| shows the total number of possible locations
to place calls to object and query cache APIs in the studied
applications. We also show the number of CacheOptimizer
enabled caches, and the number of DefaultCache enabled
caches. CacheOptimizer suggests adding object cache con-
figuration APIs to a fraction (6-55%) of the total number
of possible cache locations. In OpenMRS and Cloud Store,
where there are more Hibernate queries, CacheOptimizer is
able to improve performance by enabling 0.9% and 38% of
all the possible caches, respectively. For the object cache
of Cloud Store, CacheOptimizer even suggests enabling a
smaller number of caches than DefaultCache. For large ap-
plications like OpenMRS with 112 possible object caches
and 229 possible query caches, manually identifying the op-
timized cache configuration is time-consuming and may not
even be possible.

(b) Cloud Store.
Figure 5: Number of handled requests overtime

(c) OpenMRS.
(cumulative).

Discussion. In our evaluation of CacheOptimizer, we ob-
serve a larger improvement in Cloud Store. After a manual
investigation, we find that CacheOptimizer caches the query
results that contain large binary data, e.g., pictures. Since
the sizes of pictures are often larger, caching them signifi-
cantly reduces the network transfer time, and thus results
in a large performance improvement. We see less improve-
ment when using DefaultCache, because most database ac-
cess calls are done through queries (like workflow 3 in Fig-
ure 1)), while the default cache configurations of Cloud Store
are mostly for object cache (Table [3). Thus, enabling only
object caches does not help improve performance. In Open-
MRS, both CacheOptimizer and DefaultCache cache some
database entity objects that are not often changed. How-
ever, CacheOptimizer is able to identify more object caches
and queries that should be cached to further improve per-
formance. We also see that the overhead of CacheAll causes
OpenMRS to run slower when compared to DefaultCache.
In Pet Clinic, we find that caching the owner information sig-
nificantly improves the performance of searches. Moreover,
since the number of vets in the clinic is often unchanged,
caching the vet information also speeds up the application.

Adding cache configuration code, as suggested by
CacheOptimizer , improves throughput by 27-138%,
which is higher than using the default cache configura-
tion and enabling all possible caches. The sub-optimal
performance of DefaultCache shows that developers have
limited knowledge of adding cache configuration.

RQ2: What is the gain of CacheOptimizer when
considering the cost of such caches?

Motivation. In the previous RQ, we see that CacheOp-
timizer helps improve application throughput significantly.
However, caching may also bring some memory overhead
to the application, since we need to store cached objects in
the memory. As a result, in this RQ, we want to evaluate
CacheOptimizer-suggested cache configuration when consid-
ering both the cost (increase in memory usage) and the ben-
efit (improvement in throughput).

Approach. In order to evaluate CacheOptimizer when con-
sidering both benefit and cost, we define the gain of applying
a configuration as:

Gain(c) = Benefit(c) — Cost(c), (1)



where ¢ is the cache configuration, Gain(c) is the gain of
applying ¢, while Benefit(c) and Cost(c) measure the ben-
efit and the cost, respectively, of applying c. In our case
study, we measure the throughput improvement in order to
quantify the benefit of caching, and we measure the memory
overhead in order to quantify the cost of caching. We use the
throughput and memory usage when no cache is added to
the application as a baseline. Thus, Benefit(c) and Cost(c)
are defined as follows:

Benefit(c) = TP(c) — TP(no cache), (2)

Cost(c) = MemUsage(c) — MemU sage(no cache), (3)

where T'P(c) is the average number of processed requests
per second with cache configuration ¢, and MemUsage(c) is
the average memory usage with cache configuration c.

Since the throughput improvement and the memory over-
head are not in the same scale, the calculated gain by Equa-
tion [[|may be biased. Therefore, we linearly transform both
Benefit(c) and Cost(c) into the same scale by applying min-
max normalization, which is defined as follows:

o (mmaac - mmzn) '

where z and z’ are the values of the metric before and af-
ter normalization, respectively; while Tymqe. and xp., are
the maximum and the minimum values of the metric, re-
spectively. We note that if one wants to compare the gain
of applying multiple configurations, the maximum and the
minimum values of the metric are calculated by considering
all the values of the metrics across the different configura-
tions, including having no cache. For example, if one would
like to compare the gain of applying CacheOptimizer and
CacheAll, throughputmq, is the maximum throughput of
applying CacheOptimizer, CacheAll, and NoCache.

