
Topic-based Software Defect Explanation

Tse-Hsun Chena, Weiyi Shangb, Meiyappan Nagappanc, Ahmed E.
Hassana, Stephen W. Thomasa

aSoftware Analysis and Intelligence Lab (SAIL)
School of Computing, Queen’s University, Canada

bConcordia University, Canada
cRochester Institute of Technology, USA

Abstract

Researchers continue to propose metrics using measurable aspects of software
systems to understand software quality. However, these metrics largely ignore
the functionality, i.e., the conceptual concerns, of software systems. Such
concerns are the technical concepts that reflect the system’s business logic.
For instance, while lines of code may be a good general measure for defects, a
large file responsible for simple I/O tasks is likely to have fewer defects than a
small file responsible for complicated compiler implementation details. In this
paper, we study the effect of concerns on software quality. We use a statistical
topic modeling approach to approximate software concerns as topics (related
words in source code). We propose various metrics using these topics to help
explain the file defect-proneness. Case studies on multiple versions of Firefox,
Eclipse, Mylyn, and NetBeans show that (i) some topics are more defect-
prone than others; (ii) defect-prone topics tend to remain so over time; (iii)
our topic-based metrics provide additional explanatory power for software
quality over existing structural and historical metrics; and (iv) our topic-
based cohesion metric outperforms state-of-the-art topic-based cohesion and
coupling metrics in terms of defect explanatory power, while being simpler
to implement and more intuitive to interpret.

Key words:
code quality, topic modeling, LDA, metrics, cohesion, coupling

Email addresses: tschen@cs.queensu.ca (Tse-Hsun Chen),
shang@encs.concordia.ca (Weiyi Shang), mei@se.rit.edu (Meiyappan Nagappan),
ahmed@cs.queensu.ca (Ahmed E. Hassan), sthomas@cs.queensu.ca (Stephen W.
Thomas)

Preprint submitted to Journal of Systems and Software April 26, 2016

1. Introduction

The cost of fixing software defects can be prohibitively high [69]. As a
result, researchers have tried to uncover the possible reasons for software
defects using different classes of software metrics, such as product metrics,
process metrics, and project metrics [37, 44]. Indeed, such metrics have
shown some success in explaining (i.e., correlation between the metrics and
defects) the defect-proneness of software entities (e.g., methods, classes, files,
or modules) [37]. However, these types of metrics do not take into account the
actual conceptual concerns of a software system—the main technical concepts
and business logic embedded within the files [49]. For example, an often-used
metric, lines of code, may not always be a good general measure for defects:
the largest file in one of our studied systems, Mylyn [3], for example, has
2,771 lines of code but no defects, while a much smaller file, with 23 lines of
code, does contain a defect.

Recent studies propose a new class of metrics based on conceptual con-
cerns [48, 49, 55, 60]. These studies approximate concerns using statistical
topic models, such as latent Dirichlet allocation (LDA) [13]. Statistical topic
models discover topics (i.e., sets of related words) within the source code files,
which researchers use as surrogates for conceptual concerns. A prior study
by Baldi et al. [7] shows that the topics that are generated by topic models
have a strong agreement with that of other approaches like aspect mining.
Recent studies [48, 49, 55, 60] on applying topic models on software systems
provide initial evidence that topics in software systems are associated with
the defect-proneness of source code files, opening up new possibilities for
explaining why some files are more defect-prone than others.

In this paper, we build upon prior studies on software quality by consider-
ing the topics in source code files. We propose a set of topic-based metrics to
study software quality: number of topics (NT), number of defect-prone topics
(NDT), topic membership (TM), and defect-prone topic membership (DTM).
We study how our proposed topic-based metrics can help better explain soft-
ware defects. We also compare one of our metrics (NT), which measures
cohesion in a software system using topics, with other state-of-the-art topic-
based cohesion and coupling metrics. To the best of our knowledge, our
study provides the first detailed comparison of the defect explanatory power
of state-of-the-art topic-based cohesion and coupling metrics. We perform a

2

detailed case study on multiple versions of four real-world software systems,
with a focus on the following research questions:

RQ1: Are some topics more defect-prone than others?
We find that some topics, such as those related to new features and the core
functionality of a system, may have a much higher cumulative defect density
(CDDT) than others (average skewness in CDDT is 7.25, where a skewness of
1 is already considered highly skewed). We also find that defect-prone topics
are likely to remain so over time, indicating that prior defect-proneness of a
topic can be used to explain the future defect-proneness of topics and their
associated files (Spearman correlation is 0.44–0.67).

RQ2: Can our proposed topic-based metrics help explain why some
files are more defect-prone than others?
We find that our proposed topic-based metrics provide additional explana-
tory power (4 – 314% improvement) about the defect-proneness of files over
existing state-of-the-art product and process metrics such as lines of code,
code churn, and number of pre-release defects.

RQ3: How do our topic-based metrics compare with state-of-the-
art topic-based cohesion and coupling metrics?
We find that our metric outperforms state-of-the-art topic-based cohesion
and coupling metrics. Compared to state-of-the-art, our metric gives a larger
improvement in defect explanatory power (8 – 55%) when using lines of code
as a baseline metric. Thus, practitioners may benefit from including our
metrics when analyzing software quality using cohesion and coupling.

This work extends our previous work [22]. First, we extend our case
studies to include additional systems (NetBeans 4.0, 5.0, and 5.5.1). Second,
we compare one of our topic-based metrics, which measures file cohesion,
with state-of-the-art topic-based cohesion and coupling metrics (Section 5).
We conduct a detailed comparison on how topic-based cohesion and coupling
metrics help explain software defects. Finally, we study the sensitivity of the
parameters that we use in our approach (Section 6). We have also made
our datasets and results publicly available [21] and encourage researchers to
replicate and verify our study.

The rest of this paper is organized as follows. Section 2 describes our
approach to discover topics in source code files, and we define the topic-based
metrics that we use to answer our research questions. Section 3 introduces
the studied systems and outlines the design of our case studies. Section 4

3

and 5 present the result of our research questions. Section 6 discusses the
parameter sensitivity of our approach. Section 7 talks about the potential
threats to the validity of our findings, and Section 8 describes related work.
Finally, Section 9 concludes the paper.

2. Proposed Approach

In this section, we outline our approach of using topics to explain defects.
First, we briefly introduce topic modeling and describe how it can be applied
to source code files to approximate conceptual concerns (i.e., main business
logic). Next, we motivate and describe our new topic-based metrics.

2.1. Topic Modeling

Our goal is to determine which concerns are in each source code file. This
information is often not available, since developers do not often manually
categorize each file, and a file may contain several concerns [55]. In this
paper, we approximate concerns using statistical topics, following the work
of previous research [7, 55, 77]. In particular, we extract the linguistic data
from each source code file, i.e., the identifier names and comments, which
helps determine the functionality of a file [45]. We then treat the linguistic
data as a corpus of documents, which we use as a basis for topic modeling.

In topic modeling, a topic is a collection of frequently co-occurring words
in the corpus. Given a corpus of n documents f1, ..., fn, topic modeling
approaches automatically discover a set Z of topics, Z = {z1, ..., zK}, as well
as the mapping θ between topics and documents (see Figure 1). The number
of topics, K, is an input that controls the granularity of the topics. We
use the notation θij to describe the topic membership value of topic zi in
document fj.

Intuitively, the top words of a topic are semantically related and represent
some real-world concept. For example, in Figure 1a, the three topics repre-
sent the concepts of “operating systems,” “computer networks,” and “user
input,” respectively. The topic membership of a document then describes
which of these concepts are present in that document: document f1 is 30%
about operating systems (i.e., θ11 = 0.3) and 70% about computer network
(i.e., θ21 = 0.7).

More formally, each topic is defined by a probability distribution over
all of the unique words in the corpus. Given two Dirichlet priors (used for
computing Dirichlet distributions), α and β, a topic model will generate a

4

Top words

z1 os, cpu, memory, kernel
z2 network, speed, bandwidth
z3 button click mouse right

(a) Topics (Z).

z1 z2 z3

f1 0.3 0.7 0.0
f2 0.0 0.9 0.1
f3 0.5 0.0 0.5
f4 0.0 0.0 1.0

(b) Topic memberships (θ).

Figure 1: An example result of topic models, where three topics are discovered from four
files. (a) The three discovered topics (z1, z2, z3) are defined by their top (i.e., highest
probable) words. (b) The four original source code files (f1, f2, f3, f4) are represented by
topic membership vectors (e.g., {z1 = 0.3, z2 = 0.7, z3 = 0.0} for f1).

5

Preprocess

Preprocess

Preprocess

LDA

V1

V2

V3

Z

θ

Metric
Calculation

Static and
Historical

Topic Metrics

Topic Memberships

Figure 2: The process of calculating topic-based metrics. After preprocessing the source
code, we run LDA on all versions of the source code files together, so we can study topics
across versions. Using the topics and topic memberships that LDA returns, we calculate
the topic-based metrics (see Section 2.2).

topic distribution, called θj, for each file fj based on α, and generate a word
distribution, called φi, for each topic zi based on β. Choosing the right
parameter values for K, α, and β is more of an art than a science, and
depends on the desired granularity of the topics [73, 81]. Interested readers
may refer to the original paper on LDA for the mathematical details [13].

2.2. Proposed Topic-based Metrics

To help explain the defect-proneness of source code files, we propose two
categories of topic-based metrics: static and historical. Static topic metrics
use a single snapshot of the software system, while historical metrics use the
defect history of topics.

In the formulation of our topic-based metrics, we also consider traditional
software metrics:

• LOC(fj) The lines of code of file fj.

• PRE(fj) The number of pre-release defects that file fj has. Pre-release
defects are the defects found up to six months before the release of a
given version.

• POST(fj) The number of post-release defects that file fj has. Post-
release defects are the defects found up to six months after the release
of a given version.

Before we define our topic-based metrics, we also summarize some of the
above-mentioned LDA notations that we use for describing our metrics.

6

• zi The topic i.

• Z The set of all topics.

• θij The topic membership of topic zi in source code file fj.

Using these software metrics and the results of topic modeling, we propose
the following topic-based metrics.

2.2.1. Cumulative Defect Density of a Topic

We define the cumulative defect density of a topic (CDDT), which we use
to quantify the defect-proneness of topics. The defect density of a source
code file is a well-known software metric, defined as the ratio of the number
of defects in the file to its size. Using this ratio as our motivation, we define
the cumulative pre-release defect density (CDDTPRE) of a topic zi as

CDDTPRE(zi) =

n∑
j=1

θij ∗
(

PRE(fj)

LOC(fj)

)
, (1)

where n is the total number of source code files and θij is the topic mem-
bership of topic zi in source code file fj. Similarly, we define cumulative
post-release defect density (CDDTPOST) of a topic zi as

CDDTPOST(zi) =

n∑
j=1

θij ∗
(

POST(fj)

LOC(fj)

)
. (2)

Since we only know the number of defects in each file, and we do not know
the number of defects in each topic, we approximate the quality of a topic
using CDDT. CDDT computes the topics defect density as the sum of topic
defect density in each file. CDDT assumes that the ratio of the defect density
in a file (and not the total number of defects) should be proportional to the
topic membership in each individual file (and the same topic in different files
may have different topic defect density values).

2.2.2. Static Topic-based Metrics

We propose static topic-based metrics to capture the number of topics in
a file, and the topic membership of each file. We define the Number of Topics
(NT) of a file fj as

7

NT(fj) =
Z∑
i=1

I(θij ≥ δ), (3)

where I is the indicator function that returns 1 if its argument is true, and
0 otherwise. δ is a cut-off threshold that determines if a topic plays an
important role in a given file. δ is used only for removing topics that can be
considered noise (e.g., some topics may have a membership value of 0.000001),
as suggested in a prior study [81]. Thus, this threshold is not sensitive to the
K (total number of topics) we choose for a particular system (see Section 6 for
the effect of δ on the result). Note that if we choose K to be extremely small
(e.g., 2 topics), δ may not be able to remove noise topics. However, choosing
an extremely small K is not recommended as the information (topics) cannot
be separated precisely [23, 81] (Section 6 provides the results of our parameter
sensitivity analysis, which shows that using an extremely small K is not
recommended). The NT metric measures the level of cohesion in a file: files
with a large number of topics may be poorly designed or implemented, and
thus are more likely to have defects [49].

The next static topic-based metric, Topic Membership (TM) of a file fj,
is defined as the topic membership values returned by the topic modeling
approach:

TM(fj) = θj. (4)

The intuition behind this metric is that we assume different topics have
different effects on the defect-proneness of a file. Some topics (e.g., a compiler-
related topic) may increase the defect-proneness of a file, but other topics
(e.g., an I/O-related topic) may actually decrease the defect-proneness. By
using all the topic membership values, the TM metric captures the complete
behavior of a file. In a prior work, Nguyen et al. [60] propose a similar metric
using topic membership and LOC. However, they only consider five topics.
Instead of considering an arbitrary and small number (five) of topics, we con-
sider much more topics for TM (500), which may be more likely to capture
finer-grained information. We also do not consider LOC in TM in order to
eliminate the confounding effect LOC may cause in our analysis. Since TM
is a vector of topic membership values, to avoid the problem of overfitting,
we apply variable selection approaches in Section 4 when performing our
analysis.

8

2.2.3. Historical Topic-based Metrics

We extend the static topic-based metric by considering the defect history
of each topic. In order to calculate the number of defect-prone topics in a
file, we define a defect-prone topic as a topic that has a higher CDDT than
the average CDDT of all topics.

The set of defect-prone topics, B, is defined by

B = {zi ∈ Z s.t. CDDTPRE(zi) > µ(CDDTPRE(Z))}, (5)

where µ(CDDTPRE(Z)) is the mean of the CDDTPRE of all topics. CDDTPOST

usually have a larger impact on users, but the information is unknown until
the system is released. Thus, we use CDDTPRE to infer the quality of the
topics (i.e., B) after the system is released.

We define the Number of Defect-prone Topics (NDT) in file fj by

NDT(fj) =
K∑
i=1

I((zi ∈ B) ∧ ((θij) ≥ δ)). (6)

We define the Defect-prone Topic Membership (DTM) metric of file fj as
the topic memberships of defect-prone topics:

DTM(fj) = θij for all i where zi ∈ B. (7)

DTM is the topic memberships of all topics that are defined as defect-prone
topics in Equestion 5 (i.e., topics in B). Similar to TM, DTM is a vector of
topic memberships, so we also apply variable selection approaches in Section 4
when doing analysis.

3. Case Study Design

In this section, we introduce the systems that we use for our case study
and we describe our analysis process, depicted in Figure 2.

3.1. Studied Systems

We focus on four large, real-world systems: Mylyn [3], Eclipse [1], Fire-
fox [2], and NetBeans [4] (Table 1). For each system, we look at three
consecutive versions (versions 1.0, 2.0, and 3.0 of Mylyn, versions 2.0, 2.1,
and 3.0 of Eclipse, versions 1.0, 1.5, and 2.0 of Firefox, and versions 4.0,
5.0, and 5.5.1 of NetBeans). Eclipse is a popular IDE, which has extensive

9

Table 1: Statistics of the studied systems. The table shows the total lines of code, num-
ber of files, number of pre-release defects, number of post-release defects, and the used
programming language in the systems.

Lines of No. of Pre. Post. Prog.
code (K) files defects defects language

Mylyn 1.0 127 833 1,047 712 Java
Mylyn 2.0 136 923 2,015 1,012 Java
Mylyn 3.0 165 1,115 2,045 480 Java

Firefox 1.0 2,841 5,523 638 454 C/C++
Firefox 1.5 3,111 5,879 716 946 C/C++
Firefox 2.0 3,205 5,942 1,134 453 C/C++

Eclipse 2.0 797 6,716 7,634 1,691 Java
Eclipse 2.1 987 7,799 4,975 1,182 Java
Eclipse 3.0 1,305 10,496 7,421 2,679 Java

NetBeans 4.0 915 4,253 630 311 Java
NetBeans 5.0 1,957 8,849 1,339 217 Java
NetBeans 5.5.1 3,302 16,383 883 795 Java

10

plugin architecture. Mylyn is a popular plugin for Eclipse that implements a
task management system. Firefox is a well-known open-source web browser
that is used by millions of users. Finally, NetBeans is a popular IDE that is
implemented in Java.

3.2. Data Preprocessing

We first collect the source code files from each version of each studied
system, then we preprocess the files using the preprocessing steps proposed
by Kuhn et al. [45]. Namely, we first extract comments and identifier names
from each file. Next, we split the identifier names according to common
naming conventions, such as camel case and underscores. Finally, we apply
stemming and remove common English-language stop words [76].

3.3. Topic Modeling

We use a popular topic modeling approach called latent Dirichlet alloca-
tion (LDA) [13]. We note other topic models can be used in our approach.
We choose LDA because it is a generative statistical model, which helps alle-
viate model overfitting compared to other topic models such as Probabilistic
LSI [40]. In addition, LDA has been shown to be effective for a variety of
software engineering purposes, including analyzing source code evolution [78],
calculating source code metrics [31], and recovering traceability links between
source code and requirement documents [6]. Finally, LDA is fast and can eas-
ily scale to millions of documents [39].

