
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Finding and Evaluating the Performance Impact
of Redundant Data Access for Applications that
are Developed Using Object-Relational Mapping

Frameworks
Tse-Hsun Chen, Student Member, IEEE, Weiyi Shang, Member, IEEE, Zhen Ming Jiang, Member, IEEE,

Ahmed E. Hassan, Member, IEEE, Mohamed Nasser, Member, IEEE, and
Parminder Flora, Member, IEEE,

Abstract—Developers usually leverage Object-Relational Mapping (ORM) to abstract complex database accesses for large-scale
systems. However, since ORM frameworks operate at a lower-level (i.e., data access), ORM frameworks do not know how the data will
be used when returned from database management systems (DBMSs). Therefore, ORM cannot provide an optimal data retrieval
approach for all applications, which may result in accessing redundant data and significantly affect system performance. Although
ORM frameworks provide ways to resolve redundant data problems, due to the complexity of modern systems, developers may not be
able to locate such problems in the code; hence, may not proactively resolve the problems. In this paper, we propose an automated
approach, which we implement as a Java framework, to locate redundant data problems. We apply our framework on one enterprise
and two open source systems. We find that redundant data problems exist in 87% of the exercised transactions. Due to the large
number of detected redundant data problems, we propose an automated approach to assess the impact and prioritize the resolution
efforts. Our performance assessment result shows that by resolving the redundant data problems, the system response time for the
studied systems can be improved by an average of 17%.

Index Terms—Performance, ORM, Object-Relational Mapping, Program analysis, Database.

F

1 INTRODUCTION

DUE to the increasing popularity of big data applications
and cloud computing, software systems are becoming

more dependent on the underlying database for data man-
agement and analysis. As a system becomes more complex,
developers start to leverage technologies to manage the
data consistency between the source code and the database
management systems (DBMSs).

One of the most popular technologies that developers
use to help them manage data is Object-Relational Map-
ping (ORM) framework. ORM frameworks provide a con-
ceptual abstraction for mapping database records to ob-
jects in object-oriented languages [43]. With ORM, objects
are directly mapped to database records. For example, to
update a user’s name in the database, a simple method
call user.updateName(”Peter”) is needed. By adopting ORM
technology, developers can focus on the high-level busi-
ness logic without worrying about the underlying database

• T-H. Chen, A. E. Hassan are with the Software Analysis and Intelligence
Lab (SAIL) in the School of Computing at Queen’s University, Canada.
E-mail: {tsehsun, ahmed}@cs.queensu.ca

• W. Shang is with Concordia University, Canada.
E-mail: shang@encs.concordia.ca

• Z. Jiang is with York University, Canada.
E-mail: zmjiang@cse.yorku.ca

• M. Nasser and P. Flora are with BlackBerry, Canada.

Manuscript received April 19, 2005; revised September 17, 2014.

access details and without having to write error-prone
database boilerplate code [10], [47].

ORM has become very popular among developers
since early 2000, and its popularity continues to rise in
practice [39]. For instance, there exists ORM frameworks
for most modern Object-Oriented programming languages
such as Java, C#, and Python. However, despite ORM’s
advantages and popularity, there exist redundant data prob-
lems in ORM frameworks [4], [5], [8], [24]. Such redundant
data problems are usually caused by non-optimal use of
ORM frameworks.

Since ORM frameworks operate at the data-access level,
ORM frameworks do not know how developers will use
the data that is returned from the DBMS. Therefore, it is
difficult for ORM frameworks to provide an optimal data
retrieval approach for all systems that use ORM frame-
works. Such non-optimal data retrieval can cause serious
performance problems. We use the following example to
demonstrate the problem. In some ORM frameworks (e.g.,
Hibernate, NHibernate, and Django), updating any column
of a database entity object (object whose state is stored
in a corresponding record in the database) would result
in updating all the columns in the corresponding table.
Consider the following code snippet:

// retrieve user data from DBMS
user.updateName("Peter");
// commit the transaction
...

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

Even though other columns (e.g., address, phone num-
ber, and profile picture) were not modified by the code, the
corresponding generated SQL query is:�

�
�
�

update user set name=‘Peter’, address=‘Waterloo’,
phone number = ‘12345’, profile pic = ‘binary data’
where id=1;

Such redundant data problems may bring significant
performance overheads when, for example, the generated
SQLs are constantly updating binary large objects (e.g.,
profile picture) or non-clustered indexed columns (e.g., as-
suming phone number is indexed) in a database table [69].
The redundant data problems may also cause a significant
performance impact when the number of columns in a table
is large (e.g., retrieving a large number of unused columns
from the DBMS). Prior studies [50], [58] have shown that
the number of columns in a table can be very large in
real-world systems (e.g., the tables in the OSCAR database
have 30 columns on average [50]), and some systems may
even have tables with more than 500 columns [7]. Thus,
locating redundant data problems is helpful for large-scale
real-world systems.

In fact, developers have shown that by optimizing ORM
configurations and data retrieval, system performance can
increase by as much as 10 folds [15], [63]. However, even
though developers can change ORM code configurations to
resolve different kinds of redundant data problems, due to
the complexity of software systems, developers may not be
able to locate such problems in the code, and thus may not
proactively resolve the problems [15], [40]. Besides, there is
no guarantee that every developer knows the impact of such
problems.

In this paper, we propose an approach for locating
redundant data problems in the code. We implemented
the approach as a framework for detecting redundant data
problems in Java-based ORM frameworks. Our framework
is now being used by our industry partner to locate redun-
dant data problems.

Redundant data or computation is a well-known cause
for performance problems [53], [54], and in this paper, we
focus on detecting database-related redundant data prob-
lems. Our approach consists of both static and dynamic
analysis. We first apply static analysis on the source code
to automatically identify database-accessing functions (i.e.,
functions that may access the data in the DBMS). Then, we
use bytecode instrumentation on the system executables to
obtain the code execution traces and the ORM generated
SQL queries. We identify the needed database accesses
by finding which database-accessing functions are called
during the system execution. We identify the requested
database accesses by analyzing the ORM generated SQL
queries. Finally, we discover instances of the redundant data
problems by examining the data access mismatches between
the needed database accesses and the requested database
accesses, within and across transactions. Our hybrid (static
and dynamic analysis) approach can minimize the inaccu-
racy of applying only data flow and pointer analysis on the
code, and thus can provide developers a more complete
picture of the root cause of the problems under different
workloads.

We perform a case study on two open-source systems
(Pet Clinic [57] and Broadleaf Commerce [21]) and one large-
scale Enterprise System (ES). We find that redundant data
problems exist in all of our exercised workloads. In addition,
our statistical rigorous performance assessment [33] shows
that resolving redundant data problems can improve the
system performance (i.e., response time) of the studied
systems by 2–92%, depending on the workload. Our per-
formance assessment approach can further help developers
prioritize the efforts for resolving the redundant data prob-
lems according to their performance impact.

The main contributions of this paper are:

1) We survey the redundant data problems in popular
ORM frameworks across four different program-
ming languages, and we find that the different
popular frameworks share common problems.

2) We propose an automated approach to locate the
redundant data problems in ORM frameworks, and
we have implemented a Java-version to detect re-
dundant data problems in Java systems.

3) Case studies on two open source and one enterprise
system (ES) show that resolving redundant data
problems can improve the system performance (i.e.,
response time) by up to 92% (with an average of
17%), when using MySQL as the DBMS and two
separate computers, one for sending requests and
one for hosting the DBMS. Our framework receives
positive feedback from ES developers, and is now
integrated into the performance testing process for
the ES.

Paper Organization. The rest of the paper is organized
as follows. Section 2 surveys the related work. Section 3
discusses the background knowledge of ORM. Section 4
describes our approach for finding redundant data prob-
lems. Section 5 provides the background of our case study
systems, and the experimental setup. Section 6 discusses our
framework implementation, the types and the prevalence
of redundant data problems that we discovered, and intro-
duces our performance assessment approach and the results
of our case studies. Section 7 surveys the studied redundant
data problems in different ORM frameworks. Section 8 talks
about the threats to validity. Finally, Section 9 concludes the
paper.

2 RELATED WORK

In this section, we discuss related prior research.
Optimizing DBMS-based Applications. Many prior stud-
ies aim to improve system performance by optimizing how
systems access or communicate with a DBMS. Cheung et
al. [17] propose an approach to delay all queries as late as
possible so that more queries can be sent to the DBMS in
a batch. Ramachandra et al. [59], on the other hand, pre-
fetch all the data at the beginning to improve system per-
formance. Chavan et al. [14] automatically transform query
execution code so that queries can be sent to the DBMS in an
asynchronous fashion. Therefore, the performance impact of
data and query transmission can be minimized. Bowman et
al. [12] optimize system performance by predicting repeated
SQL patterns. They develop a system on top of DBMS client

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

libraries, and their system can automatically learn the SQL
patterns, and transform the SQLs into a more optimized
form (e.g., combine loop-generated SQL selects into one
SQL).

Our paper’s goal is to improve system performance by
finding redundant data problems in systems that are de-
veloped using ORM frameworks. Our approach can reduce
unnecessary data transmission and DBMS computation.
Different from prior work, our approach does not introduce
another layer to existing systems, which increases system
complexity, but rather our approach pinpoints the problems
to developers. Developers can then decide a series of actions
to prioritize and resolve the redundant data problems.