To evaluate CacheOptimizer, in this RQ, we compare the
gain of applying CacheOptimizer, CacheAll, and Default-
Cache against NoCache. The larger the gain, the better the
cache configuration. If the gain is larger than 0, the cache
configuration is better than using NoCache. In order to un-
derstand the gain of leveraging cache configuration through-
out the performance tests, we split each performance test
into different periods. Since a performance test with differ-
ent cache configurations runs for a different length of time
(see Figure [5]), we split each test by each thousand of com-
pleted requests. For each period, we calculate the gain of
applying CacheOptimizer, CacheAll, and DefaultCache.

We study whether there is a statistically significant differ-

ence in gain, between applying CacheOptimizer and CacheAll,

and between applying CacheOptimizer and DefaultCache.
To do this we use the Mann-Whitney U test [39] on the
gains, as the gains may be highly skewed. Since the Mann-
Whitney U test is a non-parametric test, it does not have
any assumptions on the distribution. A p-value smaller than
0.05 indicates that the difference is statistically significant.
We also calculate the effect sizes in order to quantify the
differences in gain between applying CacheOptimizer and
CacheAll, and between applying CacheOptimizer and De-
faultCache. Unlike the Mann-Whitney U test, which only
tells us whether the difference between the two distributions
is statistically significant, the effect size quantifies the differ-
ence between the two distributions. Since reporting only the
statistical significance may lead to erroneous results (i.e., if

Table 4: Comparing the gain of the application un-
der three different configurations: CacheOptimizer,
CacheAll, and DefaultCache

gain( CacheOptimizer) > gain( CacheOptimizer) >
gain(CacheAll)? gain(DefaultCache)?
p-value Cliff’s d p-value Cliff’'s d
Pet, Clinic << 0.001 0.81 (large) — —
Cloud Store < 0.01 0.32 (small) << 0.001 0.61 (large)
OpenMRS << 0.001 0.95 (large) << 0.001 0.95 (large)

the sample size is very large, the p-value are likely to be
small even if the difference is trivial) [35], we use Cliff’s d
to quantify the effect size [19]. Cliff’s d is a non-parametric
effect size measure, which does not have any assumption of
the underlying distribution. Cliff’s d is defined as:

Cliffs d = 72> 20) = #(@: < ;) (5)

m*xn

where # is defined the number of times, and the two distri-
butions are of the size m and n with items xz; and x;, re-
spectively. We use the following thresholds for Cliff’s d [19]:

trivial ~ if Cliff’s d < 0.147
small if 0.147 < Cliff’s d < 0.33
medium if 0.33 < Cliff’s d < 0.474
large if 0.474 < Cliff’s d

effect size =

Results. CacheOptimizer outperforms DefaultCache
and CacheAll when considering the cost of cache.
Table [ shows the result of our Mann-Whitney U test and
Cliff’s d value when comparing the gain of applying CacheOp-
timizer with that of CacheAll and DefaultCache. We find
that in all three studied applications, the gain of CacheOpti-
mizer is better than the gain of CacheAll and DefaultCache
(statistically significant). We also find that the effect sizes of
comparing CacheOptimizer with CacheAll on gain are large
for Pet Clinic (0.81) and OpenMRS (0.95). The only excep-
tion is Cloud Store, where the Cliff’s d value indicates that
the effect of gain is small (0.32) when comparing CacheOp-
timizer with CacheAll. On the other hand, when compared
to DefaultCache, CacheOptimizer has a large effect size for
both Cloud Store and OpenMRS.

Discussion. We investigate the memory overhead of ap-
plying CacheOptimizer, CacheAll, and DefaultCache. We
use the Mann-Whitney U test and measure effect sizes us-
ing Cliff’s d to compare the memory usage between applying
CacheOptimizer and the memory usage of having no cache,
CacheAll, and DefaultCache, respectively. The memory us-
age of applying CacheOptimizer and having no cache is
statistically indistinguishable for Pet Clinic and OpenMRS;
while for Cloud Store, applying CacheOptimizer has statisti-
cally significantly more memory usage than having no cache
with a large effect size (0.78). This may explain why we see
larger throughput improvement in Cloud Store. For Open-
MRS, the memory usage of applying CacheOptimizer and
DefaultCacheis statistically indistinguishable. Finally, when
comparing CacheOptimizer with CacheAll, we find that for
Pet Clinic and Cloud Store, the difference in memory us-
age is statistically indistinguishable; while for OpenMRS,
CacheOptimizer uses statistically significantly less memory
than CacheAll (p-value < 0.01) with an effect size of 0.61
(large effect). Nevertheless, after considering both the im-
provement and cost, CacheOptimizer out-performs all other
cache configurations.



When considering both the benefit (throughput improve-
ment) and cost (memory overhead), the gain of applying
CacheOptimizer is statistically significantly higher than
CacheAll and DefaultCache.