We apply LDA to all versions of the preprocessed files of a system at the
same time, an approach proposed by Linstead et al. [48]. For this study,
we use K=500 topics for all studied systems. Lukins et al. [50] found that
500 topics is a good number for Eclipse and Mozilla, and we choose the
same number for Mylyn and NetBeans. A prior study by Wallach et al. [81]
has shown that choosing a larger K does not significantly affect the quality
of the generated topics. The additional topics should be rarely used when
LDA is assigning tokens to topics, and thus these topics may be considered
noise [81]. On the other hand, choosing a small K may be more problematic,
since the information (i.e., topics) cannot be separated precisely [81]. As a
result, we chose to use a larger K (500), and the K was also suggested by a
prior study [81]. The same intuition applies to running LDA on all versions
of the same system. If a new feature only appears in V2 and not V1, then
one of the topics (e.g., T1) may be present in V2. However, T1 will have a
near-zero topic membership in V1, which should not affect the overall results.

11

Moreover, our metrics will remove the topics that are noise using a threshold
or statistical approaches, so the remaining number of topics is much less. In
fact, in the paper we find that the median number of significant topics (i.e.,
NT) is 5 to 9 for our studied systems (Section 4).

We use MALLET [56] as our LDA implementation. MALLET uses Gibbs
sampling to approximate the joint distribution of topics and words. We run
MALLET with 10,000 sampling iterations (II), and 1,000 of the iterations
are used to automatically optimize α and β. The running time of MALLET
ranges from about 100 minutes to 2,500 minutes depending on the size of
the studied systems (we assign 10GB of memory to MALLET’s Java process
on a machine with 16 Intel 2.80GHz cores). However, the execution time
should not be a problem when using our approach in practice, because we
only need to apply LDA once per version. Studies [81, 82] have shown that
using the optimized hyperparameters (i.e., α and β) will result in more ro-
bust models. In addition, we build the topics using both unigrams (single
words) and bigrams (pairs of adjacent words), since bigrams help improve
the performance for word assignments in topic modeling [16]. We set the
membership threshold δ in Equations 3 and 6 to 1%. This value prevents
topics with small, insignificant memberships in a file from being counted in
the metrics of a file (i.e., noise removal).

In Section 6, we discuss the sensitivity of the results when these param-
eters and thresholds change.

4. Case Study Results

In this section, we present the results of our case study. We present
each research question along three parts: the used approach to address the
question; our experimental results; and a discussion of the results.

4.1. RQ1: Are some topics more defect-prone than other topics?

In this RQ, we study whether some topics are more defect-prone than
others. Then, we may use topic information to help prioritize software quality
assurance efforts.

4.1.1. Approach

We use Equation 2 to calculate the cumulative post-release defect density
(CDDTPOST) for each topic in each studied software system. We evaluate
this RQ in multiple directions: i) we provide a five-number summary and

12

compute the skewness value of CDDTPOST; ii) and we perform single sam-
ple Kolmogorov-Smirnov non-uniformity tests to statistically determine if
there is a significant difference between the defect densities of the various
topics [29].

4.1.2. Results

We find that most topics in a system are not defect-prone
(average skewness is 7.25). To verify our RQ, we want to see that most
topics have a CDDTPOST of zero or close to zero in the five-number summary,
while some topics have a high CDDTPOST. If the CDDTPOST is uniform, then
topics will not give any extra information when studying software quality
(since all topics would be equally defect-prone).

The average skewness for CDDTPOST is 7.25 among the studied systems,
where a skewness of one is already considered highly skewed. (Table 15
in Appendix A shows the five-number summary (minimum, first quartile,
median, third quartile, maximum), skewness of the CDDTPOST, and skewness
of the top 25% of the topics with the highest CDDTPOST value.) The numbers
indeed indicate that most topics have a low (almost zero) CDDTPOST, and the
values are positively skewed (i.e., only a few topics have a high CDDTPOST).
As an illustration for understanding skewness, Figure 3 show histograms of
randomly-generated distributions that have a skewness of one and seven. As
one can see, when the skewness is larger than one (positively skewed), most
data points are on the left of the histogram, and the distribution is far away
from normal. Thus, a skewness of 7.25 is considered extremely skewed.

We conduct the same study on the top 25% of the most defect-prone
topics (i.e., 125 topics) in case the distribution is skewed by non-defect topics.
Although the skewness is smaller than that of considering all topics, we find
that the skewness is still extremely high (average skewness is 4.34).

Additionally, the number of topics and defect-prone topics per file for each
system is consistent across versions (Table 2). We find that Mylyn has more
defect-prone topics than the other three systems, while Firefox has the least
number of defect-prone topics. Eclipse has the highest average CDDTPRE and
CDDTPOST among the four studied systems. NetBeans, on the other hand,
has a similar median number of topics (NT) and number of defect-prone topics
(NDT) to that of Eclipse. Appendix B shows hexbin plots of NDT vs NT
for visualizing the relationship between NDT and NT. Hexbin plots add the
information of the number of overlapping points on top of scatterplots, which
are more suitable for visualizing the relationship between our metrics.

13

Positive Skewed (Skewness of 1)

Posi%vely	Skewed	(Skewness	of	1)	
Positive Skewed (Skewness of 7)

Posi%vely	Skewed	(Skewness	of	7)	

Figure 3: Histograms of randomly-generated distributions as examples to illustrate skew-
ness. Since the data is randomly generated, the X-axis does not have any meaning, and
the Y-axis shows the data frequency. The skewness values of the distributions are one
(left) and seven (right). Positive skew indicates that the tail on the right side is longer
than the left side.

Table 2: For each studied system, we show the mean CDDTPRE and CDDTPOST across
all topics (µ(CDDTPRE and µ(CDDTPOST)), the number and percentage of defect-prone
topics (NDT), the median number of topics in each file (Med. NT), and the median number
of defect-prone topics in each file (Med NDT).

K µ(DPRE) µ(DPOST) NDT Med. NT Med. NDT

Mylyn 1.0 500 0.02 0.01 139 (27.8%) 9 7
Mylyn 2.0 500 0.04 0.02 137 (27.4%) 9 7
Mylyn 3.0 500 0.03 0.01 128 (25.6%) 9 7

Eclipse 2.0 500 0.22 0.03 122 (24.4%) 9 5
Eclipse 2.1 500 0.11 0.03 124 (24.8%) 9 5
Eclipse 3.0 500 0.17 0.06 136 (27.2%) 10 6

Firefox 1.0 500 0.00 0.00 106 (21.2%) 5 3
Firefox 1.5 500 0.00 0.00 111 (22.2%) 5 3
Firefox 2.0 500 0.00 0.00 82 (16.4%) 5 2

NetBeans 4.0 500 0.01 0.00 106 (21.2%) 9 5
NetBeans 5.0 500 0.01 0.00 103 (20.6%) 9 5
NetBeans 5.5.1 500 0.01 0.01 147 (29.4%) 9 6

14

Finally, we verify the non-uniformity illustrated in our result by apply-
ing the Kolmogorov-Smirnov test on the CDDTPOST of each version of each
studied system. The Kolmogorov-Smirnov test assumes that the variables
are independent. If the p-value of the Kolmogorov-Smirnov test is high, then
the data is more likely to be uniformly distributed. However, we find that the
p-values for all systems are significantly small (< 0.001)1, indicating that the
distribution of CDDTPOST values is indeed not uniform [72]. The same results
hold when we apply Kolmogorov-Smirnov test on the top 25% defect-prone
topics.

4.1.3. Discussion

To better understand why some topics are more defect-prone than oth-
ers, we manually investigate the relevant words and files in these topics. We
discuss the top three most and least defect-prone topics (i.e., according to
CDDTPOST) (Tables 16–192 in Appendix C). Since interpreting topics may
not always be easy and may be subjective, we have provided the complete in-
formation of the generated topics and their CDDT values online for interested
readers to verify [21].

Mylyn. Previously known as Mylar, Mylyn is an Eclipse plugin for task
management. For the manually studied topics, we find that the topics with
the highest defect densities are (i) those dealing with the Eclipse integration
(topic 421); (ii) those that are related to tasks (e.g., development develop-
ment) and the task UI (topics 164 and 168); and (iii) those dealing with the
test suite of Mylyn (topic 400). In contrast, the least defect-prone topics
deal with images and color (topics 405 and 178) and data compression (topic
175).

Eclipse. Among the manually studied topics in Eclipse, two of the most
defect-prone topics (topics 496 and 492) in Eclipse 2.0 are about CVS plug-
ins. We perform a manual analysis and discover that the build notes for
this version indicate that the plug-ins supporting CVS-related functionalities
were first introduced in this version, making it an active area of development.
(In fact, according to Eclipse’s defect repository, 17 defects relating to CVS

1even after a Bonferroni correction
2As explained in Section 3.3, we use both unigrams and bigrams when applying LDA.

In the tables, our bigrams are depicted using two unigrams that are connected using a
underscore.

15

remained unfixed after version 2.0). We perform another manual analysis
and find that a similar story holds for Eclipse 2.1, where the integration
with the Apache Ant build system was actively under development, which
may lead to many defects in topic 131. Another set of defect-prone topics in
Eclipse deals with low-level details such as memory operations and message
passing (topics 462, 169, and 233). The least defect-prone topics in Eclipse
include those about bit-wise operations (topic 116), arrays (topic 182), and
parameter parsing (topic 192).

Firefox. For the manually studied topics, event handing (topic 101), which is
responsible for dispatching events according to network protocol responses,
is one of most defect-prone topics in Firefox 1.0 and 1.5. Another defect-
prone topic in Firefox 2.0 deals with accessing saved states (topic 80). We
perform a manual analysis and discover that the release notes of Firefox 2.0
indicate that new features were introduced, which allow the browser to restore
previous sessions, and that the tabbed browsing functionality is updated.

Scanner Access Now Easy (SANE), an API that enables a scanner/digital
camera application to be created with JavaScript, is one of the least defect-
prone topics in all versions of Firefox (topic 280). Another topic that is
not defect-prone deals with Base64 encoding (topic 359—the characters are
segments of encoded characters), a known character standard.

NetBeans. After performing a manual analysis, we find that the NetBeans
4.0 release contained several new features, such as: project system based on
Apache Ant (topic 219), code refactoring functionality, which uses tree-like
structure to manipulate changes (topic 182), and GUI for controlling de-
bug and build operations (topic 372). These topics appear to be the most
defect-prone topics. Topics related to sending queries (topic 484), code com-
pletion (topic 57), parsing and manipulating Java code (topic 389), and using
NetBeans to develop Mobile Information Device Profile (MIDP) application
(topic 97) are also more defect-prone. From the release notes of NetBeans, we
find a possible reason that these topics are more defect-prone: these features
are relatively new in early versions of NetBeans and so they have more defects
being reported after the release of the software. The least defect-prone top-
ics in NetBeans are about handling XML files (topic 236), handing database
metadata (dmd) and metadata adaptor (topic 455), and providing support
for Java Platform (J2EE) customizer (topic 211). In addition, handling and
storing software properties (topic 14), parser generator that produces syntax
trees (topic 73), and helper classes for creating NetBeans GUI tests (topic

16

39) are less defect-prone.
To ensure that these defect-prone topics are not general topics (i.e., topics

that exist in most files) in the studied systems, we compute the normalized
entropy of the topic membership values of each detect-prone topic across all
files. Information entropy [41] can be used to measure how general a topic is.
If a topic appears only in a few files (i.e., the topic is specific), the entropy
value will be low; otherwise, the entropy value will be high (i.e., the topic
is general). We find that the defect-prone topics have a median entropy of
0.37–0.59, and a third quantile of 0.47–0.69. Thus, most of the defect-prone
topics are not general topics that appear in most of the files in a system.'

&

$

%

We find that most topics in a system are not defect-prone (average
skewness across all 3 versions of all the 4 case study systems is 7.25,
where a skewness of 1 is already considered highly skewed). We man-
ually examine the top three most and least defect-prone topics, and we
find that topics that are related to new features of a system tend to have
a much higher CDDTPOST than others.

Do defect-prone topics remain defect-prone over time?

We find that the defect-prone topics in a previous release tend
to be defect-prone in the later releases, with a correlation of 0.44
– 0.67. Previously, we found that some topics are more defect-prone than
other topics. In order to verify that these topics are consistently defect-prone
over time, we compute the Spearman rank correlation of the CDDTPOST val-
ues among different versions. Spearman rank correlation computes the cor-
relation on the ranks of the topic CDDTPOST, so a high correlation value will
imply that the ranks of the topic defect-proneness are consistent across ver-
sions (i.e., the most defect-prone topics may still be the most defect-prone in
the following version). Moreover, the metrics are highly skewed (as shown in
Table 15, and p-values of Shapiro-Wilk normality test are all less than 0.05,
meaning that the distributions of our metrics are statistically significantly
different from a normal distribution). Therefore, the use of parametric cor-
relation measures such as Pearson correlation, which have assumptions on
the population distribution, are not suitable for our metrics.

Table 3 shows the correlation of CDDTPOST among different versions of
a system. The correlation values are consistently medium to high between
different versions, which indicates that a defect-prone topic is still likely to

17

Table 3: Spearman correlation coefficients of each topic’s CDDTPOST across software ver-
sions. The p-values are all less than 0.001.

Mylyn 1.0 Mylyn 2.0 Mylyn 3.0

Mylyn 1.0 — — —
Mylyn 2.0 0.673 — —
Mylyn 3.0 0.483 0.493 —

Eclipse 2.0 Eclipse 2.1 Eclipse 3.0

Eclipse 2.0 — — —
Eclipse 2.1 0.529 — —
Eclipse 3.0 0.438 0.530 —

Firefox 1.0 Firefox 1.5 Firefox 2.0

Firefox 1.0 — — —
Firefox 1.5 0.536 — —
Firefox 2.0 0.473 0.564 —

NetBeans 4.0 NetBeans 5.0 NetBeans 5.5.1

NetBeans 4.0 — — —
NetBeans 5.0 0.612 — —
NetBeans 5.5.1 0.588 0.563 —

18

Table 4: Spearman correlation coefficients of CDDTPOST using the top 25% most defect-
prone topics. Assuming top 25% of the most defect-prone topics in v1 is V , then cor(v1,
v2) means that the correlation is computed using V in v1 and v2.

Mylyn Eclipse

cor(1.0, 2.0) cor(2.0, 3.0) cor(2.0, 2.1) cor(2.1, 3.0)
0.44 0.46 0.13 0.26

Firefox Netbeans

cor(1.0, 1.5) cor(1.5, 2.0) cor(4.0, 5.0) cor(5.0, 5.5.1)
0.47 0.42 0.20 0.23

be defect-prone in later versions. Similarly, in Tables 16–19, several of the
top defect-prone topics are repeated across three versions of each studied
software system.

To investigate further, we conduct the correlation analysis again on the
top 25% most defect-prone topics (i.e., 125 topics). Because the top 25% most
defect-prone topics may be different across versions, we study the correlation
between most the defect-prone topics in an earlier version with the same set of
topics in a later version. For example, if topics T1, T2, and T3 are identified
as the top 25% most defect-prone topics in V1, then we will compute a rank
correlation of the CDDTPOST of T1, T2, and T3 in V1 with the CDDTPOST of
T1, T2, and T3 in V2. Table 4 shows the result of our correlation analysis.
Although the strength of the correlation decreases compared to using all
topics (excluding topics that have a close-to-zero CDDTPOST), we still see a
moderate correlation (above 0.4) [14, 47] in Mylyn and Firefox. We find that
Eclipse has the lowest correlation value between 2.0 and 2.1, but developers’
focus on minor releases (i.e., 2.1) may be different from major releases (i.e.,
2.0 and 3.0). Thus, we compute cor(2.0, 3.0), and the correlation value is
0.25. Based on our results, we note that, when considering only the top 25%
most defect-prone topics, the defect-proneness of topics still has a moderate
correlation across versions in two of the studied systems, and has a low
correlation across versions in the other two studied systems.

19

'

&

$

%

The correlation of the CDDTPOST of each topic among different versions
of a system is consistently from mid to high (0.44 – 0.67), which implies
that defect-prone topics are likely to be defect-prone in later versions.
This information can help practitioners allocate testing resources more
effectively.

4.2. RQ2: Can our proposed topic-based metrics help explain why some files
are more defect-prone than others?

In the previous research questions, we have shown that topics have dif-
ferent levels of defect-proneness, and defect-prone topics tend to remain so
over time. To provide evidence for practitioners that topics can help software
quality assurance processes, we now examine the amount of additional de-
viance in post-release defects that our topic-based metrics can explain, with
respect to traditional baseline metrics — lines of code (LOC), number of pre-
release defects (PRE), and code churn. This analysis allows us to verify our
intuition that topic-based metrics provide additional explanatory power over
state-of-the-art metrics when studying post-release software defects.