Detecting Performance Bugs. Prior studies propose various
approaches to detect different performance bugs through
run-time indicators of such bugs. Nistor et al. [54] propose a
performance bug detection tool, which detects performance
problems by finding similar memory-access patterns during
system execution. Chis et al. [19] provide a tool to detect
memory anti-patterns in Java heap dumps using a cata-
logue. Parsons et al. [56] present an approach for automati-
cally detecting performance issues in enterprise applications
that are developed using component-based frameworks.
Parsons et al. detect performance issues by reconstructing
the run-time design of the system using monitoring and
analysis approaches.

Xu et al. [68] introduce copy profiling, an approach that
summarizes runtime activity in terms of chains of data
copies, which are indicators of Java runtime bloat (i.e.,
many temporary objects executing relatively simple oper-
ations). Xiao et al. [66] use different workflows to identify
and predict workflow-dependent performance bottlenecks
(i.e., performance bugs) in GUI applications. Xu et al. [67]
introduce a run-time analysis to identify low-utility data
structures whose costs are out of line with their gained
benefits. Grechanik et al. develop various approaches for
detecting and preventing database deadlocks through static
and dynamic analysis [35], [36]. Chaudhuri et al. [13] pro-
pose an approach to map the DBMS profiler and the code for
finding the root causes of slow database operations. Similar
to prior studies, our approach relies on dynamic system
information. However, we focus on systems that use ORM
frameworks to map code to DBMSs.

In our prior research, we propose a framework to stat-
ically identify performance anti-patterns by analyzing the
system source code [15]. This paper is different from our
prior study in many aspects. First, in our prior study, we
develop a framework for detecting two performance anti-
patterns that we observed in practice. Only one of these
performance anti-patterns is related to data retrieval. In this
paper, we focus on the redundant data problems between
the needed data in the code and the SQL requested data.
Performance anti-patterns and redundant data problems are
two different sets of problems with little overlap. Perfor-
mance anti-patterns may be any code patterns that may
result in bad performance. The problem can be related to
memory, CPU, network, or database. On the other hand,
redundant data problems are usually caused by request-
ing/updating too much data than actually needed.

We propose an approach to locate such redundant data

problems, and we do not know what kinds of redundant
data problems are there before applying our approach.
Second, in our prior study, we use only static analysis for
detecting performance anti-patterns. However, static anal-
ysis is prone to false positives as it is difficult to obtain
an accurate data flow and pointer analysis given the as-
sumptions made during computation [16]. Thus, most of
the problems we study in this paper cannot be detected by
simply extending our prior framework. In this paper, we
propose a hybrid approach using both static and dynamic
analysis to locate the redundant data problems in the code.
Our hybrid approach can give more precise results and
better locate the problems in the code. In addition, we
implemented a tool to transform SQL queries into abstract
syntax trees for further analysis. Finally, we manually clas-
sify and document the redundant data problems that we
discovered, and we conduct a survey on their existence in
ORM frameworks across different programming languages.

3 BACKGROUND

In this section, we provide some background knowledge of
ORM before introducing our approach. We first provide a
brief overview of different ORM frameworks, and then we
discuss how ORM accesses the DBMS using an example.
Our example is shown using the Java ORM standard, Java
Persistence API (JPA), but the underlying concepts are com-
mon for other ORM frameworks.

3.1 Background of ORM

ORM has become very popular among developers due
to its convenience [39], [47]. Most modern programming
languages, such as Java, C#, Ruby, and Python, all support
ORM. Java, in particular, has a unified persistent API for
ORM, called Java Persistent API (JPA). JPA has become an
industry standard and is used in many open source and
commercial systems [64]. Using JPA, users can switch be-
tween different ORM providers with minimal modifications.

There are many implementations of JPA, such as Hi-
bernate [22], OpenJPA [28], EclipseLink [32], and parts of
IBM WebSphere [37]. These JPA implementations all follow
the Java standard, and share similar concepts and design.
However, they may experience some implementation spe-
cific differences (e.g., varying performance [48]). In this
paper, we implement our approach as a framework for
detecting redundant data problems for JPA systems due to
the popularity of JPA.

3.2 Translating Objects to SQL Queries

ORM is responsible for mapping and translating database
entity objects to/from database records. Figure 1 illustrates
such process in JPA. Although the implementation details
and syntax may be different for other ORM frameworks,
the fundamental idea is the same.

JPA allows developers to configure a class as a database
entity class using source code annotations. There are three
categories of source code annotations:

• Entities and Columns: A database entity class
(marked as @Entity in the source code) is mapped

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

@Entity
@Table (name = ”user”)
public class User {

@Id
@Column(name=”user_id”)
private long userId ;

@Column(name=”user_name”)
private String userName;

... other instance variables

@ManyToOne
@JoinColumn(name=”group_id”)
private Group group;

void setName(String name){
this.userName = name;

}
... other getter and setter functions

}

User.java

User user = findUserByID(1);
user.setName(“Peter”);
commit();

Main.java

select u.id, u.name, u.address,
 u.phone_number from User u where u.id=?;

update user set name=?, address=?,
phone_number=? where id=?;

ORM generated SQL templates

ORM

ORM
cache Databaseupdate user set name=Peter, address=Waterloo,

phone_number=1234 where id=1;

ORM generated query using SQL template

Fig. 1. An example flow of how JPA translates object manipulation to SQL. Although the syntax and configurations may be different for other ORM
frameworks, the fundamental idea is the same: developers need to specify the mapping between objects and database tables, the relationships
between objects, and the data retrieval configuration (e.g., eager v.s. lazy).

to a database table (marked as @Table in the source
code). Each database entity object is mapped to a
record in the table. For example, the User class is
mapped to the user table in Figure 1. @Column maps
the instance variable to the corresponding column
in the table. For example, the userName instance
variable is mapped to the user name column.

• Relations: There are four different types of class re-
lationships in JPA: OneToMany, OneToOne, Many-
ToOne, and ManyToMany. For example, there is a
@ManyToOne relationship between User and Group
(i.e., each group can have multiple users).

• Fetch Types: The fetch type for the associated objects
can be either EAGER or LAZY. EAGER means that
the associated objects (e.g., User) will be retrieved
once the owner object (e.g., Group) is retrieved from
the DBMS; LAZY means that the associated objects
(e.g., User) will be retrieved from the DBMS only
when the associated objects are needed (by the source
code). Note that in some ORM frameworks, such as
ActiveRecord (the default ORM for Ruby on Rails),
the fetch type is set per each data retrieval, but other
underlying principals are the same. However, most
ORM frameworks allow developers to change the
fetch type dynamically for different use cases [30].

JPA generates and may cache SQL templates (depending
on the implementation) for each database entity class. The
cached templates can avoid re-generating query templates
to improve performance. These templates are used for re-
trieving or updating an object in the DBMS at run-time. As
shown in Figure 1 (Main.java), a developer changes the user
object in the code in order to update a user’s name in the
DBMS. JPA uses the generated update template to generate
the SQL queries for updating the user records.

To optimize the performance and to reduce the number
of calls to the DBMS, JPA, as well as most other ORM frame-
works, uses a local memory cache [44]. When a database
entity object (e.g., a User object) is retrieved from the DBMS,
the object is first stored in the JPA cache. If the object is
modified, JPA will push the update to the DBMS at the end
of the transaction; if the object is not modified, the object

will remain in cache until it is garbage collected or until
the transaction is completed. By reducing the number of
requests to the DBMS, the JPA cache reduces the overhead
of network latency and the workload on database servers.
Such cache mechanism provides significant performance
improvement to systems that rely heavily on DBMSs.

Our case study systems use Hibernate [22] as the JPA
implementation due to Hibernate’s popularity. However, as
shown in Section 7, our survey finds that redundant data
problems also exist in other ORM frameworks and are not
specific to the JPA implementation that we choose.

4 OUR APPROACH OF FINDING REDUNDANT DATA
PROBLEMS

In the previous section, we introduce how ORM frameworks
map objects to database records. However, such mapping is
complex, and usually contains some impedance mismatches
(i.e., conceptual difference between relational databases and
object-oriented programming). In addition, ORM frame-
works do not know what data developers need and thus
cannot optimize all the database operations automatically.
In this section, we present our automated approach for
locating the redundant data problem in the code due to
ORM mapping. Note that our approach is applicable to
other ORM frameworks in other languages (may require
some framework-specific modifications).

4.1 Overview of Our Approach
Figure 2 shows an overview of our approach for locating
redundant data problems. We define the needed database
accesses as how database-accessing functions are called dur-
ing system execution. We define the requested database ac-
cesses as the corresponding generated SQL queries during
system execution. Our approach consists of three different
phases. First, we use static source code analysis to automat-
ically identify the database-accessing functions (functions
that read or modify instance variables that are mapped to
database columns). Second, we leverage bytecode instru-
mentation to monitor and collect system execution traces.
In particular, we collect the exercised database-accessing

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

SQLs

Source
Code

List of
database-accessing

functions

Code
Execution

Traces

Requested
Database
Accesses

Needed
Database
Accesses

Transactions
With

Redundant
Data

Static
analysis

Exercising workloads
Studied
Systems

Combining info

Analyzing SQL

Comparing

Assessing
Performance

impact Performance
impact

assessment

Fig. 2. An overview of our approach for finding and evaluating redundant data problems.

functions (and the location of the call site of such functions)
as well as the generated SQLs. Finally, we find the redun-
dant data problems by comparing the exercised database-
accessing functions and the SQLs. We explain the detail of
each phase in the following subsections.