6. THREATS TO VALIDITY

External Validity. We only evaluated CacheOptimizer on
three applications, so our findings may not generalize to
other applications. We choose the studied applications with
various sizes across different domains to improve the gen-
eralizability. However, evaluating CacheOptimizer on other
applications would further show the generalizability of our
approach. We implement CacheOptimizer specifically for
Hibernate-based web applications. However, the approach
in CacheOptimizer should be applicable to applications us-
ing different object-relational mapping frameworks or other
database abstraction technologies. For example, our ap-
proach for recovering the database accesses from logs may
also be used by non-Hibernate based applications. With mi-
nor modifications (e.g., changes are needed to the definitions
of the tokens and transition functions in the coloured Petri
net), CacheOptimizer can be leveraged to improve cache
configurations of other applications.

Construct Validity. The performance benefits of caching
highly depends on the workloads. Thus, we use performance
tests to evaluate CacheOptimizer. It is possible that the
workload from the performance tests may not be represen-
tative enough for field workload. However, CacheOptimizer
does not depend on a particular workload, nor do we have
any assumption on the workload when conducting our ex-
periments. CacheOptimizer is able to analyze any given
workload and find the optimal cache configuration for dif-
ferent workloads. If the workload changes greatly and the
cache configuration is no longer optimal, CacheOptimizer
can save developers’ time and effort by automatically find-
ing a new optimal cache configuration. For example, devel-
opers can feed their field workloads on a weekly or monthly
basis, and CacheOptimizer would help developers optimize
the configuration of their caching frameworks. To maximize
the benefit of caching, our approach aims to “overfit” the
cache configurations to a particular workload. Thus, simi-
lar to other caching algorithms or techniques, our approach
will not work if the workload does not contain any repetitive
reads from the DBMS.

Our approach for recovering the database access.
Prior research leverages control flow graphs to recover the
executed code paths using logs [61]. We do not leverage con-
trol flow graphs to recover the database accesses from web
access logs for two reasons. First, as a basic design principal
of RESTFul web services, typically one web-request-handing
method maps to one or very few database accesses [324[49].
Second, although leveraging control flows may give us richer
information about each request, it is impossible to know
which branch would be executed based on web access logs.
Heuristics may be used to calculate the possibility of tak-
ing different code paths. However, placing the cache incor-
rectly can even cause performance degradation. Thus, to
be conservative when enabling caching and to ensure that
CacheOptimizer would always help improve performance,

we consider all possible database access calls. Our over-
estimation ensures that CacheOptimizer would not cache
data that has a high likelihood of being frequently modified,
so the CacheOptimizer added cache configurations should
not negatively impact on the performance. Future research
should consider the use of control flow information for opti-
mizing the cache configurations.

Cache concurrency level. There are different cache con-
currency levels, such as read-only and read /write. In this pa-
per we only consider the default level, which is read/write.
Read/write cache concurrency strategy is a safer choice if
the application needs to update cached data. However, con-
sidering other cache concurrency levels may further improve
performance. For example, read-only caches may perform
better than read/write cache if the cached data is never
changed. Future research should to add cache concurrency
level information to CacheOptimizer when trying to opti-
mize cache configuration.

Distributed cache environment. Cache scheduling is
a challenging problem in a distributed environment due to
cache concurrency management. Most caching frameworks
provide different algorithms or mechanisms to handle such
issues. Since the goal of CacheOptimizer is to instruct these
caching frameworks on what to cache, we rely on the un-
derlying caching frameworks for cache concurrency manage-
ment. However, the benefit of using CacheOptimizer may
not be as pronounced in a distributed environment.

7. CONCLUSION

Modern large-scale database-centric web applications of-
ten leverage different application-level caching frameworks,
such as Ehcache and Memcached, to improve performance.
However, these caching frameworks are different from tra-
ditional lower-level caching frameworks, because developers
need to instruct these application-level caching frameworks
about what to cache. Otherwise these caching frameworks
are not able to provide any benefit. In this paper, we propose
CacheOptimizer, an automated lightweight approach that
determines what should be cached in order to utilize such
application-level caching frameworks for Hibernate-based web
applications. CacheOptimizer combines static analysis of
source code and logs to recover the database accesses, and
uses a coloured Petri net to model the most effective caching
configuration for a workload. Finally, CacheOptimizer auto-
matically updates the code with the appropriate cache con-
figuration code. We evaluate CacheOptimizer on three open
source applications (Pet Clinic, Cloud Store, and Open-
MRS). We find that CacheOptimizer improves the through-
put of the entire application by 27-138% (compared to De-
faultCacheand CacheAll ), and the increased memory usage
is smaller than the applications’ default cache configuration
and turning on all caches. The sub-optimal performance of
the default cache configurations highlights the need for au-
tomated techniques to assist developers in optimizing the
cache configuration of database-centric applications.
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