4.2.1. Approach

Explaining Software Defects. As mentioned in Section 2.2, software met-
rics can be classified as static or historical. Static metrics, such as lines of code
(LOC), are obtained from a single snapshot of the system [25]. On the other
hand, historical metrics incorporate past information about the system, such
as pre-release defects (PRE) and code churn (i.e, changes to the code) [11].
As such, in this research question, we build two sets of models: those based
on static topic-based metrics — number of topics (NT) and topic member-
ships (TM); and those based on historical topic-based metrics — number of
detect-prone topics (NDT) and detect-prone topic membership (DTM). For
a baseline static metric, we choose LOC. Although LOC may not represent
all static metrics, LOC is shown to be a good general software metric and
has been used for benchmarking prior proposals of new metrics [27, 68]. In
addition, LOC is shown to have a high correlation with other complexity met-
rics [42, 61]. For baseline historical metrics, we choose PRE and code churn
because they have been shown to be good explainers for defects [12, 58], and
have also been used as baseline models for comparing metrics [11]. Moreover,
LOC, PRE, and code churn are shown to have the best explanatory power for

20

defects, and are typically used as baseline metrics by other researchers when
proposing new metrics [27, 35, 61].

Our goal here is not to predict post-release defects. Since topics provide
a higher-level view of the system, using topics may better explain what is
going on in the source code files [20]. Thus, we want to see how much
improvement on explaining deviance (i.e., model fitness) in defects our topic-
based metrics can bring to the baseline metrics. Using the results of our
analysis, practitioners can better understand the key drivers for the quality
of their software, and can focus on improving or tackling some of these drivers.

We use logistic regression with post-release defects as our dependent vari-
able, and report the percent deviance explained (D2) for each combination of
independent variables (i.e., metric combinations). D is squared to show the
magnitude of the model fitness. To control for the high skew in our metrics,
we apply a log transformation on the metrics before the model is built. Here,
the D2 measure is similar to the adjusted R2 measure in linear regression,
except that D2 quantifies the amount of deviance that a logistic regression
model can explain.

Interpreting Results. A higher D2 value generally indicates a better model
fit. If adding our topic-based metrics to the model can increase D2, our topic-
based metrics can give extra information when understanding defects. Thus,
we use D2 as a relative measure, and our goal is to compare the improvement
of model fitness (i.e., D2) after adding our topic-based metrics. However,
when the number of independent variables is large, D2 may not be a good
measure. As the number of independent variables increases, D2 will always
increase regardless of the quality of the model. Thus, we also use another
measure called the Akaike information criterion (AIC). AIC is defined as:

AIC = 2k − 2ln(L),

where k is the number of estimated parameters in the model, and L is the
maximized value of the likelihood function for the model. AIC can be used
to compare the fitness of different models, as AIC penalizes more complex
models (since they are more likely to suffer from overfitting) [17, 65]. Models
with lower AIC scores are better.

Recall that by the definition of our TM and DTM metrics (Equations 4 and 7),
each metric will produce many values for each file (K values in the case of
TM, and |B| values in the case of DTM). To avoid the problems of over-
fitting and multicollinearity, we use Principal Component Analysis (PCA)

21

to reduce the dimensionality of the metrics [43]. PCA transforms the data
into a smaller set of uncorrelated variables while still captures the patterns
of the original data [43]. We choose the principal components (PCs) until
either 90% of the variances are explained, or when the increase in variance
explained by adding a new PC is less than the mean variance explained of
all PCs [43].

We further perform stepwise regression on the PCs of TM and DTM
metrics to reduce the number of independent variables to the smallest number
of statistically significant independent variables in order to ensure that our
models are stable across different data sets [26, 36]. Stepwise regression is
a variable selection approach, which adds or removes variables to the model
according to some criteria, which, in this paper, we choose to use the AIC
score.

4.2.2. Results

Our proposed topic-based metrics provide additional defect ex-
planatory power over the baseline metrics (18–314% over base-
line static metrics and 4–76% over baseline historical metrics in
terms of deviance explained). Moreover, more topics that a file
has the higher that the chance the file is detect-prone. We present
the results in Tables 5 and 6. Table 5 shows the results for our static topic-
based metrics. We find that adding NT gives a significant improvement in
the deviance explained. All models have statistically significant (p-value ≤
0.05) improvements when NT is added to the model. In all the versions of
Mylyn, Firefox, and NetBeans, NT gives at least an 18% increase in D2 and
3% in AIC. However, we find that the performance of NT is not as high
in Eclipse. TM, on the other hand, gives significant improvements in all
four studied systems. We find that the TM metric improves the deviance
explained by 61–314% and improves the AIC by 9–22%, compared to the
baseline model. The reason that TM is better than NT may be that TM cap-
tures more underlying information of the topics when building the regression
model.

Tables 5 and 6 also show the number of resulting PCs after our variable
selection process. We see that the number of resulting PCs is less than 10
in all the TM and DTM models, which means that our approach is able
to remove noise topics that do not contain much information. Moreover,
overfitting is unlikely to happen due to using a small number of PCs on a
large number of data points (i.e., files).

22

Table 5: D2 improvement and AIC scores for static software metrics. The higher the D2

the better the explanatory power; the lower the AIC scores the better the explanatory
power. Our metrics are statistically significant in all models (i.e., p-value < 0.05). The
numbers in the column %Change are the percentage D2 increase or AIC score decrease
compared to the baseline model. The best model of each version of the software is marked
in bold.

System Model D2 % Change AIC % Change

Mylyn 1.0 Base(LOC) 0.09 1047
Base+NT 0.14 +56% 991 +5%
Base+TM (Selected 5) 0.21 +133% 958 +9%

Mylyn 2.0 Base(LOC) 0.14 1078
Base+NT 0.19 +36% 1020 +5%
Base+TM (Selected 3) 0.27 +93% 957 +11%

Mylyn 3.0 Base(LOC) 0.13 1160
Base+NT 0.20 +54% 1072 +8%
Base+TM (Selected 4) 0.34 +162% 949 +18%

Firefox 1.0 Base(LOC) 0.12 2375
Base+NT 0.16 +33% 2256 +5%
Base+TM (Selected 7) 0.20 +67% 2168 +9%

Firefox 1.5 Base(LOC) 0.15 3475
Base+NT 0.21 +40% 3241 +7%
Base+TM (Selected 7) 0.28 +87% 2969 +15%

Firefox 2.0 Base(LOC) 0.14 2225
Base+NT 0.17 +18% 2152 +3%
Base+TM (Selected 4) 0.24 +71% 1973 +11%

Eclipse 2.0 Base(LOC) 0.18 4584
Base+NT 0.18 +0% 4576 +0%
Base+TM (Selected 10) 0.29 +61% 4004 +13%

Eclipse 2.1 Base(LOC) 0.11 4805
Base+NT 0.11 +0% 4793 +0%
Base+TM (Selected 8) 0.28 +87% 2969 +15%

Eclipse 3.0 Base(LOC) 0.14 7592
Base+NT 0.14 +0% 7590 +0%
Base+TM (Selected 7) 0.24 +71% 6800 +10%

NetBeans 4.0 Base(LOC) 0.07 1529
Base+NT 0.10 +43% 1476 +3%
Base+TM (Selected 8) 0.29 +314% 1197 +22%

NetBeans 5.0 Base(LOC) 0.07 1651
Base+NT 0.10 +43% 1595 +3%
Base+TM (Selected 7) 0.19 +171% 1477 +11%

NetBeans 5.5.1 Base(LOC) 0.07 4916
Base+NT 0.11 +57% 4728 +4%
Base+TM (Selected 9) 0.17 +143% 4418 +10%

23

Table 6: D2 improvement and AIC scores for historical software metrics. The higher the
D2 the better the explanatory power; the lower the AIC scores the better the explanatory
power. The numbers in the column %Change are the percentage D2 increase or AIC score
decrease compared to the baseline model. “*” indicates that the effect of our metrics is
statistically significant (i.e., p-value < 0.05) when added to the baseline. The best model
of each version of the software is marked in bold.

System Model D2 % Change AIC % Change

Mylyn 1.0 Base(PRE+Churn) 0.21 918
Base+NDT* 0.24 +14% 886 +3%
Base+DTM (Selected 5)* 0.30 +43% 824 +10%

Mylyn 2.0 Base(PRE+Churn) 0.22 987
Base+NDT* 0.23 +4% 971 +2%
Base+DTM (Selected 7)* 0.34 +55% 882 +11%

Mylyn 3.0 Base(PRE+Churn) 0.28 957
Base+NDT 0.29 +4% 956 +0%
Base+DTM (Selected 5)* 0.36 +29% 910 +5%

Firefox 1.0 Base(PRE+Churn) 0.14 2300
Base+NDT* 0.18 +29% 2204 +4%
Base+DTM (Selected 7)* 0.20 +43% 2152 +6%

Firefox 1.5 Base(PRE+Churn) 0.20 3256
Base+NDT* 0.25 +25% 3081 +5%
Base+DTM (Selected 7)* 0.27 +35% 3006 +8%

Firefox 2.0 Base(PRE+Churn) 0.23 2009
Base+NDT* 0.25 +9% 1951 +3%
Base+DTM (Selected 6)* 0.28 +22% 1893 +6%

Eclipse 2.0 Base(PRE+Churn) 0.17 4605
Base+NDT* 0.20 +18% 4478 +3%
Base+DTM (Selected 8)* 0.30 +76% 3930 +15%

Eclipse 2.1 Base(PRE+Churn) 0.15 4587
Base+NDT 0.15 +0% 4586 +0%
Base+DTM (Selected 4)* 0.19 +27% 4366 +5%

Eclipse 3.0 Base(PRE+Churn) 0.17 7310
Base+NDT 0.17 +0% 7309 +0%
Base+DTM (Selected 7)* 0.24 +41% 6729 +8%

NetBeans 4.0 Base(PRE+Churn) 0.28 1183
Base+NDT* 0.31 +11% 1138 +4%
Base+DTM (Selected 5)* 0.31 +11% 1145.90 +3%

NetBeans 5.0 Base(PRE+Churn) 0.14 1524
Base+NDT* 0.17 +21% 1471 +4%
Base+DTM (Selected 8)* 0.21 +50% 1418 +7%

NetBeans 5.5.1 Base(PRE+Churn) 0.13 4613
Base+NDT* 0.17 +31% 4367 +5%
Base+DTM (Selected 9)* 0.19 +46% 4307 +7%

24

Table 6 shows the results for our historical topic-based metrics. We find
that NDT gives a good improvement in D2 and AIC over the baseline model.
This implies that topics with high pre-release defects are more likely to have
post-release defects, and having more defect-prone topics may have negative
effects on the software quality. The improvement of adding NDT to the model
is not as large for Eclipse 2.1 and 3.0. However, the improvements achieved
by the DTM metric are consistent across all versions of all systems. DTM also
helps explain defects more than NDT, except for NetBeans 4.0 where NDT
has a lower AIC score than that of DTM. We find that overall DTM improves
D2 over the baseline model by 11–76% and improves AIC by 5–15%. Similar
to TM, DTM contains a more general view of the distributions of topics,
so the model performance may be better than the models built using NDT.
In general, we find that models built using historical metrics have a higher
model fitness than models built using static metrics in 11 out of 12 of the
studied versions. However, historical metrics may not always be available,
and may require time to collect. On the other hand, static metrics can be
computed easily using the current snapshot of the system. In short, static
metrics can be obtained easily but give a lower model fitness, while historical
metrics may not always be available but give a higher model fitness.

4.2.3. Discussion

One possible explanation that the improvement of adding NDT to the
model is not as high in Eclipse compared to other systems is because top-
ics in Eclipse have higher defect densities. As shown in Table 2, Eclipse
has a higher mean CDDTPRE and CDDTPOST than the other studied systems.
Since Eclipse topics are generally more defect-prone, NDT may fail to capture
some relatively defect-prone topics that have a CDDTPOST value smaller than
the cut-off threshold (average of all topics’ CDDTPOST), and thus the overall
explanatory power of NDT decreases. In contrast, DTM contains more gen-
eral information about all the defect-prone topics, which may better explain
defects.

To see the effects of NT and NDT in our logistic regression models, Table 7
shows the average odds ratio of these metrics across the three versions of each
studied system. Odds ratio [14] is used to interpret the effect of a metric in
the regression model, and the odds ratio is computed as ecoef, where coef is the
regression coefficient of the metric in the model. In our case, odds are defined
as the ratio of the probability of being defect-prone and the probability of not
being defect-prone, given one-unit increase of log-NT or log-NDT (we applied

25

Table 7: Odds ratio of the average regression coefficients of NT and NDT metrics.

Mylyn Firefox Eclipse NetBeans

NT 5.64 3.52 1.06 3.74
NDT 5.53 2.34 1.27 2.46

log transformation to the metrics to reduce the skewness when building the
regression models). Thus, an odds ratio of one means that the metric has no
effect on defect-proneness (probability of defect-prone and not defect-prone
is the same), and an odds ratio of two means that a unit of increase in log-NT
(or log-NDT), the chance of the file being detect-prone increases by 100%.
In all studied systems, when log-NT increases by 1, a file will have a higher
chance (6 – 564%) to be defect-prone; when log-NDT increases by 1, a file
will have a higher chance (27 – 553%) to be defect-prone. As a result, when
NT and NDT increases, the files will be more likely to be defect-prone.

Our findings show that the number of topics in a file has a positive re-
lationship with defects, and files having more defect-prone topics are more
likely to continue being more defect-prone.'

&

$

%

All of our proposed topic-based metrics provide additional defect ex-
planatory power over traditional state-of-the-art baseline metrics. We
find that files containing more topics tend to be more defect-prone. We
also find that files containing more defect-prone topics are even more
likely to be defect-prone.

5. RQ3: How do our metrics compare with state-of-the-art topic-
based cohesion and coupling metrics?

Maintaining a high cohesion and low coupling among source code files
during development can help reduce maintenance costs and improve the re-
liability of a software system [30, 51]. Researchers have used various soft-
ware structures, such as interactions among variables and methods, to mea-
sure cohesion and coupling in software systems [5, 8, 15, 18, 57]. A prior
study [28] found that these cohesion and coupling metrics have a moder-
ate to strong correlation with software defects. Recently, many studies have

26

measured cohesion and coupling using a different approach, namely topic
models [22, 31, 49, 53, 54, 64, 80]. These approaches measure cohesion and
coupling using the topic similarity or scattering (i.e., topic is spread out over
multiple files) in source code files. The topic-based cohesion and coupling
metrics capture different information compared to the traditional cohesion
and coupling metrics [64]. The NT metric that we propose in Section 4.2.1
also measures the level of cohesion of a source code file, i.e., more topics
implies low cohesion, and in RQ2 we find that this metric is statistically
significant when explaining software defects.

Prior studies [31, 49, 54, 80] focus on using different topic-based cohesion
and coupling metrics to study software quality. Thus, in this RQ we want
to compare the defect explanatory power of state-of-the-art topic-based co-
hesion and coupling metrics with our metric, NT. We compare cohesion and
coupling metrics together because these two kinds of metrics are usually cor-
related together (e.g., high cohesion correlates with low coupling) [71]. To
the best of our knowledge, this is the first study on comparing the defect
explanatory power and the correlation among the topic-based cohesion and
coupling metrics. We do not include our TM, NDT, and DTM metrics in
the study in order to ensure a fair comparison. NDT and DTM consider the
defect history of topics, while current state-of-the-art metrics only consider
static information (i.e., source code). Additionally, TM and DTM contain
more than one variable, because these two metrics are based on the topic
membership values for a file (i.e., if we have 100 topics, then TM is still
very likely to have more than one variable after PCA reduction and stepwise
regression).

By identifying which metrics perform best, and whether the metrics are
correlated with each other, practitioners can use the most effective combina-
tion of metrics and avoid possible problems of overfitting and multicollinear-
ity. In addition, we can study whether NT offers additional explanatory
power over the current state-of-the-art metrics.

5.1. Approach

We want to compare NT (Equation 3) with the cohesion and coupling
metrics proposed by Ujhazi et al. [80], Liu et al. [49], and Gethers et al. [31],
since these metrics use different topic modeling approaches. We begin with
a correlation analysis, because these metrics each use topics to calculate co-
hesion and coupling. Thus, there may be some overlap in what they each

27

Table 8: Summary of the topic-based cohesion and coupling metrics that we compare in
our study. Granularity indicates at which level the metric is computed.

Metric Type Granularity Topic Model Preferred Cited Paper
Metric Value

CLCOM5 cohesion method LSI low Ujhazi et al. [80]
CCBO coupling file LSI low Ujhazi et al. [80]
RTCs coupling file RTM low Gethers et al. [31]
MWE cohesion method LDA high Liu et al. [49]
NT cohesion file LDA low This Paper

capture. Next, we measure how these metrics differ in terms of defect ex-
planatory power. Table 8 shows the summary of these metrics. We briefly
describe these metrics below.