4.2 Identifying Needed Database Accesses

We use static code analysis to identify the mappings be-
tween database tables and the source code classes. We
then perform static taint analysis on all the database in-
stance variables (e.g., instance variables that are mapped
to database columns) in database entity classes. Static taint
analysis allows us to find all the functions along a function
call graph that may read or modify a given variable. If a
database instance variable is modified in a function, we
consider the function as a data-write function. If a database
instance variable is being read or returned in a function, we
consider the function as a data-read function. For example, if
a database entity class has an instance variable called name,
which is mapped to a column in the database table, then the
function getUserName(), which returns the variable name, is
a data-read function. We also parse JPQL (Java Persistence
Query Language, the standard SQL-like language for Java
ORM frameworks) queries to keep track of which entity
objects are retrieved/modified from the DBMS, similar to
a prior approach proposed by Dasgupta et al. [23]. We focus
on parsing the FROM and UPDATE clauses in JPQL queries.

To handle the situation where both superclass and sub-
class are database entity classes but they are mapped to
different tables, we construct a class inheritance graph from
the code. If a subclass is calling a data-accessing function
from its superclass, we use the result of the class inheritance
graph to determine the columns that the subclass function
is accessing.

4.3 Identifying Requested Database Accesses

We define the requested database accesses as the columns
that are accessed in an SQL query. We develop an SQL query
analyzer to analyze database access information in SQLs.
Our analyzer leverages the SQL parser in FoundationDB [2],
which supports standard SQL92 syntax. We first transform
an SQL query into an abstract syntax tree (AST), then we
traverse the AST nodes and look for information such as
columns that an SQL query is selecting from or updating to,
and the tables that the SQL query is querying.

systems, we found that our discrepancies cover all the
mismatches. Namely, if a transaction has a read/write mis-
match, this transaction has at least one of the discrepancies.

Table 2 shows the total number of transactions that has
discrepancies. We also show the prevalence of each discrep-
ancy in each test suite. Most transactions in these test suites
have discrepancies (above 75% in 5 test suites), and excessive
data (attribute) exists in almost every transaction. On the
other hand, update all does not occur in many transactions
due to the nature of the workflows (i.e., the exercised work-
flows are mostly read, with only a few number of writes). We
also found that Excessive data (table) has higher prevalence
in Pet Clinic but lower prevalence in Broadleaf.

Since duplicate selects occurs across transactions (i.e., it
is caused by ORM cache problem), we list the total number
of SQLs and number of duplicate selects in each test suite
(Table 3). We found that some test suites have much more
duplicate selects than the other. In Pet Clinic, we found that
the duplicate selects are related to selecting the information
about pet’s type (e.g., a bird, dog, or cat) and pets’ visits to
the clinic. Since Pet Clinic only allows a certain pet types
(i.e., 6 types), storing the types in the cache can reduce a
large number of unnecessary selects. In addition, informa-
tion about pets’ visits do not change often, so storing such
information in the cache can further reduce unnecessary se-
lects.

4. PERFORMANCE IMPACT STUDY
In the previous section, we discuss the approach that we

use to discover discrepancies between the database and the
application code. However, it is not clear how these discrep-
ancies may affect system performance and whether they are
candidates for performance anti-patterns. Therefore, in this
section, we evaluate the performance impact of these dis-
crepancies by comparing the response time before and after
removing them.

4.1 Approach for Removing the Discrepancies
ORM supports dynamically configuring how an database

entity object should be retrieved from the database (e.g.,
retrieve all attributes or only a certain attributes) [8]. How-
ever, such configurations require a deep understanding of
the system workflows, design, and APIs. Due to such com-
plexity, it is very difficult to remove all the discrepancies
manually. Thus, we follow a very similar methodology by
previous studies [5, 31] to study the performance impact of
these discrepancies. In the following subsections, we dis-
cuss the approaches that we use to remove each discrepancy
discussed in Section 3.

4.1.1 Removing Update All and Excessive Data (At-
tribute) by Static and Dynamic Analysis

We combine the information of both system execution
traces and the corresponding generated SQLs to remove up-
date all and excessive data (attribute) in the test suites.
For each transaction, we keep track of how the database-
accessing functions are called in the application code. If a
SQL is selecting/updating an attribute that does not have
the corresponding read/write in the source code, we remove
that attribute in the SQL. Listing 1 shows an example trans-
action, where only user name is needed in the application
code but the SQL is selecting more attributes than needed
from the database. To remove the discrepancy, we transform

Listing 1: Example Transaction.
<transaction >

<functionCall >
user.getUserName ()

</functionCall >
<sql>

select u.id, u.name , u.address ,
u.phone number from User u
where u.id=1

</sql>
</transaction >

the SQL to:�
�

�
�select u.id, u.name from User u where u.id=1,

to remove excessive data (attribute). We apply a similar ap-
proach to update all and remove the attributes in SQLs that
are not changed during the system execution. We execute
the SQLs before and after the transformation, and calculate
the difference in response time after removing the discrep-
ancies.

4.1.2 Removing Excessive Data (Table) by Fixing the
Source Code

ORM uses annotation to configure how an related entity
should be retrieved from the database. Using the EAGER
fetch-setting may cause performance problems when the ea-
gerly retrieved data is not used. To remove this discrep-
ancy, we change the fetch type from EAGER to LAZY in
the source code where appropriate. Then, we measure the
response time before and after removing such discrepancy.

4.1.3 Removing Duplicate Selects by SQL Analysis
We perform a SQL analysis to remove duplicate selects in

the test suites. We first obtain information about primary
and foreign keys in each table. Then, we start analyzing
each SQL in the test suite sequentially. For each update
and insert SQL query, we keep track of which attributes it
is modifying.

We then parse the SQL select queries and see if a previ-
ously modified data record is being selected. If so, the select
is necessary; otherwise the select can be skipped. We do this
analysis by parsing the where clause of every select. If the
SQL is selecting based on the primary or foreign key of a
table, then we check if the key is modified previously by one
of the insert or update queries. For example, consider the
following SQL queries:�

�

	

update user set name=’Peter’, address=’Waterloo’,
phone number = ’12345’ where id=1;
select u.id, u.name, u.address, u.phone number from
User u where u.id=1;
...
select u.id, u.name, u.address, u.phone number from
User u where u.id=1;

The first select is needed because it was previously updated
by another SQL query (the same primary key in the where
clause). The second select is not needed as the attributes
are not modified.

7

Fig. 3. An example of the exercised database-accessing functions and
generated SQL queries during a transaction.

4.4 Finding Redundant Data

Since database accesses are wrapped in transactions (to as-
sure the ACID property), we separate the accesses according
to the transactions to which they belong. Figure 3 shows
an example of the resulting data. In that XML snippet, the
function call user.getUserName() (the needed data access) is
translated to a select SQL (the requested data access) in a
transaction.

We find redundant data problems at both the column
and table level by comparing the needed and the requested
database accesses within and across transactions. Since we
know the database columns that a function is accessing,
we compare the column reads and writes between the SQL
queries and the database-accessing functions. If a column
that is being selected/updated in an SQL query has no
corresponding function that reads/updates the column,
then the transaction has a redundant data problem (e.g.,
in Figure 1 the Main.java only modifies user’s name, but
all columns are updated). In other words, an SQL query
is selecting a column from the DBMS, but the column is
not needed in the source code (similarly, the SQL query
is updating a column but the column was not updated
in the code). Note that after the static analysis step, we
know the columns that a table (or database entity class) has.
Thus, in the dynamic analysis step, our approach can tell us
exactly which columns are not needed. In other words, our
approach is able to find, for example, if a binary column
is unnecessarily read from the DBMS, or if the SQL is
constantly updating an unmodified but indexed column.

4.5 Performance Assessment

We propose an approach to automatically assess the per-
formance impact of the redundant data problems. The
performance assessment results can be used to prioritize

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

TABLE 1
Statistics of the studied systems.

System Total lines No. of Max. No. of
of code (K) files columns

Pet Clinic 3.3K 51 6
Broadleaf 3.0 206K 1,795 28
ES > 300K > 3,000 > 50

performance optimization efforts. Since there may be dif-
ferent types of redundant data problems and each type may
need to be assessed differently, we discuss our assessment
approach in detail in Section 6.3, after discussing the types of
redundant data problems that we discovered in Section 6.2.

5 EXPERIMENTAL SETUP

In this Section, we discuss the studied systems and experi-
mental setup.

5.1 Case Study Systems
In this paper, we implement our approach as a framework,
and apply the framework on two open-source systems (Pet
Clinic [57] and Broadleaf Commerce [21]) and one large-
scale Enterprise System (ES). Pet Clinic is a system devel-
oped by Spring [62], which provides a simple yet realistic
design of a web application. Pet Clinic and its predecessor
have been used in a number of performance-related stud-
ies [15], [34], [38], [60], [65]. Broadleaf [21] is a large open
source e-commerce system that is widely used in both non-
commercial and commercial settings worldwide. ES is used
by millions of users around the world on a daily basis,
and supports a high level of concurrency control. Since
we are not able to discuss the configuration details of ES
due to a non-disclosure agreement (NDA), we also conduct
our study on two open source systems. Table 1 shows the
statistics of the three studied systems.

All of our studied systems are web systems that are
implemented in Java. They all use Hibernate as their JPA
implementation due to Hibernate’s popularity (e.g., in 2013,
15% of the Java developer jobs requires the candidates to
have Hibernate experience [18]). The studied systems follow
the typical “Model-View-Controller” design pattern [46],
and use Spring [62] to manage HTTP requests. We use
MySQL as the DBMS in our experiment.