Measuring Cohesion and Coupling using Latent Semantic Index-
ing. Ujhazi et al. [80] measure conceptual cohesion using a topic modeling
approach called Latent Semantic Indexing (LSI). LSI is computed by apply-
ing singular value decomposition (SVD) on the term-document matrix of a
corpus. The term-document matrix of a corpus is a matrix whose row corre-
sponds to an individual document (i.e., source code file), and whose columns
represent the unique words in the corpus. For example, the index [i, j] in the
matrix represents the number of occurrences of the word j in document i.
In addition to word frequency count, other weight measures, such as tf ∗ idf
(term frequency-inverse, document frequency), are often used [52].

tf ∗ idf is used to reflect the importance of a word in a document using
the word’s occurrence within and across documents. Thus, in this paper, we
use tf ∗ idf instead of the raw word frequency count, since tf ∗ idf lowers the
score of insignificant words. SVD then reduces the dimensions in the term-
document matrix by selecting the K dimensions (i.e., K topics) with the
largest singular values. Finally, by computing the cosine distance between
each row (document), we obtain a similarity score between the documents.

Ujhazi et al. [80] propose a cohesion metric called CLCOM5, which is
defined by computing the cosine similarity among all the methods within a
source code file (i.e., each document in LSI is a method, and the corpus is
the file). If a method is very similar to many other methods in the same file,
then this file has low cohesion. If the similarity score between each pair of
methods within the same file is larger than some threshold, then a score of

28

one is added to the file (i.e., the file’s coupling score plus one). The authors
find that the optimal threshold for the cosine similarity score to be between
0.7 to 0.8 through empirical analysis. In this paper, we use the average of
these thresholds, 0.75.

Ujhazi et al. also propose a coupling metric called CCBO at the file level
(i.e., each document in LSI is a file, and the corpus is all the files in the
software system). If a file is similar to many other files in the same software
system, then this file is highly coupled. The authors compute the cosine
similarity among all the source code files in a software system, and assign a
coupling score of one if the score is larger than a threshold (same threshold
range as that in CLCOM5).

Measuring Coupling using Relational Topic Models. Gethers et al.
[31] propose a coupling metric using a variant of LDA, called relational topic
model (RTM) [19]. RTM predicts the linking probability among documents
using the underlying topics. If the topics in one file are very similar to the
topics in another file, then these files will be highly coupled. Let RTC(f1, f2),
the Relational Topic-based Coupling between f1 and f2, be the probability
that a link exists between file f1 and f2, as outputted by the RTM model.
We then define the relational topic coupling RTCs for a source code file fi as

RTCs(fi) = 1/n ∗
n∑

j=1

RTC(fi, fj) where i 6= j, (8)

where n is the number of files in the system.

Measuring Cohesion using Topic Distributions and Occupancies.
Liu et al. [49] propose a cohesion metric using LDA, called Maximal Weighted
Entropy (MWE). MWE measures the level of cohesion in software systems at
the method level. For each topic, Liu et al. [49] compute the topic occupancy
and distribution in a source code file, and MWE is the product of the maxi-
mum occupancy and distribution among all topics. The occupancy of topic
zi in all the methods of a source code file is defined as

O(zi) = 1/m(f) ∗
m(f)∑
j=1

θij, (9)

where m(f) is the number of methods in the source code file f , and θij is
the topic membership value of topic zi in method j. Occupancy measures

29

the average of a topic’s membership value across all methods in a file. In
other words, occupancy answers the question: on average, how much does
this topic exist in this file?

Liu et al. [49] use information entropy to measure the distribution of
topics in a source code file. Information entropy measures the uncertainty of
the topics [41]. If a topic is distributed uniformly in the methods of a file,
then the entropy value will be low; otherwise, the entropy value will be high.
The Shannon information entropy function E is defined as

E = −
n∑

i=1

p(xi) ∗ logep(xi), (10)

where p(xi) is the probability value of outcome xi (i.e., topic-document prob-
ability).

The distribution D(zi) of topic zi in a file is defined as

D(zi) = 1/log(m(f)) ∗ E(zi), (11)

where E(zi) is the information entropy value for zi computed across all the
methods in a file.

Finally, MWE of a source code file f is defined as

MWE(f) = maxzi∈Z(O(zi) ∗D(zi)), (12)

where Z is the set of topics in a file.

Implementation and Experiment Procedures. We implement and com-
pute all of the above-mentioned metrics using K = 500 and II = 10,000, the
same as our previous research questions. These parameters may slightly
affect the results, but we want to do a controlled experiment where the pa-
rameters are the same. For implementing RTCs, we use α=50/K and β=0.1,
as is recommended by the software package that Gethers et al. [31] use. For
implementing MWE, we use MALLET to optimize α and β. Our experiment
procedures are as follows:

1. We first examine the pair-wise correlation between all topic-based met-
rics and LOC, and study whether these topic-based metrics are capturing
different information than LOC. We use LOC as our baseline metric and
remove any metrics that are highly correlated to LOC, because most
software complexity metrics are highly correlated with LOC, and LOC is
considered one of the best metrics for explaining defects [42, 61].

30

2. We next study how much D2 and AIC improvement each metric gives
over a base LOC model. We use LOC as the baseline model, since these
metrics are all using a single snapshot of the current software system.

3. We finally perform a PCA analysis on LOC and all the topic-based cohe-
sion and coupling metrics, except NT. We use the resulting PCs as the
baseline model, and examine the D2 improvement when NT is added to
the model. By doing this experiment, we can examine whether NT can
bring any additional improvements to all of LOC and state-of-the-art
topic-based cohesion and coupling metrics combined when explaining
defects.

5.2. Results and Discussion

5.2.1. Correlation Analysis

Most metrics are not highly correlated with LOC, except CLCOM5.
We perform a Spearman correlation analysis to remove any metrics that are
highly correlated with LOC (i.e., > 0.6) to ensure that all the topic-based
metrics are capturing different information relative to LOC. We use the Spear-
man correlation because all of the metrics are not normally distributed (the
p-values of the Shapiro-Wilk Normality test are all smaller than 0.05).

In Tables 20–23 in Appendix D, we see that CLCOM5 is highly correlated
with LOC in every studied system, with a coefficient between 0.63–0.78. Due
to such high correlation with the baseline metric, we remove CLCOM5 from
further analyses. We also find that NT has a relatively strong negative corre-
lation with MWE (mostly around -0.5). However, neither of these two metrics
is highly correlated with LOC. Even if they are highly correlated, one metric
may still outperform the other when explaining defects, so we will keep these
two metrics and perform a more detailed comparison below. Furthermore,
NT is considerably simpler metric to measure compared to MWE, and we
are curious about NT’s overall performance compared to MWE, the more
complex metric.

5.2.2. Improvement in Defect Explanatory Power of Each Topic-base Cohe-
sion and Coupling Metric

NT gives the most improvement over the baseline metrics (30%
on average) compared to other topic-based cohesion and coupling
metrics (3 – 12% on average). Tables 9 and 10 shows that our NT
metric generally gives the greatest improvement (30% on average), except
for Eclipse 2.0 and 3.0, and NetBeans 4.0; however, no topic-based cohesion

31

Table 9: D2 improvement and AIC scores for topic-based cohesion and coupling metrics.
The numbers in the column %Change are the percentageD2 increase or AIC score decrease
compared to the baseline model. The best model of each version of the software is marked
in bold. “*” indicates the metric is statistically significant (i.e., p-value < 0.05).

System Model D2 % Change AIC % Change

Mylyn 1.0 Base(LOC) * 0.06 958
Base+NT * 0.09 +50% 925 +3%
Base+CCBO 0.06 +0% 959 +0%
Base+RTCs * 0.09 +50% 931 +3%
Base+MWE * 0.08 +33% 940 +2%

Mylyn 2.0 Base(LOC) * 0.10 947
Base+NT * 0.14 +40% 908 +4%
Base+CCBO 0.10 +0% 949 +0%
Base+RTCs 0.10 +0% 949 +0%
Base+MWE * 0.12 +20% 923 +3%

Mylyn 3.0 Base(LOC) * 0.11 1075
Base+NT * 0.17 +55% 1004 +7%
Base+CCBO * 0.13 +18% 1059 +1%
Base+RTCs 0.11 +0% 1077 +0%
Base+MWE * 0.13 +18% 1058 +2%

Firefox 1.0 Base(LOC) * 0.12 2330
Base+NT * 0.17 +42% 2189 +6%
Base+CCBO * 0.13 +8% 2299 +0%
Base+RTCs * 0.13 +8% 2301 +0%
Base+MWE * 0.15 +25% 2254 +3%

Firefox 1.5 Base(LOC) * 0.15 3400
Base+NT * 0.22 +47% 3115 +8%
Base+CCBO 0.15 +0% 3399 +0%
Base+RTCs 0.15 +0% 3400 +0%
Base+MWE * 0.17 +13% 3305 +3%

Firefox 2.0 Base(LOC) * 0.14 2167
Base+NT * 0.18 +29% 2070 +4%
Base+CCBO 0.14 +0% 2168 +0%
Base+RTCs 0.14 +0% 2168 +0%
Base+MWE * 0.17 +21% 2099 +3%

Continued in Table 10.

32

Table 10: Continued from Table 9. D2 improvement and AIC scores for topic-based
cohesion and coupling metrics. The numbers in the column %Change are the percentage
D2 increase or AIC score decrease compared to the baseline model. The best model of
each version of the software is marked in bold. “*” indicates the metric is statistically
significant (i.e., p-value < 0.05).

System Model D2 % Change AIC % Change

Eclipse 2.0 Base(LOC) * 0.12 4197
Base+NT * 0.13 +8% 4175 +0%
Base+CCBO * 0.13 +8% 4156 +0%
Base+RTCs * 0.13 +8% 4195 +0%
Base+MWE * 0.13 +8% 4197 +0%

Eclipse 2.1 Base(LOC) * 0.10 4111
Base+NT * 0.10 +0% 4106 +0%
Base+CCBO 0.10 +0% 4113 +0%
Base+RTCs 0.10 +0% 4112 +0%
Base+MWE * 0.10 +0% 4096 +0%

Eclipse 3.0 Base(LOC) * 0.11 6717
Base+NT 0.11 +0% 6719 +0%
Base+CCBO * 0.11 +0% 6710 +0%
Base+RTCs 0.11 +0% 6719 +0%
Base+MWE * 0.11 +0% 6681 +0%

NetBeans 4.0 Base(LOC) * 0.04 1062
Base+NT 0.04 +0% 1064 +0%
Base+CCBO * 0.04 +0% 1058 +0%
Base+RTCs 0.04 +0% 1065 +0%
Base+MWE * 0.04 +0% 1064 +0%

NetBeans 5.0 Base(LOC) * 0.06 872
Base+NT * 0.08 +33% 849 +3%
Base+CCBO 0.06 +0% 871 +0%
Base+RTCs 0.06 +0% 873 +0%
Base+MWE 0.06 +0% 867 +0%

NetBeans 5.5.1 Base(LOC) * 0.04 3617
Base+NT * 0.08 +50% 3475 +4%
Base+CCBO * 0.04 +0% 3614 +0%
Base+RTCs 0.04 +0% 3618 +0%
Base+MWE * 0.04 +0% 3606 +0%

33

and coupling metrics give improvement in these systems. Note that, since
some of the metrics are computed at the method level (then aggregated
to obtain a file level metric), source code files that do not have methods
are excluded. As a result, the D2 and AIC score for the baseline model
are slightly different from that of RQ2 (dataset is slightly different due to
exclusion of some files that do not have methods). We find that 364 files
were excluded from all versions of Mylyn (a total of 37 defects are excluded);
790 files were excluded from all versions of Firefox (17 defects); 6,236 files
were excluded from all versions of Eclipse (330 defects); and 9,143 files were
excluded from all versions of NetBeans (469 defects).

MWE gives the second best improvement over the baseline model (on
average 12%). RTCs, which gives 6% improvement on average, is not sta-
tistically different from the baseline model in most of the studied systems:
low level of statistical significance indicates that the effect of RTCs is likely
due to chance. CCBO gives about 3% improvement, but is not statistically
significant in 7 out of 12 versions of the four studied system.

From the results, we can see that NT outperforms other metrics whenever
topic-based cohesion and coupling metrics can help explain software defects.
Also, NT is statistically significant in most of the systems. This implies
that the effect of NT most likely does not happen by chance, and that it is
more consistent than other topic-based cohesion and coupling metrics (other
metrics, in general, are not statistically significant in many studied systems).
Another advantage of NT is that NT can be applied to source code files that
do not have any methods, whereas MWE can only work on the files that
have methods. In our case study, several defects are removed in Eclipse and
NetBeans (330–469 defects) because these defects are in the files that do not
have any methods. If we use MWE, then these defects will be ignored.

NT is also more intuitive and much simpler to measure than the other
studied metrics (e.g., RTCs took more than 2 weeks to compute). By ex-
amining how many topics a source code file has, practitioners can determine
if a refactoring of such file is required to increase file cohesion and decrease
maintenance difficulty.

34

'

&

$

%

NT gives the best improvement in terms of explaining defects, and is
statistically significant in most systems. NT is easier to interpret and
much simpler to implement than other metrics, which can also help
practitioners during maintenance (i.e., to identify and refactor source
code files that contain many topics).

5.2.3. Does NT improve over state-of-the-art topic-based cohesion and cou-
pling metrics when explaining defects?

Adding NT gives 3–97% improvements to the models that are
built using LOC and all other state-of-the-art topic-based cohe-
sion and coupling metrics combined. In Tables 9 and 10, we have
shown how each metric helps explain defects, and NT generally gives the
best improvement over the baseline model. However, since some metrics
have some overlapping information (i.e., moderate correlation), we want to
study whether NT gives additional improvement in explaining defects over all
other state-of-the-art topic-based cohesion and coupling metrics, and LOC.

PCA transforms the metrics (i.e., independent variables) into a set of un-
correlated PCs, so all the PCs are not correlated with each other. Since some
topic-based cohesion and coupling metrics may be correlated, PCA solves the
problem of multicollinearity and the order of the metrics in regression models
does not matter anymore [32, 46]. Thus, we build a baseline model using the
PCs we transformed from all topic-based metrics (except NT) and LOC. We
report the D2 improvement in explaining defects when NT is added to the
baseline model (i.e., the PCA model) in Table 11. We also report the regres-
sion coefficient and the level of statistical significance (p-value). We find that
adding NT gives statistically significant improvement to the baseline model
(LOC and state-of-the-art topic-based cohesion and coupling metrics), giving
3–97% improvement over the baseline model.

The coefficient of NT is always positive, except in Eclipse 2.0. Positive
coefficients imply that if a file has more topics, then it is more likely to be
defect-prone. We do not report the coefficients for the cases where NT is not
statistically significant.

Since NT and MWE have a moderate correlation relationship, we perform
the same analysis for MWE, and study how much improvement MWE gives.
Namely, we compute the PCs of LOC, CCBO, RTCs, and NT, and build a
regression model using these PCs. Then, we add MWE to the model and
examine the improvement that MWE gives over the baseline model. Table 12

35

Table 11: D2 improvement when NT is added to the baseline model that is composed
of PCs of LOC and other state-of-the-art topic-based cohesion and coupling metrics (i.e.,
CCBO, RTCs, and MWE). “*” indicates a p-value < 0.05. “**” indicates a p-value < 0.01.
“***” indicates a p-value < 0.001.

System Base Base+NT % Inc. NT Coeff. p-val

Mylyn 1.0 0.10 0.11 14.74 0.89 ***
Mylyn 2.0 0.12 0.15 16.94 1.20 ***
Mylyn 3.0 0.14 0.18 28.57 1.57 ***

Firefox 1.0 0.16 0.18 11.04 1.00 ***
Firefox 1.5 0.17 0.23 31.21 1.67 ***
Firefox 2.0 0.17 0.19 12.94 1.01 ***

Eclipse 2.0 0.14 0.14 2.92 -0.41 ***
Eclipse 2.1 0.10 0.10 0.00 — —
Eclipse 3.0 0.12 0.12 0.00 — —

Netbeans 4.0 0.05 0.05 0.00 — —
Netbeans 5.0 0.07 0.09 37.31 1.23 ***

Netbeans 5.5.1 0.04 0.09 97.67 1.76 ***

shows the result of this MWE analysis. The column Base + MWE has the
same result as the column Base + NT, because these two columns report
the D2 of the full model. We include this column in the table to ease the
comparison.

We can see that the baseline models in Table 12 have higher D2 values
than the ones in Table 11, which implies that including NT in the model
explains more defects than including MWE in the model. In addition, MWE
gives less improvement to the baseline models when compared to NT in Ta-
ble 11. MWE gives an additional explanatory power in Eclipse 2.1, 3.0, and
NetBeans 4.0, but these software systems also exclude many source code files
that do not have methods (i.e., the dataset is reduced). Even though MWE
does not consider files without methods, if we consider those files, NT gives
43% improvement in D2 to the baseline model in NetBeans 4.0 (Table 5).

Overall, we find that although MWE and NT have a moderate correlation,
NT still provides additional explanatory power to the baseline models, while
being much simpler to implement, and it works on files without methods.

36

Table 12: D2 improvement when MWE is added to the baseline model that is composed
of PCs of LOC, CCBO, NT, and RTCs. “*” indicates a p-value < 0.05. “**” indicates a
p-value < 0.01. “***” indicates a p-value < 0.001. The column Base+MWE has the same
number as the column Base+NT in Table 11, because they both refer to the same full
model.

Base Base+MWE % Inc. MWE Coeff. p-Val

Mylyn 1.0 0.11 0.11 2.83% — —
Mylyn 2.0 0.14 0.15 5.07% -1.08 **
Mylyn 3.0 0.18 0.18 0.00% — —

Firefox 1.0 0.18 0.18 2.26% -1.15 ***
Firefox 1.5 0.23 0.23 0.44% -0.65 *
Firefox 2.0 0.18 0.19 4.92% -1.60 ***

Eclipse 2.0 0.14 0.14 2.92% -0.89 ***
Eclipse 2.1 0.10 0.10 3.00% -0.88 ***
Eclipse 3.0 0.11 0.12 6.31% -1.48 ***

Netbeans 4.0 0.04 0.05 29.27% -1.77 ***
Netbeans 5.0 0.09 0.09 1.10% — —

Netbeans 5.5.1 0.08 0.09 1.19% 0.73 *

'

&

$

%

NT gives improvements to LOC and all other state-of-the-art topic-based
cohesion and coupling metrics. Although NT has a moderate correlation
with MWE, NT gives more improvement than MWE. In addition, our
previous finding (if a file has more topics then it is more likely to be
defect-prone) still holds when controlling for LOC and other cohesion
and coupling measures.

6. Sensitivity Analysis for the Parameters of Our Approach

In our approach, we use several parameter values for LDA and our pro-
posed topic-based metrics: two Dirichlet priors for smoothing (α and β),
the number of iterations (II), the number of topics (K), and δ in NT and
NDT. We perform a parameter sensitivity analysis to see how these param-
eters affect the defect explanatory power of our topic-based metrics. We do
not change the LDA parameters of the topic-based cohesion and coupling

37

metrics in Section 5, since we are only interested in comparing how differ-
ent topic-based cohesion and coupling metrics can help explain defects when
controlling for the LDA parameters.

In particular, we use our previous setting as a baseline (II=10,000, K=500,
and δ=1%), and we change the value of each parameter to two lower and
higher values (except for K, which we try more values). In short, we choose
8,000, 9,000, 11,000, and 12,000 for II, 10, 100, 200, 300, 400, 600 and 700
for K, and 0.25%, 0.5%, 2% and 4% for δ. We report the D2 of the model
after adding NT or NDT. Note that since the number of variables is the same
across the models, D2 is stable. Thus, we report D2 because it is easier to
interpret than AIC. We report only the result for NT and NDT due to their
sensitivity on the parameters. For example, K may have a direct effect on NT
and NDT, so changing K may affect the explanatory power of these metrics
in the model. We exclude TM and DTM in this study because after changing
the LDA parameters, the number of PCs resulted in TM and DTM may be
different. In addition, as the LDA parameters change, the topics may also
change (e.g., some topics may be merged if we use a small K) [13], so TM
and DTM may be very different from our baseline, which makes the results
incomparable. In this analysis, for α and β, we use the values as optimized
by MALLET [56].

We find that, in general, when K is extremely small (i.e., 10), our metrics
give little or no improvement over the baseline, while the results are more
stable when K is larger. In addition, we find that when delta is smaller, the
results are relatively more stable, and varying II does not have a considerable
impact on D2. We also find that the results of our RQ1 still hold (most
topics are not defect-prone, and defect-prone topics tend to be defect-prone
in future versions). The skewness and the correlation of topic defect densities
across different versions remain high. We manually check the topic label of
the most defect-prone topics when K and II change, and we notice that the
topic labels are very similar to the labels in Tables 16–19.

Since we see a larger variation in our topic-based metrics when changing
K, we plot the D2 of NT and NDT when choosing different values of K
(Figures 4 and 5). We find that, even though the studied systems have
various sizes, using a smaller K for smaller systems (e.g., use the same K
for Mylyn and Eclipse) may not give considerably better results (as also
suggested by Wallach et al. [81] that using a larger K may be better than
using a smaller K). Our sensitivity analysis shows that the ratio between
K and the size of the system may not have a considerable impact on the

38

explanatory power of the topic-based metrics. Moreover, Wallach et al. [81]
found that choosing a larger K does not significantly affect the quality of
the generated topics. They found that the additional topics should be rarely
used when LDA is assigning tokens to topics, which may be the reason that
using the same K for Mylyn yields comparable performance to NetBeans,
Eclipse, and Firefox. Our results also show that choosing a small K (i.e., 10)
has negative results on the generated metrics, because topics in the source
code cannot be separated precisely. However, when choosing a larger K, the
generated metrics have similar performance after removing noise topics using
a threshold.

Tables 24 – 27 in Appendix E show the complete results of our sensitivity
analysis. We list the baseline D2 of the regression models, and report the
new D2 when the parameter is changed. In most cases, D2 values remain
unchanged. When we change δ (which is used for removing noise) to a larger
value, D2, in general, decreases. A higher δ value may remove some topics
that are not noise. However, when we change δ to a smaller value, the results
are relatively more stable. The reason may be that most noise topics have a
near-zero topic membership, so using a smaller δ does not have a considerable
impact on the overall model.

39

0 100 200 300 400 500 600 700

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

K

N
T

Mylyn1.0
Mylyn2.0
Mylyn3.0

(a) Mylyn.

0 100 200 300 400 500 600 700
0.

14
0.

16
0.

18
0.

20
0.

22
K

N
T

Firefox1.0
Firefox1.5
Firefox2.0

(b) Firefox.

0 100 200 300 400 500 600 700

0.
10

0.
12

0.
14

0.
16

0.
18

K

N
T

Eclipse2.0
Eclipse2.1
Eclipse3.0

(c) Eclipse.

0 100 200 300 400 500 600 700

0.
07

0.
08

0.
09

0.
10

0.
11

K

N
T

NetBeans4.0
NetBeans5.0
NetBeans5.5.1

(d) NetBeans.

Figure 4: Trend of NT over various values of K.

40

0 100 200 300 400 500 600 700

0.
22

0.
24

0.
26

0.
28

K

N
D

T

Mylyn1.0
Mylyn2.0
Mylyn3.0

(a) Mylyn.

0 100 200 300 400 500 600 700
0.

18
0.

20
0.

22
0.

24
0.

26
K

N
D

T

Firefox1.0
Firefox1.5
Firefox2.0

(b) Firefox.

0 100 200 300 400 500 600 700

0.
13

0.
15

0.
17

0.
19

K

N
D

T

Eclipse2.0
Eclipse2.1
Eclipse3.0

(c) Eclipse.

0 100 200 300 400 500 600 700

0.
15

0.
20

0.
25

0.
30

K

N
D

T

NetBeans4.0
NetBeans5.0
NetBeans5.5.1

(d) NetBeans.

Figure 5: Trend of NDT over various values of K.

7. Threats to Validity

The results of our case study provide an initial evaluation of using topics
to explain software defects, and we show that our topic-based metric outper-
forms state-of-the-art topic-based cohesion and coupling metrics. However,
we note the following threats to the validity of our findings.

41

7.1. Internal Validity

In this paper, we study the effect of topic-based metrics in regression
models in order to understand their relationship with defects. However,
there may be other confounding variables that are not observed. However,
prior studies have shown that topic-based metrics are usually different from
other traditional metrics [31, 49, 64]. In addition, we conduct correlation
analysis to minimize the impact of multicollinearity.

7.2. External Validity

We considered three versions of Mylyn, Firefox, Eclipse, and NetBeans,
and answered our research questions based on these systems. However, the
results that we found on these systems may not necessarily generalize to
all software systems. Nevertheless, we try to choose systems with different
sizes and purposes to increase the generalizability of our result. Although
Eclipse and NetBeans are both IDEs, we do not find many similarities. Most
topic-based metrics have statistical significance in NetBeans, but not Eclipse.
Thus, the performance of topic-based metrics may not have the same per-
formance on systems in the same domain, and further studies are needed to
understand the phenomenon.

7.3. Construct Validity

Parameter and Threshold Choices. Our approach involves the choice
of several parameters, and there is no automated technique to find the op-
timal values for them. However, as shown in Section 6, our results are not
particularly sensitive to the parameters that we choose. Nevertheless, fur-
ther research is required to understand the effects of these parameters on the
results.

Representing Concerns as Topics. Topic models such as LDA are based
on machine learning techniques, which involve some probabilistic algorithms.
Therefore, each computation may result in slightly different topic distri-
butions. We use a relatively large number of Gibbs sampling iterations
(II=10,000) to approximate topics distributions. Using such a high value
of II, we should get more stable results. This value of II is also used in
other studies when applying topic models to source code files [74, 77, 78]. As
suggested by prior studies [50, 81] we choose K as 500. A larger K is able
to separate the topics more accurately and additional topics will be rarely
used when LDA is assigning tokens to topics (i.e., very low topic membership

42

values) [81]. A smaller K may be more problematic, since the information
may not be separated precisely [81]. The results of our sensitivity analysis
also show that when K is small (i.e., 10), our topic-based metrics give little
or no improvement over the baseline. We also find that our results are not
particularly sensitivity to the K we used (except when K =10), even if the
system is small and K is large. We apply several thresholds or statistical ap-
proaches to remove noise topics, so the remaining topics can better present
the underlying concerns in the source code.

Noise in the Defect Data. We obtain the defect information from commit
logs, following a similar approach proposed by Sliwerski et al. [70]. We make
the assumption that the defect information that we obtain is correct. For
example, when a developer fixes a file, he/she always includes certain related
change messages (i.e., defect fixed, or bug #1234) when committing changes
to the file. The data may contain some noise, which may affect our results.
However, noise is unavoidable and it exists in near-perfect datasets [59].
Hassan et al. [38] compared automatic change message classification with
classification done by six professional software developers, and found a high
correlation (>0.8) between an automated classifier and a human. In sum-
mary, we believe the defect data that we use in this paper is as accurate as
possible, given the limited information we can get for the studied software
systems.

Choosing Baseline Metrics. Due to the nature of our topic-based metrics,
we compare static topic metrics with LOC and compare historical topic-based
metrics with PRE and CHURN. Potentially we can combine LOC, PRE, and
CHURN together as our baseline (although the historical information may
not always be present). We find that when using these three metrics as
our baseline metrics, adding our topic-based metrics still gives a statistically
significant improvement. We find that at least one of the topic-based metrics
is statistically significant for each version of the studied systems.

Choosing Different Values of K for LSI. We chose to use the same K
for LSI when comparing topic-based metrics. However, since topics in LSI
have different mathematical meanings than topics in LDA, we investigate
CCBO and CLCOM5 using different values of K. In particular, we use the
heuristic proposed by Kuhn et al. [45] to compute K: (m ∗ n)0.2, where m
is the total number of files and n the total number of terms over all files.
Table 13 shows the K computed using the heuristic, and the improvement of

43

Table 13: Improvement of CCBO (LSI-based metrics) over the baseline (using LOC) when
computed using theK suggested by Kuhn et al. [45]. “*” indicates the metric is statistically
significant (i.e., p-value < 0.05).

System K Model D2 % Change

Mylyn 1.0 – Base(LOC) * 0.06 –
500 Base+CCBO 0.06 +0%
19 Base+CCBO * 0.07 +17%

Mylyn 2.0 – Base(LOC) * 0.10 –
500 Base+CCBO 0.10 +0%
19 Base+CCBO * 0.12 +20%

Mylyn 3.0 – Base(LOC) * 0.11 –
500 Base+CCBO * 0.13 +18%
21 Base+CCBO * 0.13 +18%

Firefox 1.0 – Base(LOC) * 0.12 –
500 Base+CCBO * 0.13 +8%
49 Base+CCBO * 0.15 +25%

Firefox 1.5 – Base(LOC) * 0.15 –
500 Base+CCBO 0.15 +0%
50 Base+CCBO * 0.18 +20%

Firefox 2.0 – Base(LOC) * 0.14 –
500 Base+CCBO 0.14 +0%
51 Base+CCBO * 0.18 +29%

Eclipse 2.0 – Base(LOC) * 0.12 –
500 Base+CCBO * 0.13 +8%
39 Base+CCBO * 0.14 +17%

Eclipse 2.1 – Base(LOC) * 0.10 –
500 Base+CCBO 0.10 +0%
41 Base+CCBO 0.10 +0%

Eclipse 3.0 – Base(LOC) * 0.11 –
500 Base+CCBO * 0.11 +0%
44 Base+CCBO 0.11 +0%

NetBeans 4.0 – Base(LOC) * 0.04 –
500 Base+CCBO * 0.04 +0%
36 Base+CCBO 0.04 +0%

NetBeans 5.0 – Base(LOC) * 0.06 –
500 Base+CCBO 0.06 +0%
45 Base+CCBO * 0.06 +0%

NetBeans 5.5.1 – Base(LOC) * 0.04 –
500 Base+CCBO * 0.04 +0%
53 Base+CCBO 0.04 +0%

44

Table 14: Average correlation between NT and POST, and NDT and POST across the
three versions of each studied system.

Eclipse Mylyn Firefox NetBeans

Avg. Cor. bwt.
0.03 0.32 0.15 0.09

NT and POST
Avg. Cor. bwt.

0.01 0.24 0.22 0.14
NDT and POST

the new CCBO (computed using the new K) over the baseline. We still find
that CLCOM5 to be highly correlated with LOC; however, we found that the
new CCBO in general gives a larger improvement over the baseline. The new
CCBO is better in seven out of 12 studied systems compared to using the
old CCBO (computed using K = 500). Nevertheless, our NT still gives the
largest improvement over the baseline among all studied topic-based metrics.
Our study shows the same K may not work well for different types of topic
models (e.g., LDA versus LSI), and future should consider our results when
doing analysis using topic models.

Results in Eclipse when Compared to Other Systems. We find that
topic-based cohesion and coupling metrics give less improvement in Eclipse
compared to other studied software systems. Moreover, the coefficients of
NT is small and almost zero in Eclipse (as shown in Table 7, the average
coefficient for three studied versions of Eclipse is 0.06), which differs with
our findings in other studied software systems. We perform a brief study to
understand how NT and NDT are different in Eclipse than in the other studied
systems. We find that the variances and skewnesses of NT and NDT are not
considerably different across different studied systems. However, we find
that the Spearman correlation between NT and POST, and the correlation
between NDT and POST in Eclipse are smaller than the other studied systems
(Table 14). Lower correlations in Eclipse may give initial evidence as to
why the improvement of NT and NDT in explaining defects is not as good
compared to other studied systems.

45

8. Related Work

8.1. Applying Topic Models to Software Engineering Tasks

Recently, many researchers have used topic modeling approaches to un-
derstand software systems from a different point of view than from the tra-
ditional structural and historical views [23]. For example, Kuhn et al. [45]
used Latent Semantic Indexing (LSI) to cluster the files in a software sys-
tem according to the similarity of word usage. Maskeri et al. [55] were
the first to apply LDA to source code to uncover its conceptual concerns.
Prior studies used topics to study the evolution of concerns in the source
code [48, 74, 77, 78].

Other uses of topic models in software engineering include concept loca-
tion [24, 50, 63, 66, 67], traceability link recovering [6], building source code
search engines [79], and even test case prioritization [75].

8.2. Using Topic Models to Study Software Defects

A few recent studies have tried to establish a link between topics and
defects. For example, Liu et al. [49] propose a new metric, called Maximal
Weighted Entropy (MWE), to measure the level of cohesion in a software
system. A more detailed description of MWE is in Section 5.1. Nguyen
et al. [60] use LDA to predict defects. The authors first apply LDA to the
studied systems using K=5 topics, and for each source code file they multiply
the topic memberships by the file’s LOC. As a result, the authors obtain five
topic variables for each file, and use these variables to build a prediction
model. Using this approach, the authors provide initial evidence that it is
possible to explain defects using topic-based metrics. In this paper, we use a
different set of topic-based metrics. We are interested in explaining defects
while also controlling for the standard defect explainers, i.e., LOC, churn,
and pre-release defects. We compute the CDDTPOST of each topic, and study
how the defect-proneness of topics evolves overtime. In addition, we consider
a larger number of topics in order to capture more accurate and detailed
conceptual concerns. We use PCA to extract the most effective topics and
avoid the possible problem of multicollinearity and minimize the effects of
overfitting. We compare our topic-based metrics with other state-of-the-arts
topic-based metrics.