5.2 Experiments
Our approach and framework require dynamic analysis.
However, since it is difficult to generate representative
workloads (i.e., system use cases) for a system, we use the
readily available performance test suites in the studied sys-
tems (i.e., Pet Clinic and ES) to obtain the execution traces. If
the performance test suites are not present (i.e., Broadleaf),
we use the integration test suites as an alternate choice. Both
the performance and the integration test suites are designed
to test different features in a system (i.e., use case testing).
Both performance and integration test suites provide more
realistic workloads and better test coverage [11]. Table 3
shows the descriptions of the exercised test suites. Never-
theless, our approach can be adapted to deployed systems

TABLE 2
Overview of the redundant data problems that we discovered in our

exercised workloads. Trans. column shows where the redundant data
problem is discovered (i.e., within a transaction or across transactions).

Types Trans. Description

Update all Within Updating unmodified data
Select all Within Selecting unneeded data

Excessive data Within Selecting associated data
but the data is not used

Per-trans cache Across Selecting unmodified
data (caching problem)

or to monitor real-world workloads for finding redundant
data problems in production.

We group the test execution traces according to the trans-
actions to which they belong. Typically in database-related
systems, a workload may contain one to many transactions.
For example, a workload may contain user login and user
logout, which may contain two transactions (one for each
user operation).

6 EVALUATION OF OUR APPROACH

In this section, we discuss how we implement our approach
as a framework for evaluating our proposed approach, the
redundant data problems that are discovered by our frame-
work, and their performance assessment. We want to know
if our approach can discover redundant data problems. If
so, we want to also study what are the common redundant
data problems and their prevalence in the studied systems.
Finally, we assess the performance impact of the discovered
redundant data problems.

6.1 Framework Implementation

To evaluate our approach, we implement our approach as a
Java framework to detect redundant data problems in three
studied JPA systems. We implement our static analysis tool
for finding the needed database accesses using JDT [29].
We use AspectJ [31] to perform bytecode instrumentation
on the studied systems. We instrument all the database-
accessing functions in the database entity classes in order
to monitor their executions. We also instrument the JDBC
libraries in order to monitor the generated SQL queries, and
we separate the needed and requested database accesses
according to the transaction in which they belong (e.g.,
Figure 3).

6.2 Case Study Results

Using our framework, we are able to find a large number
of redundant data problems in the studied systems. In fact,
on average 87% of the exercised transactions contain at least
one redundant data problem. Our approach is able to find
the redundant data problems in the code, but we are also
interested in understanding what kinds of redundant data
problems are there. Moreover, we use the discovered re-
dundant data problems to illustrate the performance impact
of the redundant data problems. However, other types of
redundant data problems may still be discovered using our
approach, and the types of the redundant data problems

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

TABLE 3
Prevalence of the discovered redundant data problems in each test suite. The detail of ES is not shown due to NDA.

System Test Case Total No. Total No. No. of Transactions with Redundant Data
Description of Trans. of Trans. with Update All Select All Excessive Per-Trans.

Redundant Data Data Cache

Pet Clinic Browsing & Editing 60 60 (100%) 6 (10%) 60 (100%) 50 (83%) 7 (12%)

Broadleaf

Phone Controller 807 805 (99%) 4 (0.5%) 805 (100%) 203 (25%) 202 (25%)
Payment Info 813 611 (75%) 10 (1.6%) 611 (100%) 7 (1.1%) 200 (25%)
Customer Addr. 611 609 (99%) 7 (1.1%) 607 (99%) 7 (1.1%) 203 (33%)
Customer 604 602 (99%) 4 (0.7%) 602 (100%) 3 (0.5%) 200 (33%)
Offer 419 201 (48%) 19 (9%) 19 (9%) 17 (9%) 201 (100%)

ES Multiple Features > 1000 > 30% 3% 100% 0% 23%

that we study here is by no means complete. In the fol-
lowing subsections, we first describe the type of redundant
data problems that we discovered, then we discuss their
prevalence in our studied systems.

6.2.1 Types of Redundant Data Problems

We perform a manual study on a statistically representative
random sample of 344 transactions (to meet a confidence
level of 95% with a confidence interval of 5% [51]) in the
exercised test suites that contain at least one redundant
data problem (as shown in Table 3). We find that most
redundant data can be grouped into four types, which we
call: update all, select all, excessive data, and per-transaction
cache (other types of redundant data problems may still
exist, and may be discovered using our approach). Table 2
shows an overview of the redundant data problems that we
discovered in our exercised workloads.

Update all. When a developer updates some columns of
a database entity object, all the database columns of the
objects are updated (e.g., the example in Section 1). The
redundant data problem is between the translations from
objects to SQLs, where ORM simply updates all the database
columns. This redundant data problem exists in some, but
not all of the ORM frameworks. However, it can cause
serious performance impact if not handle properly. There
are many discussions on Stack Overflow regarding this type
of redundant data problem [5], [9]. Developers complain
about its performance impact when the number of columns
or the size of some columns is large. For example, columns
with binary data (e.g., pictures) would lead to a significant
and unexpected overhead. In addition, this redundant data
problem can cause significant performance impact when
the generated SQLs are updating unmodified non-cluster
indexed columns [69]. Prior studies [50], [58] have shown
that the number of columns in a table can be very large in
real-world systems (e.g., the tables in the OSCAR database
have on average 30 columns [50]), and some systems may
even have tables with more than 500 columns [7]. Even in
our studied systems, we find that some tables have more
than 28, or even 50 columns (Table 1). Thus, this type of
redundant data problem may be more problematic in large-
scale systems.

Select all. When selecting entity objects from the DBMS,
ORM selects all the columns of an object, even though only
a small number of columns are used in the source code. For

example, if we only need a user’s name, ORM will still select
all the columns, such as profile picture, address, and phone
number. Since ORM frameworks do not know what is the
needed data in the code, ORM frameworks can only select
all the columns.

We use the User class from Figure 1 as an example.
Calling user.getName() ORM will generate the following
SQL query:�

�
�
�

select u.id, u.name, u.address, u.phone number,
u.profile pic from User u where u.id=1.

However, if we only need the user’s name, selecting other
columns may bring in undesirable performance overheads.

Developers also discuss the performance impact of this
type of redundant data problem [4], [49]. For example,
developers are complaining that the size of some columns
is too large, and retrieving them from the database causes
performance issues [4]. Even though most ORM frameworks
provide a way for developers to customize the data fetch,
developers still need to know how the data will be used in
the code. The dynamic analysis part of our approach can
discover which data is actually needed in the code (and
can provide a much higher accuracy than using only static
analysis), and thus can help developers configure ORM data
retrieval.

Excessive Data. Excessive data is different from select all in all
aspects, since this type of redundant data problem is caused
by querying unnecessary entities from other database tables.
When using ORM frameworks, developers can specify re-
lationships between entity classes, such as @OneToMany,
@OneToOne, @ManyToOne, and @ManyToMany. ORM
frameworks provide different optimization techniques for
specifying how the associated entity objects should be
fetched from the database. For example, a fetch type of
EAGER means that retrieving the parent object (e.g., Group)
will eagerly retrieve the child objects (e.g., User), regardless
whether the child information is accessed in the source code.

If the relationship is EAGER, then selecting Group will
result in the following SQL:�

�
�
�

select g.id, g.name, g.type, u.id, u.gid, u.name,
u.address, u.phone number, u.profile pic from Group g
left outer join User u on u.gid=g.id where g.id=1.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

If we only need the group information in the code, retrieving
users along with the group causes undesirable performance
overheads, especially when there are many users in the
group.

ORM frameworks usually fetch the child objects using an
SQL join, and such an operation can be very costly. Devel-
opers have shown that removing this type of excessive data
problem can improve system performance significantly [25].
Different ORM frameworks provide different ways to re-
solve this redundant data problem, and our approach can
provide guidance for developers on this type of problem.

Per-Transaction Cache. Our approach described in Section 4
also looks for redundant data problems across transactions
(e.g., some data is repeatedly retrieved from the DBMS but
the data is not modified). We find that the same SQLs are
being executed across transactions, with no or only a very
little number of updates being called. Per-transaction cache is
completely different from one-by-one processing studied in a
prior study [15]. One-by-one processing is caused by repeat-
edly sending similar queries with different parameters (e.g.,
in a loop) within the same transaction. Per-transaction cache is
caused by non-optimal cache configuration: different trans-
actions need to query the database for the same data even
though the data is never modified. For example, consider
the following SQLs:�

�

�

�

update user set name=‘Peter’, address=‘Waterloo’,
phone number = ‘12345’ where id=1;
select u.id, u.name, u.address, u.phone number from
User u where u.id=1;
...
select u.id, u.name, u.address, u.phone number from
User u where u.id=1;

The first select is needed because the user data was pre-
viously updated by another SQL query (the same primary
key in the where clause). The second select is not needed
as the data is not changed. Most ORM frameworks provide
cache mechanisms to reuse fetched data and to minimize
database accesses (Section 7), but the cache configuration
is never automatically optimized for different application
systems [44]. Thus, some ORM frameworks even turn the
cache off by default. Developers are aware of the advantages
of having a global cache shared among transactions [64],
but they may not proactively leverage the benefit of such a
cache. We have seen cases in real-world large-scale systems
where this redundant data problem causes the exact same
SQL query to be executed millions of times in a short
period of time, even though the retrieved entity objects
are not modified. The cache configuration may be slightly
different for different ORM frameworks, but our approach
is able to give a detailed view on the overall data read and
write. Thus, our approach can assist developers with cache
optimization.

Note that, although some developers are aware of the
above-mentioned redundant data problems, it is not a
common knowledge. Moreover, some developers may still
forget to resolve the problem, as a redundant data problem
may become more severe as a system ages.

TABLE 4
Total number of SQLs and the number of duplicated selects in each

test suite.