Chen et al. [22] use topics to explain software defects. They find that
there is only a few defect-prone topics in a software system, and topics can
give additional defect explanatory to traditional state-of-the-art metrics. We

46

expand this research by including more systems, comparing the metrics with
state-of-the-art, and provide a sensitivity analysis of the parameters and
thresholds that are used in their approach.

Prior studies capture cohesion using latent semantic indexing (LSI) [53,
54], and show that it is possible to predict defects using the level of cohesion
in a file [54]. Poshyvanyk et al. [64] also use LSI to capture level of coupling by
the cosine similarity score among files. Ujhazi et al. [80] propose a cohesion
and a coupling metric, based on previous work [53, 54, 64], and provide a
parametric version of the metrics (which we compare our NT metric with). In
addition, Gethers et al. [31] use relational topic models to uncover coupling
among files, and use the level of coupling for prioritizing file inspection work.
We compare our metric with the metrics by Ujhazi et al. [80] and Gethers et
al. [31] in Section 5. We do not compare the metrics by Marcus et al. [53, 54]
and Poshyvanyk et al. [64], since Ujhazi et al. propose new metrics based on
their metrics.

8.3. Understanding and Tuning the Parameters of Topic Model

Since the performance of topic models is correlated with the topic model
parameters, a number of studies try to understand the impact of these pa-
rameters when applying topic models on software engineering tasks. Grant
et al. [33, 34] propose a heuristic to measure the quality of the generated
topics on source code files. Binkley et al. [10] applied LDA on artificial
data to understand the effect of each LDA parameter on the resulting top-
ics. Panichella et al. [62] propose an approach to search for the best set of
LDA parameters according to clustering distances. Biggers et al. [9] tried
different combination of LDA parameters and input for LDA-based feature
location techniques, and provided some recommendation for the parameters
when using LDA for feature location. Since most prior studies usually try to
understand the effect of LDA parameters for a specific software engineering
task [23], it is difficult to generalize the findings on other tasks. Thus, in
this paper, we also include a sensitivity analysis where we vary the LDA
parameters and thresholds. We found the parameters and thresholds do not
have significant impact on how well the resulting topic-based metrics explain
defect.

47

9. Conclusions and Future Work

In this paper, we aim to understand the relationship between the con-
ceptual concerns in source code files, i.e., their technical content, with their
defect-proneness. To do so, we captured the concerns in each file using topics,
and proposed new metrics based on these topics. In particular, we considered
the defect history of each topic, which we hypothesized would help better ex-
plain the defect-proneness of the files.

To evaluate our new metrics, we performed a detailed case study on multi-
ple versions of four large, real-world systems: Mylyn, Mozilla Firefox, Eclipse,
and NetBeans. The highlights of our study results include:

• A small number of topics is much more defect-prone than others.

• The defect-proneness of a topic tends to hold over time.

• The more topics a file has, the higher the chances it has defects.

• The more defect-prone topics (determined using pre-release defects) a
file has, the higher the chances that it has post-release defects.

• Our proposed topic-based metrics (number of topics, topic membership,
number of defect-prone topics, and defect-prone topic membership) pro-
vide additional defect explanatory power over existing static (i.e., LOC)
and historical (i.e., PRE and churn) metrics, suggesting that our metrics
provide additional information about the quality of the code. Further
studies should consider using such metrics alongside traditional metrics
for building defect prediction models.

• Our NT metric, which measures the level of cohesion in a file, outper-
forms other topic-based cohesion and coupling metrics. Practitioners
may benefit from including our metric when studying software cohesion
and coupling using topic models.

Our goal is to examine the improvement in the defect explanatory power
to traditional static and historical metrics using topics. Since topics are
derived from the source code files and can also be combined with pre-release
defects to discover defect-prone topics, we examine the improvement of our
topic-based metrics on static and historical metrics separately. It is possible
to combine different topics metrics, such as NT and NDT, in our defect

48

explanation models. However, we leave the full investigation of all possible
metric combinations to future work. We also plan to consider using other
information sources, such as defect reports or mailing lists, to help explain
defects. For instance, we can add topics derived from the commit messages
to the corresponding files.

Acknowledgements

We thank Dr. Yasutaka Kamei for providing us the bug datasets of the
studied systems that are used in this paper.

References

[1] Eclipse. http://www.eclipse.org/, 2012.

[2] Mozilla firefox. http://www.mozilla.org/, 2012.

[3] Mylyn. http://www.eclipse.org/mylyn/, 2012.

[4] Netbeans. http://netbeans.org/, 2012.

[5] Edward B. Allen and Taghi M. Khoshgoftaar. Measuring coupling and
cohesion: An information-theory approach. In Proceedings of the 6th
International Symposium on Software Metrics, pages 119–, 1999.

[6] H. U Asuncion, A. U Asuncion, and R. N Taylor. Software traceability
with topic modeling. In Proceedings of the 32nd International Confer-
ence on Software Engineering, pages 95–104, 2010.

[7] Pierre F. Baldi, Cristina V. Lopes, Erik J. Linstead, and Sushil K. Ba-
jracharya. A theory of aspects as latent topics. In Proceedings of the 23rd
ACM SIGPLAN Conference on Object-oriented Programming Systems
Languages and Applications, pages 543–562, 2008.

[8] James M. Bieman and Byung-Kyoo Kang. Measuring design-level cohe-
sion. IEEE Transactions on Software Engineering, 24(2):111–124, 1998.

[9] Lauren R. Biggers, Cecylia Bocovich, Riley Capshaw, Brian P. Eddy,
Letha H. Etzkorn, and Nicholas A. Kraft. Configuring latent dirichlet
allocation based feature location. Empirical Softw. Engg., 19(3):465–
500, June 2014.

49

[10] David Binkley, Daniel Heinz, Dawn Lawrie, and Justin Overfelt. Un-
derstanding lda in source code analysis. In Proceedings of the 22Nd In-
ternational Conference on Program Comprehension, ICPC 2014, pages
26–36, 2014.

[11] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall,
and Premkumar Devanbu. Don’t touch my code!: Examining the effects
of ownership on software quality. In Proceedings of the 19th Symposium
on the Foundations of Software Engineering and the 13rd European Soft-
ware Engineering Conference, pages 4–14, 2011.

[12] S. Biyani and P. Santhanam. Exploring defect data from development
and customer usage on software modules over multiple releases. In Pro-
ceedings of the 9th International Symposium on Software Reliability En-
gineering, pages 316–320, 1998.

[13] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet
allocation. Journal of Machine Learning Research, 3:993–1022, March
2003.

[14] S. Boslaugh and P.A. Watters. Statistics in a Nutshell: A Desktop Quick
Reference. In a Nutshell (O’Reilly). O’Reilly Media, 2008.

[15] Lionel C. Briand, John W. Daly, and Jürgen Wüst. A unified framework
for cohesion measurement in object-orientedsystems. Empirical Software
Engineering, 3(1):65–117, July 1998.

[16] Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della
Pietra, and Jenifer C. Lai. Class-based n-gram models of natural lan-
guage. Computational Linguistics, 18:467–479, December 1992.

[17] Anderson David R Burnham Kenneth P. Multimodel inference: Un-
derstanding AIC and BIC in model selection. Sociological Methods Re-
search, 33:467–479, November 2004.

[18] Heung Seok Chae, Yong Rae Kwon, and Doo-Hwan Bae. A cohesion
measure for object-oriented classes. Software Practice & Experience,
30(12):1405–1431, October 2000.

50

[19] Jonathan Chang and David Blei. Relational topic models for document
networks. In Proceedings of the 12th International Conference on Arti-
cial Intelligence and Statistics, 2009.

[20] Tse-Hsun Chen. Studying software quality using topic models. Master’s
thesis, School of Computing, Queen’s University, 2013.

[21] Tse-Hsun Chen. http://sailhome.cs.queensu.ca/replication/topicExplain,
2014.

[22] Tse-Hsun Chen, S. W. Thomas, Meiyappan Nagappan, and A. E. Has-
san. Explaining software defects using topic models. In Proceedings of
the 9th Working Conference on Mining Software Repositories, 2012.

[23] Tse-Hsun Chen, StephenW. Thomas, and Ahmed E. Hassan. A survey
on the use of topic models when mining software repositories. Empirical
Software Engineering, pages 1–77, 2015.

[24] Brendan Cleary, Chris Exton, Jim Buckley, and Michael English. An
empirical analysis of information retrieval based concept location tech-
niques in software comprehension. Empirical Software Engineering,
14(1):93–130, 2008.

[25] S G Crawford, A A McIntosh, and D Pregibon. An analysis of static
metrics and faults in c software. Journal of Systems and Software, 5:37–
48, 1985.

[26] E.E. Cureton and R.B. D’Agostino. Factor Analysis: An Applied Ap-
proach. Lawrence Erlbaum Associates, 1993.

[27] Marco DAmbros, Michele Lanza, and Romain Robbes. An extensive
comparison of bug prediction approaches. pages 31–41, 2010.

[28] Marc Eaddy, Thomas Zimmermann, Kaitlin D. Sherwood, Vibhav Garg,
Gail C. Murphy, Nachiappan Nagappan, and Alfred V. Aho. Do cross-
cutting concerns cause defects? IEEE Transactions on Software Engi-
neering, 34:497–515, July 2008.

[29] R.M. Feldman and C. Valdez-Flores. Applied Probability and Stochastic
Processes. Springer, 2010.

51

[30] N.E. Fenton. Software metrics: a rigorous approach. Chapman & Hall,
1991.

[31] M. Gethers and D. Poshyvanyk. Using relational topic models to cap-
ture coupling among classes in object-oriented software systems. In Pro-
ceedings of the 26th International Conference on Software Maintenance,
pages 1–10, 2010.

[32] M.A. Golberg and H.A. Cho. Introduction to regression analysis. 2004.

[33] Scott Grant and James R. Cordy. Estimating the optimal number of
latent concepts in source code analysis. In Proceedings of the 2010 10th
IEEE Working Conference on Source Code Analysis and Manipulation,
SCAM ’10, pages 65–74, 2010.

[34] Scott Grant, James R. Cordy, and David B. Skillicorn. Using heuris-
tics to estimate an appropriate number of latent topics in source code
analysis. Science of Computer Programming, 78(9):1663 – 1678, 2013.

[35] Tibor Gyimothy, Rudolf Ferenc, and Istvan Siket. Empirical validation
of object-oriented metrics on open source software for fault prediction.
IEEE Transactions on Software Engineering, 31(10):897–910, October
2005.

[36] C.T. Haan. Statistical methods in hydrology. Iowa State University Press,
1977.

[37] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A systematic
review of fault prediction performance in software engineering. IEEE
Transactions on Software Engineering, PP(99), 2011.

[38] Ahmed E. Hassan. Automated classification of change messages in open
source projects. In Proceedings of the 2008 ACM symposium on Applied
computing, pages 837–841, 2008.

[39] Matthew D. Hoffman, David M. Blei, and Francis R. Bach. Online
learning for latent dirichlet allocation. In Neural Information Processing
Systems, pages 856–864, 2010.

[40] T. Hofmann. Probabilistic Latent Semantic Indexing. In Proceedings
of the 22nd International Conference on Research and Development in
Information Retrieval, pages 50–57, 1999.

52

[41] S. Ihara. Information Theory for Continuous Systems. World Scientific,
1993.

[42] Graylin Jay, Joanne E. Hale, Randy K. Smith, David P. Hale,
Nicholas A. Kraft, and Charles Ward. Cyclomatic complexity and lines
of code: Empirical evidence of a stable linear relationship. Journal of
Software Engineering and Applications, 2:137–143, 2009.

[43] I.T. Jolliffe. Principal component analysis. Springer-Verlag, 2002.

[44] Stephen H. Kan. Metrics and Models in Software Quality Engineering.
Addison-Wesley Longman Publishing Co., Inc., 2nd edition, 2002.

[45] Adrian Kuhn, Stéphane Ducasse, and Tudor Gı́rba. Semantic clustering:
Identifying topics in source code. Information and Software Technology,
49:230–243, March 2007.

[46] M.H. Kutner, C. Nachtsheim, and J. Neter. Applied linear regression
models. 2004.

[47] J. Richard Landis and Gary G. Koch. The measurement of observer
agreement for categorical data. Biometrics, 33(1), 1977.

[48] E. Linstead, C. Lopes, and P. Baldi. An application of latent Dirichlet
allocation to analyzing software evolution. In Proceedings of Seventh
International Conference on Machine Learning and Applications, pages
813–818, 2008.

[49] Yixun Liu, D. Poshyvanyk, R. Ferenc, T. Gyimothy, and N. Chriso-
choides. Modeling class cohesion as mixtures of latent topics. In Pro-
ceedings of the 25th International Conference on Software Maintenance,
pages 233 –242, 2009.

[50] Stacy K. Lukins, Nicholas A. Kraft, and Letha H. Etzkorn. Bug lo-
calization using latent dirichlet allocation. Information and Software
Technology, 52:972–990, September 2010.

[51] A. Macro and J.N. Buxton. The craft of software engineering. 1987.

[52] C.D. Manning, P. Raghavan, and H. Schütze. Introduction to Informa-
tion Retrieval. Cambridge University Press, 2008.

53

[53] Andrian Marcus and Denys Poshyvanyk. The conceptual cohesion of
classes. In Proceedings of the 21st IEEE International Conference on
Software Maintenance, pages 133–142, 2005.

[54] Andrian Marcus, Denys Poshyvanyk, and Rudolf Ferenc. Using the
conceptual cohesion of classes for fault prediction in object-oriented
systems. IEEE Transactions on Software Engineering, 34(2):287–300,
March 2008.

[55] Girish Maskeri, Santonu Sarkar, and Kenneth Heafield. Mining business
topics in source code using latent Dirichlet allocation. In Proceedings of
the 1st India Software Engineering Conference, pages 113–120, 2008.

[56] Andrew Kachites McCallum. Mallet: A machine learning for language
toolkit. http://mallet.cs.umass.edu, 2002.

[57] T. Menzies, A Butcher, D. Cok, A Marcus, L. Layman, F. Shull,
B. Turhan, and T. Zimmermann. Local versus global lessons for de-
fect prediction and effort estimation. IEEE Transactions on Software
Engineering, 39(6):822–834, June 2013.

[58] N. Nagappan and T. Ball. Use of relative code churn measures to predict
system defect density. In Proceedings of 27th International Conference
on Software Engineering, pages 284–292, 2005.

[59] Thanh H. D. Nguyen, Bram Adams, and Ahmed E. Hassan. A case
study of bias in bug-fix datasets. In Proceedings of the 17th Working
Conference on Reverse Engineering, pages 259–268, 2010.

[60] Tung Thanh Nguyen, Tien N. Nguyen, and Tu Minh Phuong. Topic-
based defect prediction. In Proceedings of the 33rd International Con-
ference on Software Engineering, pages 932–935, 2011.

[61] A. Oram and G. Wilson. Making Software: What Really Works, and
Why We Believe It. O’Reilly Series. O’Reilly Media, Incorporated, 2010.

[62] Annibale Panichella, Bogdan Dit, Rocco Oliveto, Massimiliano
Di Penta, Denys Poshyvanyk, and Andrea De Lucia. How to effectively
use topic models for software engineering tasks? an approach based on
genetic algorithms. In Proceedings of the 2013 International Conference
on Software Engineering, ICSE ’13, pages 522–531, 2013.

54

[63] D. Poshyvanyk, Y. Gueheneuc, A. Marcus, G. Antoniol, and V. Rajlich.
Feature location using probabilistic ranking of methods based on execu-
tion scenarios and information retrieval. IEEE Transactions on Software
Engineering, pages 420–432, 2007.

[64] Denys Poshyvanyk and Andrian Marcus. The conceptual coupling met-
rics for object-oriented systems. In Proceedings of the 22nd IEEE Inter-
national Conference on Software Maintenance, pages 469–478, 2006.

[65] Adrian Raftery. Bayesian model selection in social research (with dis-
cussion). Sociological Methodology, 25:111–163, 1995.

[66] Shivani Rao and Avinash Kak. Retrieval from software libraries for bug
localization: A comparative study of generic and composite text mod-
els. In Proceeding of the 8th Working Conference on Mining Software
Repositories, pages 43–52, 2011.

[67] Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. Using struc-
tural and textual information to capture feature coupling in object-
oriented software. Empirical Software Engineering, 16(6), 2011.

[68] J. Rosenberg. Some misconceptions about lines of code. In Proceedings
of the 4th International Symposium on Software Metrics, pages 137–142,
1997.

[69] Sandra A. Slaughter, Donald E. Harter, and Mayuram S. Krishnan.
Evaluating the cost of software quality. Communications of the ACM,
41:67–73, August 1998.

[70] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do
changes induce fixes? In Proceedings of the 2005 international workshop
on Mining software repositories, pages 1–5, 2005.

[71] I. Sommerville. Software Engineering. International Computer Science
Series. Pearson, 2011.

[72] J.H. Stapleton. Models for probability and statistical inference: theory
and applications. 2008.

[73] S. W. Thomas. Mining software repositories with topic models. PhD
thesis, School of Computing, Queen’s University, 2012.