System Test Case Total No. No. of
Description of SQL queries Duplicate Selects

Pet Clinic Browsing 32,921 29,882 (91%)

Broadleaf

Phone Controller 1,771 431 (24%)
Payment Info 1,591 11 (0.7%)
Customer Addr. 2,817 21 (0.7%)
Customer 1,349 22 (1.6%)
Offer 1,052 41 (3.9%)

ES Multiple Features >> 10,000 > 10%

6.2.2 Prevalence of Redundant Data Problems
Table 3 shows the prevalence of the redundant data prob-
lems in the executed test suites (a transaction may have
more than one redundant data problem). Due to NDA, we
cannot show the detail results for ES. However, we see that
many transactions (>30%) have an instance of a redundant
data problem in ES.

Most exercised transactions in BroadLeaf and Pet Clinic
have at least one instance of redundant data problem (e.g.,
at least 75% of the transactions in the five test suites for
BroadLeaf), and select all exists in almost every transaction.
On the other hand, update all does not occur in many transac-
tions. The reason may be that the exercised test suites mostly
read data from the database; while a smaller number of test
cases write data to database. We also find that excessive data
has a higher prevalence in Pet Clinic but lower prevalence
in Broadleaf.

Since the per-transaction cache problem occurs across mul-
tiple transactions (caused by non-optimized cache configu-
ration), we list the total number of SQLs and the number
of duplicate selects (caused by per-transaction cache) in each
test suite (Table 4). We filter out the duplicated selects where
the selected data is modified. We find that some test suites
have a larger number of duplicate selects than others. In
Pet Clinic, we find that the per-transaction cache problems
are related to selecting the information about a pet’s type
(e.g., a bird, dog, or cat) and its visits to the clinic. Since
Pet Clinic only allows certain pet types (i.e., six types),
storing the types in the cache can reduce a large number
of unnecessary selects. In addition, the visit information of
a pet does not change often, so storing such information
in the cache can further reduce unnecessary selects. In
short, developers should configure the cache accordingly
for different scenarios to resolve the per-transaction cache
problem.

The four types of redundant data problems that are
discovered by our approach have a high prevalence in
our studied systems. We find that most transactions (on
average 87%) contain at least one instance of our discovered
problems, and on average 20% of the generated SQLs are
duplicate selects (per-transaction cache problem).

6.3 Automated Performance Assessment
Since every ORM framework has different ways to resolve
the redundant data problems, it is impossible to provide
an automated ORM optimization for all systems. Yet, ORM

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

optimization requires a great amount of effort and a deep
understanding of the system workloads and design. Thus,
to reduce developers’ effort on resolving the redundant data
problems, we propose a performance assessment approach
to help developers prioritize their performance optimization
efforts.

6.3.1 Assessing the Performance Impact of Redundant
Data Problems
We follow a similar methodology as a previous study [40] to
automatically assess the performance impact of the redun-
dant data problem. Note that our assessment approach is
only for estimating the performance impact of redundant
data problems in different workloads, and cannot com-
pletely fix the problems. Developers may wish to resolve
these problems after further investigation. Below, we discuss
the approaches that we use to assess each type of the
discovered redundant data problems.
Assessing Update All and Select All. We use the needed
database accesses and the requested database accesses col-
lected during execution to assess update all and select all
in the test suites. For each transaction, we remove the
requested columns in an SQL if the columns are never used
in the code. We implement an SQL transformation tool for
such code transformation. We execute the SQLs before and
after the transformation, and calculate the differences in
response time after resolving the redundant data problem.
Assessing Excessive Data. Since we use static analysis to
parse all ORM configurations, we know how the entity
classes are associated. Then, for each transaction, we remove
the eagerly fetched table in SQLs where the fetched data is
not used in the code. We execute the SQLs before and after
the transformation, and calculate the differences in response
time after resolving the discrepancies.
Assessing Per-Transaction Cache. We analyze the SQLs to
assess the impact of per-transaction cache in the test suites.
We keep track of the modified database records by pars-
ing the update, insert, and delete clauses in the SQLs. To
improve the precision, we also parse the database schemas
beforehand to obtain the primary and foreign keys of each
table. Thus, we can better find SQLs that are modifying or
selecting the same database record (i.e., according to the
primary key or foreign key). We bypass an SQL select query
if the queried data is not modified since the execution of the
last same SQL select.

6.3.2 Results of Performance Impact Study
We first present a statistically rigorous approach for per-
formance assessment. Then we present the results of our
performance impact study.
Statistically rigorous performance assessment

Performance measurements suffer from variances dur-
ing system execution, and such variances may lead to incor-
rect results [33], [41]. As a result, it is important to provide
confidence intervals for performance measurements. We
follow the recommendation of Georges et al. [33] and repeat
each performance test for 30 times. We use a Student’s t-
test to determine if resolving a redundant data problem
can result in a statistically significant (p-value ≤ 0.05)
performance improvement. Although the t-test requires the

population to be normally distributed, according to the
Central Limit Theorem, our performance measurements will
be approximately normal (we repeat the same test under the
same environment for 30 times) [33], [51].

In addition, we calculate the effect sizes [42], [52] of the
response time differences. Unlike the t-test, which only tells
us if the differences of the mean between two populations
are statistically significant, effect sizes quantify the differ-
ence between two populations. Reporting only the statistical
significance may lead to erroneous results [42] (i.e., if the
sample size is very large, p-value can be small even if
the difference is trivial). We use Cohen’s d to quantify the
effects [42]. Cohen’s d measures the effect size statistically,
and has been used in prior engineering studies [42], [45].
The strength of the effects and the corresponding range of
Cohen’s d values are [20]:

effect size =


trivial if Cohen’s d ≤ 0.2
small if 0.2 < Cohen’s d ≤ 0.5
medium if 0.5 < Cohen’s d ≤ 0.8
large if 0.8 < Cohen’s d

Results of Performance Impact Study
In the rest of this subsection, we present and discuss the

results of our performance assessment. The experiments are
conducted using MySQL as the DBMS and two separate
computers, one for sending requests and one for hosting the
DBMS (our assessment approach compares the performance
between executing the original and the transformed SQLs).
The response time is measured at the client side (computer
that sends the requests). The two computers use Intel Core
i5 as their CPU with 8G of RAM, and they reside in the same
local area network (note that the performance overhead
caused by data transfer may be bigger if the computers are
on different networks).

Update All. Table 5 shows the assessed performance im-
provement after resolving each type of redundant data
problem in each performance test suite. For each test suite,
we report the total response time (in seconds) along with
a confidence interval. In almost all test suites, resolving
the update all problem gives a statistically significant per-
formance improvement. We find that, by only updating the
required columns, we can achieve a performance improve-
ment of 4–7% with mostly medium to large effect sizes.
Unlike select queries, which can be cached by the DBMS,
update queries cannot be cached. Thus, reducing the num-
ber of update queries to the DBMS may, in general, have a
higher performance improvement. The only exception is Pet
Clinic, because the test suite is related to browsing, which
only performs a very small number of updates (only six
update SQL queries). ES also does not have a significant
improvement after resolving update all.

As discussed in Section 6.2, the update all problem can
cause a significant performance impact in many situations.
In addition, many emerging cloud DBMSs implement the
design of column-oriented data storage, where data is stored
as sections of columns, instead of rows [61]. As a result,
update all has a more significant performance impact on
column-oriented DBMSs, since the DBMS needs to seek and
update many columns at the same time for one update.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

TABLE 5
Performance impact study by resolving the redundant data problems in each test suite. Response time is measured in seconds at the client side.
We mark the results in bold if resolving the redundant data problems has a statistically significant improvement. For response time differences,

large/medium/small/trivial effect sizes are marked with L, M, S, and T, respectively.

System Test Case Base Update All Select All Excessive Data Per-trans. Cache
resp. time p-value resp. time p-value resp. time p-value resp. time p-value

Pet Clinic Browsing & Editing 33.8±0.45 33.9±0.44 (0%)T 0.85 23.3±0.76 (-31%)L <<0.001 2.7±0.08 (-92%)L <<0.001 4.1±0.10 (-88%)L <<0.001

Broadleaf

Phone Controller 14.0±0.69 13.4±0.60 (-4%)M 0.007 13.9±0.65 (0%)T 0.44 13.8±0.47 (-1%)S 0.28 13.0±0.56 (-7%)L <<0.001
Payment Info 18.7±2.6 17.3±0.65 (-7%)M 0.04 18.1±0.88 (-3%)S 0.37 18.3±1.0 (-2%)T 0.58 18.0±0.74 (-4%)S 0.33
Customer Addr. 29.7±1.17 28.4±0.58 (-4%)M <<0.001 28.7±0.45 (-3%)M 0.001 29.0±0.68 (-2%)S 0.05 28.8±0.54 (-3%)S 0.008
Customer 13.7±0.63 13.0±0.49 (-5%)M <<0.001 13.0±0.57 (-5%)M <<0.001 12.9±0.47 (-6%)M <<0.001 13.3±0.53 (-3%)S 0.03
Offer 22.9±0.95 21.3±1.05 (-7%)L <<0.001 22.3±1.08 (-3%)S 0.13 23.4±1.27 (+2%)S 0.17 21.9±0.87 (-4%)M 0.002

ES Multiple Features — 0% >0.05 > 30%L <<0.001 — — > 30%L <<0.001

Select All. The select all problem causes a statistically sig-
nificant performance impact in Pet Clinic, ES, and two test
suites in Broadleaf (3–31% improvement) with varying effect
sizes. Due to the nature of the Broadleaf test suites, some
columns have null values, which reduce the overhead of
data transmission. Thus, the effect of the select all problem
is not as significant as the update all problem. In addition
to what we discuss in Section 6.2, select all may also cause
a higher performance impact in column-oriented DBMSs.
When selecting many different columns from a column-
oriented DBMS, the DBMS engine needs to seek for the
columns in different data storage pools, which would sig-
nificantly increase the time needed to retrieve data from the
DBMS.