55

[74] S. W. Thomas, B. Adams, D. Blostein, and A. E. Hassan. Studying soft-
ware evolution using topic models. Science of Computer Programming,
pages 1–23, 2013.

[75] S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein. Static test
case prioritization using topic models. Empirical Software Engineering,
pages 1–31, 2012.

[76] Stephen W. Thomas. Preprocessing tool.
https://github.com/doofuslarge/lscp, 2012.

[77] Stephen W. Thomas, Bram Adams, Ahmed E. Hassan, and Dorothea
Blostein. Validating the use of topic models for software evolution. In
Proceedings of the 10th International Working Conference on Source
Code Analysis and Manipulation, pages 55–64, 2010.

[78] Stephen W. Thomas, Bram Adams, Ahmed E. Hassan, and Dorothea
Blostein. Modeling the evolution of topics in source code histories. In
Proceedings of the 8th Working Conference on Mining Software Reposi-
tories, pages 173–182, 2011.

[79] K. Tian, M. Revelle, and D. Poshyvanyk. Using latent Dirichlet al-
location for automatic categorization of software. In Proceedings of the
6th International Working Conference on Mining Software Repositories,
pages 163–166, 2009.

[80] Bela Ujhazi, Rudolf Ferenc, Denys Poshyvanyk, and Tibor Gyimothy.
New conceptual coupling and cohesion metrics for object-oriented sys-
tems. In Proceedings of the 2010 10th IEEE Working Conference on
Source Code Analysis and Manipulation, pages 33–42, 2010.

[81] H. Wallach, D. Mimno, and A. McCallum. Rethinking LDA: Why priors
matter. Proceedings of Neural Information Processing Systems, Vancou-
ver, BC, 2009.

[82] Hanna M. Wallach. Topic modeling: Beyond bag-of-words. In Proceed-
ings of the 23rd International Conference on Machine Learning, ICML
’06, pages 977–984, 2006.

56

A. A Five-number Summary and Skewness of CDDTPOST

Table 15: A five-number summary and skewness of the CDDTPOST of topics in each version
in the studied systems. The CDDTPOST is highly skewed, and most of the topics have a
CDDTPOST value close to zero.

Min. 1st Qu. Median 3rd Qu. Max. Skewness Skewness of
top 25%

defect-prone
topics

Mylyn 1.0 0.00 0.00 0.00 0.01 0.33 7.18 4.54
Mylyn 2.0 0.00 0.00 0.01 0.02 0.50 7.41 5.19
Mylyn 3.0 0.00 0.00 0.00 0.01 0.18 6.00 4.10

Eclipse 2.0 0.00 0.00 0.01 0.03 1.66 13.28 7.64
Eclipse 2.1 0.00 0.00 0.01 0.03 1.16 7.92 4.63
Eclipse 3.0 0.00 0.01 0.02 0.06 1.25 4.90 3.24

Firefox 1.0 0.00 0.00 0.00 0.00 0.07 6.44 3.61
Firefox 1.5 0.00 0.00 0.00 0.00 0.09 5.88 3.23
Firefox 2.0 0.00 0.00 0.00 0.00 0.07 7.96 4.14

NetBeans 4.0 0.00 0.00 0.00 0.00 0.17 10.29 6.12
NetBeans 5.0 0.00 0.00 0.00 0.00 0.06 5.62 2.98
NetBeans 5.5.1 0.00 0.00 0.00 0.01 0.13 4.08 2.67

B. Hexbin Plots of NDT vs NT

In the hexbin plots, the data points (i.e., NT and NDT) are bounded by
hexagons, and the colour of the hexagon represents the frequency of the data
points.

57

5 10 15 20 25

0

5

10

15

20

NT

N
D

T

1
3
5
7
9
11
12
14
16
18
20
22
24
26
28
30
32
34
35
37
39
41
43
45

Counts

(a) Mylyn 1.0

5 10 15 20

0

5

10

15

20

NT
N

D
T

1
3
4
6
8
9
11
13
14
16
18
19
21
22
24
26
27
29
31
32
34
36
37
39

Counts

(b) Mylyn 2.0

5 10 15 20 25

0

5

10

15

20

NT

N
D

T

1
3
5
6
8
10
12
13
15
17
19
21
22
24
26
28
30
31
33
35
37
38
40
42

Counts

(c) Mylyn 3.0

Figure 6: Hexbin plots of NDT vs NT for Mylyn.

58

5 10 15 20 25

0

5

10

15

NT

N
D

T

1
9
18
26
35
43
52
60
69
77
86
94

103
111
120
128
137
145
154
162
171
179
188
196

Counts

(a) Eclipse 2.0

5 10 15 20 25

0

5

10

15

20

NT
N

D
T

1
12
22
33
43
54
64
75
86
96

107
117
128
138
149
159
170
181
191
202
212
223
233
244

Counts

(b) Eclipse 2.1

5 10 15 20 25

0

5

10

15

20

NT

N
D

T

1
14
26
39
51
64
76
89

102
114
127
139
152
164
177
189
202
215
227
240
252
265
277
290

Counts

(c) Eclipse 3.0

Figure 7: Hexbin plots of NDT vs NT for Eclipse.

59

5 10 15

0

2

4

6

8

10

12

NT

N
D

T

1
47
94

140
186
233
279
325
371
418
464
510
557
603
649
696
742
788
834
881
927
973
1020
1066

Counts

(a) Firefox 1.0

5 10 15

0

2

4

6

8

10

12

14

NT
N

D
T

1
50

100
149
198
247
297
346
395
444
494
543
592
641
691
740
789
838
888
937
986
1035
1085
1134

Counts

(b) Firefox 1.5

5 10 15 20

0

2

4

6

8

10

12

NT

N
D

T

1
49
97

145
193
241
289
337
385
433
481
529
577
625
673
721
769
817
865
913
961
1009
1057
1105

Counts

(c) Firefox 2.0

Figure 8: Hexbin plots of NDT vs NT for Firefox.

60

5 10 15 20 25

0

5

10

15

NT

N
D

T

1
6
12
17
23
28
33
39
44
50
55
60
66
71
76
82
87
93
98

103
109
114
120
125

Counts

(a) NetBeans 4.0

5 10 15 20 25 30

0

5

10

15

20

NT
N

D
T

1
13
25
36
48
60
72
83
95

107
119
131
142
154
166
178
190
201
213
225
237
248
260
272

Counts

(b) NetBeans 5.0

5 10 15 20 25 30

0

5

10

15

20

25

NT

N
D

T

1
20
40
59
79
98

118
137
156
176
195
215
234
254
273
293
312
331
351
370
390
409
429
448

Counts

(c) NetBeans 5.5.1

Figure 9: Hexbin plots of NDT vs NT for NetBeans.

61

C. Top Words and Defect Densities of the Most/Least Defect-
prone Topics

Table 16: Top words and defect densities of the most/least defect-prone topics in our
studied systems. The number on the left-hand side of each column represents the topic
ID.

Most Defect-Prone Least Defect-Prone
Top words Density Top words Density

Mylyn 1.0

421 mylar, eclips, eclips mylar, 0.334 405 src, dest, base, <0.001
mylar intern, mylar task imag, fragment, imag pattern

164 task, list, task list, 0.182 178 lower color, part, put light <0.001
task ui, ui, plugin green lower, jface, medium

400 test, suit, test suit, 0.180 175 monitor, gzip, configur, <0.001
add test, add, suit add key, bugzilla attribut, iter

Mylyn 2.0

143 task, eclips, eclips mylyn, 0.502 405 src, dest, base, <0.001
mylyn, ui, task ui imag, fragment, imag pattern

457 eclips, mylyn, eclips mylyn, 0.244 178 lower color, part, put light, <0.001
intern, mylyn intern, core green lower, jface, medium

164 task, list, task list 0.207 175 monitor, gzip, configur, <0.001
task ui, ui, plugin key, bugzilla attribut, iter

Mylyn 3.0

143 task, eclips, eclips mylyn, 0.181 178 lower color, part, put light, <0.001
mylyn, ui, task ui green lower, jface, medium

457 eclips, mylyn, eclips mylyn, 0.111 310 aa, comparison check, comparison, <0.001
intern, mylyn intern, core check, check aa, aa comparison

168 repositori, task repositori, 0.092 6 select, caller, calle, <0.001
task core, repositori editor, part, foo

Continued in Table 17.

62

Table 17: Continued from Table 16. Top words and defect densities of the most/least
defect-prone topics in our studied systems. The number on the left-hand side of each
column represents the topic ID.

Most Defect-Prone Least Defect-Prone
Top words Density Top words Density

Eclipse 2.0

174 express, method, declar, 1.663 116 0xff, 0xff 0xff, src, <0.001
ast, node, astnod dst, 0xa, 0xf

496 option, local, seccion, 0.691 146 printer, data, printer data, <0.001
folder, ccv core, local option code, error, dispos

492 team, eclips team, eclips, 0.325 316 run, line, offset, <0.001
ccv, intern ccv, team intern style, length, item

Eclipse 2.1

143 form, toolkit, dfm, 1.164 192 arg, vtbl, arg arg, <0.001
nfm, ui, eclips ui guid, iidfrom, system

131 ant, eclips, task, 0.779 325 token, scribe, align, <0.001
eclips ant, ui, intern print, scribe print, space

233 bundl, recourc, resourc bundl, 0.572 116 0xff, 0xff 0xff, src, <0.001
kei, bundl resourc, messag dst, 0xa, 0xf

Eclipse 3.0

462 memori, block,render, 1.247 330 packet, print, id, <0.001
memori block, view, address command, stream, spy

169 transfer,data,code, 0.708 182 array, constant, array dim, <0.001
transfer data, java, object dim, pixbuf, paramet

131 ant, eclips, task, 0.700 270 pt, ph, pt arg, <0.001
eclips ant, ui, intern arg, pg, wm

Continued in Table 18.

63

Table 18: Continued from Table 17. Top words and defect densities of the most/least
defect-prone topics in our studied systems. The number on the left-hand side of each
column represents the topic ID.

Most Defect-Prone Least Defect-Prone
Top words Density Top words Density

Firefox 1.0

462 list, val, isvgvalu, 0.067 359 ghhd, sbz yxkgd, yxkgd, <0.001
modifi, observ, imethodimp sbz, yxkgd ghhd, vghle sbz

381 frame, svgframe, comptr, 0.038 280 sane, plugin, zoom, <0.001
queri, kid, add sane plugin, instanc, error

101 rv, rv rv, comptr, 0.038 361 child, border, spec, <0.001
nsresult, fail, fail rv num, color, col

Firefox 1.5

305 elem, rv, length, 0.088 359 ghhd, sbz yxkgd, yxkgd, <0.001
map, rv rv, comptr sbz, yxkgd ghhd, vghle sbz

413 xform, elem, model, 0.087 280 sane, plugin, zoom, <0.001
wrapper, instanc, xform xpath sane plugin, instanc, error

101 rv, rv rv, comptr, 0.078 335 ck, rv, pr, <0.001
nsresult, fail, fail rv log, modlog, log modlog

Firefox 2.0

168 param, info, pruint, 0.071 359 ghhd, sbz yxkgd, yxkgd, <0.001
xpttype, val, count sbz, yxkgd ghhd, vghle sbz

305 elem, rv, length, 0.061 100 frame, pfd, span, <0.001
map, rv rv, comptr psd, width, line

80 access, state, retval, 0.048 280 sane, plugin, zoom, <0.001
shell, node, comptr sane plugin, instanc, error

Continued in Table 19.

64

Table 19: Continued from Table 18. Top words and defect densities of the most/least
defect-prone topics in our studied systems. The number on the left-hand side of each
column represents the topic ID.

Most Defect-Prone Least Defect-Prone
Top words Density Top words Density

NetBeans 4.0

182 model, node, type, 0.168 236 node, layout, properti, <0.001
tree, tree model, unknown form, code, buf

372 grid, bag, grid bag, 0.058 211 level, sourc level, platform kei, <0.001
constraint, bag constraint, awt modul, chang, version

219 project, helper, ant, 0.050 455 prop, set, adaptor, <0.001
properti, project helper, evalu dmd, sqlexcept, max

NetBeans 5.0

57 path, cp, classpath, 0.058 236 node, layout, properti, <0.001
recourc, implement, java form, code, buf

484 queri, javadoc, binari, 0.045 211 level, sourc level, platform kei, <0.001
root, file, binari queri modul, chang, version

375 artifact, path, librari, 0.044 455 prop, set, adaptor, <0.001
project, ant, ant artifact dmd, sqlexcept, max

NetBeans 5.5.1

97 midp, compon, present, 0.127 14 properti, pw, tf, <0.001
vmd, modul vmd, modul properti sheet, sheet, text

389 token, token token, offset, 0.125 73 jj, kind, cur, <0.001
sequenc, lexer, token id state, activ, po

142 test, suit, junit, 0.110 39 jelli, mbean, constant, <0.001
test test, test suit, netbean jelli constant, nfwo, helper

65

D. Pair-wise correlation between all topic-based cohesion and cou-
pling metrics and LOC

Table 20: Pair-wise correlation between all topic-based cohesion and coupling metrics and
LOC. “*” indicates a p-value < 0.05.

Mylyn 1.0
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.49* — — — —
RTCs 0.38* -0.35* — — —

CCBO -0.15* 0.13* -0.04 — —
CLCOM5 0.12* 0.01 -0.04 -0.10* —

LOC 0.38* -0.37* 0.04 -0.17* 0.63*

Mylyn 2.0
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.48* — — — —
RTCs 0.02 -0.05 — — —

CCBO -0.15* 0.12* 0.04 — —
CLCOM5 0.12* -0.02 -0.07* -0.10* —

LOC 0.37* -0.39* -0.03 -0.16* 0.64*

Mylyn 3.0
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.51* — — — —
RTCs 0.00 -0.03 — — —

CCBO -0.19* 0.14* 0.00 — —
CLCOM5 0.15* -0.01 0.00 -0.06* —

LOC 0.42* -0.36* 0.04 -0.15* 0.66*

Continued in Table 21.

66

Table 21: Continued from Table 20. Pair-wise correlation between all topic-based cohesion
and coupling metrics and LOC. “*” indicates a p-value < 0.05.

Firefox 1.0
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.63* — — — —
RTCs 0.04* 0.12* — — —

CCBO -0.53* 0.49* 0.16* — —
CLCOM5 0.34* -0.30* -0.26* -0.24* —

LOC 0.45* -0.51* -0.31* -0.33* 0.78*

Firefox 1.5
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.62* — — — —
RTCs -0.01 0.01 — — —

CCBO -0.52* 0.48* 0.00 — —
CLCOM5 0.32* -0.28* 0.01 -0.21* —

LOC 0.43* -0.49* 0.02 -0.30* 0.78*

Firefox 2.0
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.63* — — — —
RTCs 0.02 -0.02 — — —

CCBO -0.51* 0.48* -0.02 — —
CLCOM5 0.33* -0.28* 0.00 -0.20* —

LOC 0.44* -0.49* 0.00 -0.30* 0.78*

Continued in Table 22.

67

Table 22: Continued from Table 21. Pair-wise correlation between all topic-based cohesion
and coupling metrics and LOC. “*” indicates a p-value < 0.05.

Eclipse 2.0
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.47* — — — —
RTCs 0.35* -0.39* — — —

CCBO -0.49* 0.29* -0.15* — —
CLCOM5 0.10 -0.01* 0.07* 0.01* —

LOC 0.35* -0.40* 0.23* -0.16* 0.70*

Eclipse 2.1
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.48* — — — —
RTCs 0.00 0.00 — — —

CCBO -0.47* 0.29* 0.00 — —
CLCOM5 0.14* -0.01* 0.01 0.02* —

LOC 0.40* -0.38* 0.01 -0.15* 0.71*

Eclipse 3.0
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.47* — — — —
RTCs -0.01 0.00 — — —

CCBO -0.39* 0.31* 0.03* — —
CLCOM5 0.16* -0.01 0.02 0.04* —

LOC 0.41* -0.38* 0.01 -0.15* 0.71*

Continued in Table 23.

68

Table 23: Continued from Table 22. Pair-wise correlation between all topic-based cohesion
and coupling metrics and LOC. “*” indicates a p-value < 0.05.

NetBeans 4.0
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE 0.00 — — — —
RTCs 0.02 -0.30* — — —

CCBO -0.01 0.21* -0.09 — —
CLCOM5 0.06* 0.00 0.11* 0.02 —

LOC 0.08* -0.31* 0.22* -0.09* 0.68*

NetBeans 5.0
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.41* — — — —
RTCs 0.00 0.00 — — —

CCBO -0.38* 0.14* -0.01 — —
CLCOM5 0.19* 0.00 0.00 -0.02 —

LOC 0.40* -0.33* -0.01 -0.06 0.68*

NetBeans 5.5.1
NT MWE RTCs CCBO CLCOM5

NT — — — — —
MWE -0.47* — — — —
RTCs -0.01 0.00 — — —

CCBO -0.37* 0.17* 0.00 — —
CLCOM5 0.21* 0.00 0.01 -0.03* —

LOC 0.44* -0.32* 0.01 -0.10* 0.67*

69

E. Results of the parameter sensitivity analysis

Table 24: Results of the parameter sensitivity analysis. The baseline parameters and their
values are shown in the table. For each system, we show the D2 when the parameter
changes. The values in the parentheses indicate the increase/decrease from the baseline
D2 score. “*” indicates the metric is statistically significant (i.e., p-value < 0.05).