Excessive Data. We find that the excessive data problem has
a high performance impact in Pet Clinic (92% performance
improvement), but only 2–6% improvement in Broadleaf
and 5% in ES with mostly non-trivial effect sizes. Since we
know that the performance impact of the redundant data
problem is highly dependent on the exercised workloads,
we are interested in knowing the reasons that cause the large
differences. After a manual investigation, we find that the
excessively selected table in Pet Clinic has a @OneToMany
relationship. Namely, the transaction is selecting multiple
associated excessive objects from the DBMS. On the other
hand, most excessive data in Broadleaf has a @ManyToOne or
@OneToOne relationship. Nevertheless, excessively retriev-
ing single associated object (e.g., excessively retrieving the
child object in a @ManyToOne or @OneToOne relationship)
may still cause significant performance problems [6]. For
example, if the eagerly retrieved object contains large data
(e.g., binary data), or the object has a deep inheritance
relationship (e.g., the eagerly retrieved object also eagerly
retrieves many other associated objects), the performance
would also be impacted significantly.

Per-Transaction Cache. The per transaction cache problem
has a statistically significant performance impact in 4 out
of 5 test suites in Broadleaf with non-trivial effect sizes.
We also see a large performance improvement in Pet Clinic,
where resolving the per-transaction cache problem improves
the performance by 88%. Resolving the per-transaction cache
problem also improves the ES performance by 10% (with
large effect sizes).

The performance impact of the per-transaction cache may
be large if, for example, some frequently accessed read-only
entity objects are stored in the DBMS and are not shared
among transactions [69]. These objects will be retrieved

TABLE 6
Existence of the studied redundant data problems in the surveyed

ORM frameworks (under default configurations).

Lang. ORM Update Select Exce. Per-trans.
Framework all all Data Cache

Java Hibernate Yes Yes Yes Yes

Java EclipseLink No Yes Yes Yes
C# NHibernate Yes Yes Yes Yes
C# Entity Framework Yes Yes Yes Yes
Python Django Yes Yes Yes Yes
Ruby ActiveRecord No Yes Yes Yes

once for each transaction, and the performance overhead
increases along with the number of transactions. Although
the DBMS cache may be caching these queries, there are
still transmission and cache-lookup overheads. Our results
suggest that the performance overheads can be minimized
if developers use the ORM cache configuration in order to
prevent ORM frameworks from retrieving the same data
from the DBMS across transactions.�

�

�

�

All of our uncovered redundant data problems have a
performance impact in all studied systems. Depending on
the workloads, resolving the redundant data problems can
improve the performance by up to 92% (17% on aver-
age). Our approach can automatically flag redundant data
problems that have a statistically significant performance
impact, and developers may use our approach to prioritize
their performance optimization efforts.

7 A SURVEY ON THE REDUNDANT DATA PROB-
LEMS IN OTHER ORM FRAMEWORKS

In previous sections, we apply our approach on the studied
systems. We discover four types of redundant data prob-
lems, and we further illustrate their performance impact.
However, since we only evaluate our approach on the stud-
ied systems, we do not know if the discovered redundant
data problems also exist in other ORM frameworks. Thus,
we conduct a survey on four other popular ORM frame-
works across four programming languages, and study the
existence of the discovered redundant data problems.

We study the documents on the ORM frameworks’ of-
ficial websites, and search for developer discussions about
the redundant data problems. Table 6 shows the existence
of the studied redundant data problems in the surveyed
ORM frameworks under default configurations. Our stud-
ied systems use Hibernate as the Java ORM solution (i.e.,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

one of the most popular implementations of JPA), and
we further survey EclipseLink, NHibernate, Entity Frame-
work, Django, and ActiveRecord. EclipseLink is another
JPA implementation developed by the Eclipse Foundation.
NHibernate is one of the most popular ORM solution for
C#, Entity Framework is an ORM framework that is pro-
vided by Microsoft for C#, and Django is the most popular
Python web framework, which comes with a default ORM
framework. Finally, ActiveRecord is the default ORM for the
most popular Ruby web framework, Ruby on Rails.

Update all. Most of the surveyed ORM frameworks have
the update all problem, but the problem does not exist in
EclipseLink and ActiveRecord [26], [55]. These two ORM
frameworks keep track of which columns are modified and
only update the modified columns. This is the design trade-
off that the ORM developers made. The pros of the design
decision is that this redundant data problem is handled by
default. However, this will also introduce overheads such
as tracking modifications and generating different SQLs
for each update [3]. All other surveyed ORM frameworks
provide some way for developers to customize the update to
only update the modified columns (e.g., Hibernate supports
a dynamic-update configuration). Although the actual fixes
may be different, the idea on how to fix them is the same.

Select all. All of the surveyed ORM frameworks have the
select all problem. The reason may be the ORM implementa-
tion difficulties, since ORM frameworks do not know how
the retrieved data will be used in the system. Nevertheless,
all the surveyed ORM frameworks provide some way to
retrieve only the needed data from the DBMS (e.g., [1], [27]).

Excessive data. All of the surveyed ORM frameworks may
have the excessive data problem. However, some ORM frame-
works handle this problem differently. For example, the
Django, NHibernate, Entity Framework, and ActiveRecord
frameworks allow developers to specify the fetch type (e.g.,
EAGER v.s. LAZY) for each data retrieval. Although Hiber-
nate and EclipseLink require developers to set it at the class
level, there are still APIs that can configure the fetch type
for each data retrieval [64].

Per-transaction cache. All of the surveyed ORM frame-
works support some ways to share an object among trans-
actions through caching. In the case of distributed systems,
it is difficult to find a balance point between performance
and stale data when using caches. Solving the problem
will require developers to recover the entire workloads,
and determine the tolerance level of stale data. Since our
approach analyzes dynamic data, it can be used to help
identify where and how to place the cache in order to
optimize system performance.

8 THREATS TO VALIDITY

In this section, we discuss the potential threats to validity of
our work.

8.1 External Validity

We conduct our case study on three systems. Some of the
redundant data problems may not exist in other systems,
and we might also miss some problems. We try to address

this problem by picking systems with various sizes, and in-
clude both open source and industrial systems in our study.
Nevertheless, the most important part of our approach is
that it can be adapted to find redundant data problems in
other systems using various ORM frameworks.

8.2 Construct Validity

Manual Classification of the Redundant Data Problems.
Our case study includes manual classification of the types of
redundant data between the source code and the generated
SQLs. We evaluate our discovered types of redundant data
problems by studying their prevalence in the exercised
workflows, but our findings may contain subjective bias and
we may miss other types of redundant data problems. Nev-
ertheless, we study the redundant data problems that are
discovered in our studied systems to illustrate the impact of
redundant data problems, but our approach is applicable to
other systems.
Experimental Setup. We use either the performance or the
integration test suites to exercise different workflows of the
studied systems. These test suites may not cover all the
workflows in the systems, and the workflows may not all
be representative to real system workflows. However, our
approach can be easily adapted to other workflows. The
studied workflows demonstrate the feasibility and useful-
ness of our approach.

The redundant data problems that are studied in this pa-
per may have different performance impact in other work-
flows, yet we have shown that developers indeed care about
the impact of these redundant data problems. We conduct
performance assessments in an experimental environment,
which may also lead to different results compared to the
performance impact in real-world environment. However,
the improvements should be very similar in the production
environment given that other conditions such as hardware
are the same. Moreover, resolving the redundant data prob-
lem is challenging, as it requires a deep understanding of
the system design and workflows. For example, one needs
to first locate the workflows that have redundant data prob-
lems, and customize ORM configurations for the workflows
based on the logic in the source code. Our proposed ap-
proach can provide an initial performance assessment, and
the results can be used to assist developers in prioritizing
their performance optimization efforts.
Redundant Data Problems in Different ORM Frame-
works. Section 7 provides a survey on the redundant data
problems in different ORM frameworks. We do not include
the fixes of the redundant data problems, but the fixes
are very similar across ORM frameworks. Moreover, the
fixes are available in the frameworks’ official documents.
Although we did not survey the impact of the redundant
data problems, the impact should be similar across ORM
frameworks.

9 CONCLUSION

Object-Relational Mapping (ORM) frameworks provide a
conceptual abstraction for mapping the source code to the
DBMS. Since ORM automatically translates object accesses
and manipulations to database queries, ORM significantly

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

simplifies software development. Thus, developers can fo-
cus on business logic instead of worrying about non-trivial
database access details. However, ORM mappings introduce
redundant data problems (e.g., the needed data in the code
does not match with the requested data by the ORM frame-
work), which may cause serious performance problems.

In this paper, we proposed an automated approach to
locate the redundant data problems in the code. We also
proposed an automated approach for helping developers
prioritize the efforts on fixing the redundant data problems.
We conducted a case study on two open source and one
enterprise system to evaluate our approaches. We found
that, depending on the workflow, all the redundant data
problems that are discussed in the paper have statistically
significant performance overheads, and developers are con-
cerned about the impacts of these redundant data problems.
Developers do not need to manually locate the redundant
data problems in thousands of lines of code, and can lever-
age our approach to automatically locate and prioritize the
effort to fix these redundant data problems.

ACKNOWLEDGMENTS

We are grateful to BlackBerry for providing access to the
enterprise system used in our case study. The finding and
opinions expressed in this paper are those of the authors and
do not necessarily represent or reflect those of BlackBerry
and/or its subsidiaries and affiliation. Our results do not in
any way reflect the quality of BlackBerry’s products.

REFERENCES

[1] Django objects values select only some fields.
http://stackoverflow.com/questions/7071352/
django-objects-values-select-only-some-fields. Last accessed
March 16, 2016.

[2] FoundationDB. http://community.foundationdb.com/. Last ac-
cessed May 16, 2016.

[3] Hibernate : dynamic-update dynamic-insert - perfor-
mance effects. http://stackoverflow.com/questions/
3404630/hibernate-dynamic-update-dynamic-insert\
-performance-effects?lq=1. Last accessed March 16, 2016.

[4] Hibernate criteria query to get specific columns.
http://stackoverflow.com/questions/11626761/
hibernate-criteria-query-to-get-specific-columns. Last accessed
March 16, 2016.

[5] JPA2.0/hibernate: Why JPA fires query to update all
columns value even some states of managed beans
are changed? http://stackoverflow.com/questions/
15760934/jpa2-0-hibernate-why-jpa-fires-query-to-update\
-all-columns-value-even-some-stat. Last accessed March 16,
2016.

[6] Making a onetoone-relation lazy. http://stackoverflow.com/
questions/1444227/making-a-onetoone-relation-lazy. Last ac-
cessed March 16, 2016.

[7] mysql - how many columns is too many?
http://stackoverflow.com/questions/3184478/
how-many-columns-is-too-many-columns. Last accessed March
16, 2016.

[8] NHibernate update on single property updates all
properties in sql. http://stackoverflow.com/questions/
813240/nhibernate-update-on-single-property-updates-all\
-properties-in-sql. Last accessed March 16, 2016.

[9] Why in JPA Hibernate update query ; all attributes
get update in sql. http://stackoverflow.com/questions/
10315377/why-in-jpa-hibernate-update-query-all-attributes\
-get-update-in-sql. Last accessed March 16, 2016.

[10] D. Barry and T. Stanienda. Solving the java object storage problem.
Computer, 31(11):33–40, Nov. 1998.

[11] R. Binder. Testing Object-oriented Systems: Models, Patterns, and
Tools. Addison-Wesley, 2000.

[12] I. T. Bowman and K. Salem. Optimization of query streams using
semantic prefetching. ACM Trans. Database Syst., 30(4):1056–1101,
Dec. 2005.

[13] S. Chaudhuri, V. Narasayya, and M. Syamala. Bridging the
application and DBMS profiling divide for database application
developers. In VLDB, pages 1039–1042. Very Large Data Bases
Endowment Inc., 2007.

[14] M. Chavan, R. Guravannavar, K. Ramachandra, and S. Sudarshan.
Program transformations for asynchronous query submission. In
Proceedings of the 2011 IEEE 27th International Conference on Data
Engineering, ICDE ’11, pages 375–386, 2011.

[15] T.-H. Chen, S. Weiyi, Z. M. Jiang, A. E. Hassan, M. Nasser, and
P. Flora. Detecting performance anti-patterns for applications
developed using object-relational mapping. In Proceedings of the
36th International Conference on Software Engineering, ICSE, pages
1001–1012, 2014.

[16] B. Chess and J. West. Secure Programming with Static Analysis.
Addison-Wesley Professional, first edition, 2007.

[17] A. Cheung, S. Madden, and A. Solar-Lezama. Sloth: Being lazy is
a virtue (when issuing database queries). In Proceedings of the 2014
International Conference on Management of Data, SIGMOD ’13, pages
931–942, 2014.

[18] A. Cheung, A. Solar-Lezama, and S. Madden. Optimizing
database-backed applications with query synthesis. In Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, pages 3–14, 2013.

[19] A. E. Chis. Automatic detection of memory anti-patterns. In
Companion to the 23rd ACM SIGPLAN conference on Object-oriented
programming systems languages and applications, OOPSLA Compan-
ion ’08, pages 925–926, 2008.

[20] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. L.
Erlbaum Associates, 1988.

[21] B. Commerce. Broadleaf commerce. http://www.
broadleafcommerce.org/. Last accessed March 16, 2016.

[22] J. Community. Hibernate. http://www.hibernate.org/. Last
accessed March 16, 2016.

[23] A. Dasgupta, V. Narasayya, and M. Syamala. A static analysis
framework for database applications. In Proceedings of the 2009
IEEE International Conference on Data Engineering, ICDE ’09, pages
1403–1414, 2009.

[24] Django. Specifying which fields to save. https:
//docs.djangoproject.com/en/dev/ref/models/instances/
#specifying-which-fields-to-save. Last accessed March 16, 2016.

[25] J. Dubois. Improving the performance of the spring-
petclinic sample application. http://blog.ippon.fr/
2013/03/14/improving-the-performance-of-the-spring-\
petclinic-sample-application-part-4-of-5/. Last accessed March
16, 2016.

[26] EclipseLink. Eclipselink documentation. http://www.eclipse.
org/eclipselink/documentation/2.5/solutions/migrhib002.htm.
Last accessed March 16, 2016.

[27] EclipseLink. Eclipselink documentation. http://eclipse.org/
eclipselink/documentation/2.4/concepts/descriptors002.htm.
Last accessed March 16, 2016.

[28] A. S. Foundation. Apache openjpa. http://openjpa.apache.org/.
Last accessed March 16, 2016.

[29] E. Foundation. Eclipse java development tools. https://eclipse.
org/jdt/. Last accessed March 16, 2016.

[30] E. Foundation. Eclipselink jpa 2.1. https://wiki.eclipse.org/
EclipseLink/Release/2.5/JPA21#Entity Graphs. Last accessed
May 16, 2016.

[31] T. E. Foundation. Aspectj. http://eclipse.org/aspectj/. Last
accessed March 16, 2016.

[32] T. E. Foundation. Eclipselink. http://www.eclipse.org/
eclipselink/. Last accessed March 16, 2016.

[33] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous
java performance evaluation. In Proceedings of the 22nd annual
ACM SIGPLAN conference on Object-oriented programming systems
and applications, OOPSLA ’07, pages 57–76, 2007.

[34] M. Grechanik, C. Fu, and Q. Xie. Automatically finding perfor-
mance problems with feedback-directed learning software testing.
In Proceedings of the 34th International Conference on Software Engi-
neering, ICSE ’12, pages 156–166, 2012.

[35] M. Grechanik, B. Hossain, and U. Buy. Testing database-centric
applications for causes of database deadlocks. In Proceedings of
the 6th International Conference on Software Testing Verification and
Validation, ICST ’13, pages 174–183, 2013.

http://stackoverflow.com/questions/7071352/django-objects-values-select-only-some-fields
http://stackoverflow.com/questions/7071352/django-objects-values-select-only-some-fields
http://community.foundationdb.com/
http://stackoverflow.com/questions/3404630/hibernate-dynamic-update-dynamic-insert\-performance-effects?lq=1
http://stackoverflow.com/questions/3404630/hibernate-dynamic-update-dynamic-insert\-performance-effects?lq=1
http://stackoverflow.com/questions/3404630/hibernate-dynamic-update-dynamic-insert\-performance-effects?lq=1
http://stackoverflow.com/questions/11626761/hibernate-criteria-query-to-get-specific-columns
http://stackoverflow.com/questions/11626761/hibernate-criteria-query-to-get-specific-columns
http://stackoverflow.com/questions/15760934/jpa2-0-hibernate-why-jpa-fires-query-to-update\-all-columns-value-even-some-stat
http://stackoverflow.com/questions/15760934/jpa2-0-hibernate-why-jpa-fires-query-to-update\-all-columns-value-even-some-stat
http://stackoverflow.com/questions/15760934/jpa2-0-hibernate-why-jpa-fires-query-to-update\-all-columns-value-even-some-stat
http://stackoverflow.com/questions/1444227/making-a-onetoone-relation-lazy
http://stackoverflow.com/questions/1444227/making-a-onetoone-relation-lazy
http://stackoverflow.com/questions/3184478/how-many-columns-is-too-many-columns
http://stackoverflow.com/questions/3184478/how-many-columns-is-too-many-columns
http://stackoverflow.com/questions/813240/nhibernate-update-on-single-property-updates-all\-properties-in-sql
http://stackoverflow.com/questions/813240/nhibernate-update-on-single-property-updates-all\-properties-in-sql
http://stackoverflow.com/questions/813240/nhibernate-update-on-single-property-updates-all\-properties-in-sql
http://stackoverflow.com/questions/10315377/why-in-jpa-hibernate-update-query-all-attributes\-get-update-in-sql
http://stackoverflow.com/questions/10315377/why-in-jpa-hibernate-update-query-all-attributes\-get-update-in-sql
http://stackoverflow.com/questions/10315377/why-in-jpa-hibernate-update-query-all-attributes\-get-update-in-sql
http://www.broadleafcommerce.org/
http://www.broadleafcommerce.org/
http://www.hibernate.org/
https://docs.djangoproject.com/en/dev/ref/models/instances/#specifying-which-fields-to-save
https://docs.djangoproject.com/en/dev/ref/models/instances/#specifying-which-fields-to-save
https://docs.djangoproject.com/en/dev/ref/models/instances/#specifying-which-fields-to-save
 http://blog.ippon.fr/2013/03/14/improving-the-performance-of-the-spring-\petclinic-sample-application-part-4-of-5/
 http://blog.ippon.fr/2013/03/14/improving-the-performance-of-the-spring-\petclinic-sample-application-part-4-of-5/
 http://blog.ippon.fr/2013/03/14/improving-the-performance-of-the-spring-\petclinic-sample-application-part-4-of-5/
http://www.eclipse.org/eclipselink/documentation/2.5/solutions/migrhib002.htm
http://www.eclipse.org/eclipselink/documentation/2.5/solutions/migrhib002.htm
http://eclipse.org/eclipselink/documentation/2.4/concepts/descriptors002.htm
http://eclipse.org/eclipselink/documentation/2.4/concepts/descriptors002.htm
http://openjpa.apache.org/
https://eclipse.org/jdt/
https://eclipse.org/jdt/
https://wiki.eclipse.org/EclipseLink/Release/2.5/JPA21#Entity_Graphs
https://wiki.eclipse.org/EclipseLink/Release/2.5/JPA21#Entity_Graphs
http://eclipse.org/aspectj/
http://www.eclipse.org/eclipselink/
http://www.eclipse.org/eclipselink/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

[36] M. Grechanik, B. M. M. Hossain, U. Buy, and H. Wang. Preventing
database deadlocks in applications. In Proceedings of the 9th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2013,
pages 356–366, 2013.