Baseline Values: K=500, II=10,000, δ=0.01

NT NDT
Lower Higher Lower Higher

Mylyn 1.0 Baseline D2: LOC+NT = 0.14 Baseline PRE+CHURN+NDT = 0.24

K=

10 0.10* (-0.04) — —

K=

10 0.21 (-0.03) — —
100 0.14* (—) — — 100 0.21 (-0.03) — —
200 0.14* (—) — — 200 0.22* (-0.02) — —
300 0.15* (+0.01)

K=
600 0.14* (—) 300 0.23* (-0.01)

K=
600 0.24* (—)

400 0.14* (—) 700 0.13* (-0.01) 400 0.23* (-0.01) 700 0.22* (-0.02)

II=
8K 0.14* (—)

II=
11K 0.14* (—)

II=
8K 0.24* (—)

II=
11K 0.24* (—)

9K 0.14* (—) 12K 0.14* (—) 9K 0.24* (—) 12K 0.24* (—)

δ=
0.0025 0.14* (—)

δ=
0.02 0.14* (—)

δ=
0.0025 0.24* (—)

δ=
0.02 0.22* (-0.02)

0.005 0.14* (—) 0.04 0.13* (-0.01) 0.005 0.24* (—) 0.04 0.21* (-0.03)

Mylyn 2.0 Baseline D2: LOC+NT = 0.19 Baseline PRE+CHURN+NDT = 0.23

K=

10 0.16* (-0.03) — —

K=

10 0.23* (—) — —
100 0.17* (-0.02) — — 100 0.23* (—) — —
200 0.18* (-0.01) — — 200 0.23* (—) — —
300 0.18* (-0.01)

K=
600 0.18* (-0.01) 300 0.23* (—)

K=
600 0.23* (—)

400 0.19* (—) 700 0.20* (+0.01) 400 0.23* (—) 700 0.24* (+0.01)

II=
8K 0.19* (—)

II=
11K 0.19* (—)

II=
8K 0.23* (—)

II=
11K 0.23* (—)

9K 0.19* (—) 12K 0.19* (—) 9K 0.23* (—) 12K 0.23* (—)

δ=
0.0025 0.19* (—)

δ=
0.02 0.19* (—)

δ=
0.0025 0.24* (+0.01)

δ=
0.02 0.22* (-0.01)

0.005 0.19* (—) 0.04 0.19* (—) 0.005 0.24* (+0.01) 0.04 0.22 (-0.01)

Mylyn 3.0 Baseline D2: LOC+NT = 0.20 Baseline PRE+CHURN+NDT = 0.29

K=

10 0.15* (-0.05) — —

K=

10 0.29* (—) — —
100 0.20 (—) — — 100 0.29* (—) — —
200 0.20 (—) — — 200 0.29* (—) — —
300 0.20* (—)

K=
600 0.20* (—) 300 0.29* (—)

K=
600 0.29* (—)

400 0.21* (+0.01) 700 0.21* (+0.01) 400 0.29* (—) 700 0.29* (—)

II=
8K 0.20* (—)

II=
11K 0.20* (—)

II=
8K 0.29 (—)

II=
11K 0.29* (—)

9K 0.20* (—) 12K 0.20* (—) 9K 0.29 (—) 12K 0.29* (—)

δ=
0.0025 0.19* (-0.01)

δ=
0.02 0.20* (—)

δ=
0.0025 0.29* (—)

δ=
0.02 0.29* (—)

0.005 0.20* (—) 0.04 0.18* (-0.02) 0.005 0.29* (—) 0.04 0.28 (-0.01)

Continued in Table 25.

70

Table 25: Continued from Table 24. Results of the parameter sensitivity analysis. The
baseline parameters and their values are shown in the table. For each system, we show
the D2 when the parameter changes. The values in the parentheses indicate the in-
crease/decrease from the baseline D2 score. “*” indicates the metric is statistically signif-
icant (i.e., p-value < 0.05).

Baseline Values: K=500, II=10,000, δ=0.01

NT NDT
Lower Higher Lower Higher

Firefox 1.0 Baseline D2: LOC+NT = 0.16 Baseline PRE+CHURN+NDT = 0.18

K=

10 0.13* (-0.03) — —

K=

10 0.17* (-0.01) — —
100 0.15* (-0.01) — — 100 0.17* (-0.01) — —
200 0.16* (—) — — 200 0.19* (+0.01) — —
300 0.16* (—)

K=
600 0.16* (—) 300 0.19* (+0.01)

K=
600 0.18* (—)

400 0.16* (—) 700 0.17* (+0.01) 400 0.18* (—) 700 0.19* (+0.01)

II=
8K 0.16* (—)

II=
11K 0.16* (—)

II=
8K 0.18* (—)

II=
11K 0.18* (—)

9K 0.16* (—) 12K 0.16* (—) 9K 0.18* (—) 12K 0.18* (—)

δ=
0.0025 0.16* (—)

δ=
0.02 0.15* (-0.01)

δ=
0.0025 0.18* (—)

δ=
0.02 0.17* (-0.01)

0.005 0.16* (—) 0.04 0.15* (-0.01) 0.005 0.18* (—) 0.04 0.16* (-0.02)

Firefox 1.5 Baseline D2: LOC+NT = 0.21 Baseline PRE+CHURN+NDT = 0.25

K=
10 0.16* (-0.05) — —

K=

10 0.24* (-0.01) — —
100 0.20* (-0.01) — — 100 0.27* (+0.02) — —
200 0.18* (-0.03) — — 200 0.24* (-0.01) — —
300 0.21* (—)

K=
600 0.21* (—) 300 0.25* (—)

K=
600 0.25* (—)

400 0.21* (—) 700 0.22* (+0.01) 400 0.25* (—) 700 0.25* (—)

II=
8K 0.21* (—)

II=
11K 0.20* (-0.01)

II=
8K 0.25* (—)

II=
11K 0.25* (—)

9K 0.20* (-0.01) 12K 0.21* (—) 9K 0.25* (—) 12K 0.25* (—)

δ=
0.0025 0.21* (—)

δ=
0.02 0.20* (-0.01)

δ=
0.0025 0.26* (+0.01)

δ=
0.02 0.24* (-0.01)

0.005 0.21* (—) 0.04 0.19* (-0.02) 0.005 0.26* (+0.01) 0.04 0.23* (-0.02)

Firefox 2.0 Baseline D2: LOC+NT = 0.17 Baseline PRE+CHURN+NDT = 0.25

K=

10 0.15* (-0.02) — —

K=

10 0.25* (—) — —
100 0.18* (+0.01) — — 100 0.26* (+0.01) — —
200 0.17* (—) — — 200 0.26* (+0.01) — —
300 0.17* (—)

K=
600 0.17* (—) 300 0.25* (—)

K=
600 0.24* (-0.01)

400 0.17* (—) 700 0.18* (+0.01) 400 0.25* (—) 700 0.25* (—)

II=
8K 0.17* (—)

II=
11K 0.17* (—)

II=
8K 0.25* (—)

II=
11K 0.25* (—)

9K 0.17* (—) 12K 0.17* (—) 9K 0.25* (—) 12K 0.25* (—)

δ=
0.0025 0.17* (—)

δ=
0.02 0.17* (—)

δ=
0.0025 0.25* (—)

δ=
0.02 0.24* (-0.01)

0.005 0.17* (—) 0.04 0.16* (-0.01) 0.005 0.25* (—) 0.04 0.24* (-0.01)

Continued in Table 26.

71

Table 26: Continued from Table 25. Results of the parameter sensitivity analysis. The
baseline parameters and their values are shown in the table. For each system, we show
the D2 when the parameter changes. The values in the parentheses indicate the in-
crease/decrease from the baseline D2 score. “*” indicates the metric is statistically signif-
icant (i.e., p-value < 0.05).

Baseline Values: K=500, II=10,000, δ=0.01

NT NDT
Lower Higher Lower Higher

Eclipse 2.0 Baseline D2: LOC+NT = 0.18 PRE+CHURN+NDT = 0.20

K=

10 0.18* (—) — —

K=

10 0.17 (-0.03) — —
100 0.18* (—) — — 100 0.20* (—) — —
200 0.18* (—) — — 200 0.19* (-0.01) — —
300 0.18* (—)

K=
600 0.18* (—) 300 0.18 (-0.02)

K=
600 0.18* (-0.02)

400 0.18 (—) 700 0.18* (—) 400 0.18* (-0.02) 700 0.18* (-0.02)

II=
8K 0.18* (—)

II=
11K 0.18* (—)

II=
8K 0.20* (—)

II=
11K 0.20* (—)

9K 0.18* (—) 12K 0.18* (—) 9K 0.20* (—) 12K 0.20* (—)

δ=
0.0025 0.18* (—)

δ=
0.02 0.18* (—)

δ=
0.0025 0.18* (-0.02)

δ=
0.02 0.21* (+0.01)

0.005 0.18* (—) 0.04 0.18* (—) 0.005 0.19* (-0.01) 0.04 0.21* (+0.01)

Eclipse 2.1 Baseline D2: LOC+NT = 0.11 PRE+CHURN+NDT = 0.15

K=

10 0.12* (+0.01) — —

K=

10 0.15 (—) — —
100 0.11* (—) — — 100 0.15 (—) — —
200 0.12* (+0.01) — — 200 0.15* (—) — —
300 0.11 (—)

K=
600 0.11* (—) 300 0.15* (—)

K=
600 0.15 (—)

400 0.11* (—) 700 0.11 (—) 400 0.15 (—) 700 0.15* (—)

II=
8K 0.11* (—)

II=
11K 0.11* (—)

II=
8K 0.15 (—)

II=
11K 0.15 (—)

9K 0.11* (—) 12K 0.11* (—) 9K 0.15 (—) 12K 0.15 (—)

δ=
0.0025 0.11* (—)

δ=
0.02 0.11* (—)

δ=
0.0025 0.15* (—)

δ=
0.02 0.15 (—)

0.005 0.11* (—) 0.04 0.11* (—) 0.005 0.15* (—) 0.04 0.15 (—)

Eclipse 3.0 Baseline D2: LOC+NT = 0.14 PRE+CHURN+NDT = 0.17

K=

10 0.14 (—) — —

K=

10 0.18* (+0.01) — —
100 0.14 (—) — — 100 0.18* (+0.01) — —
200 0.14 (—) — — 200 0.17* (—) — —
300 0.14* (—)

K=
600 0.14* (—) 300 0.18* (+0.01)

K=
600 0.17 (—)

400 0.14 (—) 700 0.14* (—) 400 0.17* (—) 700 0.18* (+0.01)

II=
8K 0.14* (—)

II=
11K 0.14 (—)

II=
8K 0.17 (—)

II=
11K 0.17 (—)

9K 0.14* (—) 12K 0.14* (—) 9K 0.17 (—) 12K 0.17 (—)

δ=
0.0025 0.14* (—)

δ=
0.02 0.14 (—)

δ=
0.0025 0.17 (—)

δ=
0.02 0.18* (+0.01)

0.005 0.14* (—) 0.04 0.14 (—) 0.005 0.17 (—) 0.04 0.18* (+0.01)

Continued in Table 27.

72

Table 27: Continued from Table 26. Results of the parameter sensitivity analysis. The
baseline parameters and their values are shown in the table. For each system, we show
the D2 when the parameter changes. The values in the parentheses indicate the in-
crease/decrease from the baseline D2 score. “*” indicates the metric is statistically signif-
icant (i.e., p-value < 0.05).

Baseline Values: K=500, II=10,000, δ=0.01

NT NDT
Lower Higher Lower Higher

NetBeans 4.0 Baseline D2: LOC+NT = 0.10 PRE+CHURN+NDT = 0.31

K=

10 0.07 (-0.03) — —

K=

10 0.29* (-0.02) — —
100 0.09* (-0.01) — — 100 0.30* (-0.01) — —
200 0.09* (-0.01) — — 200 0.30* (-0.01) — —
300 0.9* (-0.01)

K=
600 0.10* (—) 300 0.30* (-0.01)

K=
600 0.30* (-0.01)

400 0.10* (—) 700 0.10* (—) 400 0.31* (—) 700 0.30* (-0.01)

II=
8K 0.10* (—)

II=
11K 0.10* (—)

II=
8K 0.31* (—)

II=
11K 0.30* (-0.01)

9K 0.10* (—) 12K 0.10* (—) 9K 0.30* (-0.01) 12K 0.31* (—)

δ=
0.0025 0.11* (+0.01)

δ=
0.02 0.09* (-0.01)

δ=
0.0025 0.30* (-0.01)

δ=
0.02 0.30* (-0.01)

0.005 0.10* (—) 0.04 0.08* (-0.02) 0.005 0.30* (-0.01) 0.04 0.30 (-0.01)

NetBeans 5.0 Baseline D2: LOC+NT = 0.10 Baseline PRE+CHURN+NDT = 0.17

K=
10 0.07 (-0.03) — —

K=

10 0.15* (-0.02) — —
100 0.10* (—) — — 100 0.17* (—) — —
200 0.10* (—) — — 200 0.18* (+0.01) — —
300 0.09* (-0.01)

K=
600 0.10* (—) 300 0.17* (—)

K=
600 0.17* (—)

400 0.11* (+0.01) 700 0.10* (—) 400 0.18* (+0.01) 700 0.18* (+0.01)

II=
8K 0.10* (—)

II=
11K 0.10* (—)

II=
8K 0.17* (—)

II=
11K 0.17* (—)

9K 0.10* (—) 12K 0.10* (—) 9K 0.17* (—) 12K 0.17* (—)

δ=
0.0025 0.11* (+0.01)

δ=
0.02 0.10* (—)

δ=
0.0025 0.18* (+0.01)

δ=
0.02 0.17* (—)

0.005 0.11* (+0.01) 0.04 0.8* (-0.02) 0.005 0.18* (+0.01) 0.04 0.15* (-0.02)

NetBeans 5.5.1 Baseline D2: LOC+NT = 0.11 Baseline PRE+CHURN+NDT = 0.17

K=

10 0.08* (-0.03) — —

K=

10 0.15* (-0.02) — —
100 0.10* (-0.01) — — 100 0.17* (—) — —
200 0.10* (-0.01) — — 200 0.17* (—) — —
300 0.10* (-0.01)

K=
600 0.11* (—) 300 0.17* (—)

K=
600 0.18* (+0.01)

400 0.10* (-0.01) 700 0.11* (—) 400 0.17* (—) 700 0.18* (+0.01)

II=
8K 0.11* (—)

II=
11K 0.11* (—)

II=
8K 0.17* (—)

II=
11K 0.18* (+0.01)

9K 0.11* (—) 12K 0.11* (—) 9K 0.18* (+0.01) 12K 0.17* (—)

δ=
0.0025 0.12* (+0.01)

δ=
0.02 0.10* (-0.01)

δ=
0.0025 0.19* (+0.02)

δ=
0.02 0.16* (-0.01)

0.005 0.11* (—) 0.04 0.8* (-0.03) 0.005 0.18* (+0.01) 0.04 0.14* (-0.03)

73

	Introduction
	Proposed Approach
	Topic Modeling
	Proposed Topic-based Metrics
	Cumulative Defect Density of a Topic
	Static Topic-based Metrics
	Historical Topic-based Metrics

	Case Study Design
	Studied Systems
	Data Preprocessing
	Topic Modeling

	Case Study Results
	RQ1: Are some topics more defect-prone than other topics?
	Approach
	Results
	Discussion

	RQ2: Can our proposed topic-based metrics help explain why some files are more defect-prone than others?
	Approach
	Results
	Discussion

	RQ3: How do our metrics compare with state-of-the-art topic-based cohesion and coupling metrics?
	Approach
	Results and Discussion
	Correlation Analysis
	Improvement in Defect Explanatory Power of Each Topic-base Cohesion and Coupling Metric
	Does NT improve over state-of-the-art topic-based cohesion and coupling metrics when explaining defects?

	Sensitivity Analysis for the Parameters of Our Approach
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Related Work
	Applying Topic Models to Software Engineering Tasks
	Using Topic Models to Study Software Defects
	Understanding and Tuning the Parameters of Topic Model

	Conclusions and Future Work
	A Five-number Summary and Skewness of CDDTPOST
	Hexbin Plots of NDT vs NT
	Top Words and Defect Densities of the Most/Least Defect-prone Topics
	Pair-wise correlation between all topic-based cohesion and coupling metrics and LOC
	Results of the parameter sensitivity analysis