[37] IBM. Websphere. http://www-01.ibm.com/software/ca/en/
websphere/. Last accessed March 16, 2016.

[38] Z. M. Jiang, A. Hassan, G. Hamann, and P. Flora. Automatic
identification of load testing problems. In Proceedings of 2008
IEEE International Conference on Software Maintenance, pages 307–
316, Sept 2008.

[39] R. Johnson. J2EE development frameworks. Computer, 38(1):107–
110, 2005.

[40] M. Jovic, A. Adamoli, and M. Hauswirth. Catch me if you can:
performance bug detection in the wild. In Proceedings of the 2011
ACM international conference on Object oriented programming systems
languages and applications, OOPSLA ’11, pages 155–170, 2011.

[41] T. Kalibera and R. Jones. marking in reasonable timerigorous
benchmarking in reasonable time. In Proceedings of the 2013 interna-
tional symposium on International symposium on memory management,
ISMM ’13, pages 63–74, 2013.

[42] V. B. Kampenes, T. Dybå, J. E. Hannay, and D. I. K. Sjøberg.
Systematic review: A systematic review of effect size in software
engineering experiments. Inf. Softw. Technol., 49(11-12):1073–1086,
Nov. 2007.

[43] M. Keith and M. Schincariol. Pro JPA 2: Mastering the Javał
Persistence API. Apresspod Series. Apress, 2009.

[44] M. Keith and R. Stafford. Exposing the orm cache. Queue, 6(3):38–
47, May 2008.

[45] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin,
K. El Emam, and J. Rosenberg. Preliminary guidelines for em-
pirical research in software engineering. IEEE Trans. Softw. Eng.,
28(8):721–734, 2002.

[46] G. E. Krasner and S. T. Pope. A cookbook for using the model-
view controller user interface paradigm in smalltalk-80. J. Object
Oriented Program., 1(3):26–49, Aug. 1988.

[47] N. Leavitt. Whatever happened to object-oriented databases?
Computer, 33(8):16–19, Aug. 2000.

[48] O. S. Ltd. Jpa performance benchmark. http://www.jpab.org/
All/All/All.html. Last accessed March 16, 2016.

[49] C. McDonald. JPA performance, don’t ignore the database.
https://weblogs.java.net/blog/caroljmcdonald/archive/2009/
08/28/jpa-performance-dont-ignore-database-0. Last accessed
March 16, 2016.

[50] L. Meurice and A. Cleve. Dahlia: A visual analyzer of database
schema evolution. In Proceedings of CSMR-WCRE 14’, 2014.

[51] D. Moore, G. MacCabe, and B. Craig. Introduction to the Practice of
Statistics. W.H. Freeman and Company, 2009.

[52] S. Nakagawa and I. C. Cuthill. Effect size, confidence interval and
statistical significance: a practical guide for biologists. Biological
Reviews, 82:591–605, 2007.

[53] A. Nistor, P.-C. Chang, C. Radoi, and S. Lu. Caramel: Detecting
and fixing performance problems that have non-intrusive fixes. In
Proceedings of the 2015 International Conference on Software Engineer-
ing, ICSE ’15, 2015.

[54] A. Nistor, L. Song, D. Marinov, and S. Lu. Toddler: detecting
performance problems via similar memory-access patterns. In Pro-

ceedings of the 2013 International Conference on Software Engineering,
ICSE ’13, pages 562–571, 2013.

[55] R. on Rails. What’s new in edge rails partial up-
dates. http://archives.ryandaigle.com/articles/2008/4/1/
what-s-new-in-edge-rails-partial-updates. Last accessed March
16, 2016.

[56] T. Parsons and J. Murphy. A framework for automatically detect-
ing and assessing performance antipatterns in component based
systems using run-time analysis. In The 9th International Workshop
on Component Oriented Programming, WCOP ’04, 2004.

[57] S. PetClinic. Petclinic. https://github.com/SpringSource/
spring-petclinic/. Last accessed March 16, 2016.

[58] D. Qiu, B. Li, and Z. Su. An empirical analysis of the co-evolution
of schema and code in database applications. In Proceedings of
ESEC/FSE 13’, pages 125–135, 2013.

[59] K. Ramachandra and S. Sudarshan. Holistic optimization by
prefetching query results. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’12, pages
133–144, 2012.

[60] M. Rohr, A. van Hoorn, J. Matevska, N. Sommer, L. Stoever,
S. Giesecke, and W. Hasselbring. Kieker: Continuous monitoring
and on demand visualization of java software behavior. In Proceed-
ings of the IASTED International Conference on Software Engineering,
SE ’08, pages 80–85, 2008.

[61] W. Shang, Z. M. Jiang, H. Hemmati, B. Adams, A. E. Hassan, and
P. Martin. Assisting developers of big data analytics applications
when deploying on hadoop clouds. In Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13, pages
402–411, 2013.

[62] SpringSource. Spring framework. www.springsource.org/. Last
accessed March 16, 2016.

[63] J. Sutherland. How to improve JPA performance by
1,825%. http://java-persistence-performance.blogspot.ca/2011/
06/how-to-improve-jpa-performance-by-1825.html. Last ac-
cessed March 16, 2016.

[64] J. Sutherland and D. Clarke. Java Persistence. Wikibooks, 2013.
[65] A. van Hoorn, M. Rohr, and W. Hasselbring. Generating prob-

abilistic and intensity-varying workload for web-based software
systems. In Performance Evaluation: Metrics, Models and Benchmarks,
volume 5119 of Lecture Notes in Computer Science, pages 124–143.
Springer Berlin Heidelberg, 2008.

[66] X. Xiao, S. Han, D. Zhang, and T. Xie. Context-sensitive delta
inference for identifying workload-dependent performance bottle-
necks. In Proceedings of the 2013 International Symposium on Software
Testing and Analysis, ISSTA 2013, pages 90–100, 2013.

[67] G. Xu, N. Mitchell, M. Arnold, A. Rountev, E. Schonberg, and
G. Sevitsky. Finding low-utility data structures. In Proceedings of
the 2010 ACM SIGPLAN conference on Programming language design
and implementation, PLDI ’10, pages 174–186, 2010.

[68] G. Xu, N. Mitchell, M. Arnold, A. Rountev, and G. Sevitsky.
Software bloat analysis: finding, removing, and preventing per-
formance problems in modern large-scale object-oriented applica-
tions. In Proceedings of the FSE/SDP workshop on Future of software
engineering research, FoSER ’10, pages 421–426, 2010.

[69] P. Zaitsev, V. Tkachenko, J. Zawodny, A. Lentz, and D. Balling.
High Performance MySQL: Optimization, Backups, Replication, and
More. O’Reilly Media, 2008.

http://www-01.ibm.com/software/ca/en/websphere/
http://www-01.ibm.com/software/ca/en/websphere/
http://www.jpab.org/All/All/All.html
http://www.jpab.org/All/All/All.html
https://weblogs.java.net/blog/caroljmcdonald/archive/2009/08/28/jpa-performance-dont-ignore-database-0
https://weblogs.java.net/blog/caroljmcdonald/archive/2009/08/28/jpa-performance-dont-ignore-database-0
http://archives.ryandaigle.com/articles/2008/4/1/what-s-new-in-edge-rails-partial-updates
http://archives.ryandaigle.com/articles/2008/4/1/what-s-new-in-edge-rails-partial-updates
https://github.com/SpringSource/spring-petclinic/
https://github.com/SpringSource/spring-petclinic/
www.springsource.org/
http://java-persistence-performance.blogspot.ca/2011/06/how-to-improve-jpa-performance-by-1825.html
http://java-persistence-performance.blogspot.ca/2011/06/how-to-improve-jpa-performance-by-1825.html

	Introduction
	Related Work
	Background
	Background of ORM
	Translating Objects to SQL Queries

	Our Approach of Finding Redundant Data Problems
	Overview of Our Approach
	Identifying Needed Database Accesses
	Identifying Requested Database Accesses
	Finding Redundant Data
	Performance Assessment

	Experimental Setup
	Case Study Systems
	Experiments

	Evaluation of Our Approach
	Framework Implementation
	Case Study Results
	Types of Redundant Data Problems
	Prevalence of Redundant Data Problems

	Automated Performance Assessment
	Assessing the Performance Impact of Redundant Data Problems
	Results of Performance Impact Study

	A Survey on the Redundant Data Problems in Other ORM Frameworks
	Threats to Validity
	External Validity
	Construct Validity

	Conclusion
	References

