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Abstract—Assessing how large-scale software systems behave
under load is essential because many problems cannot be un-
covered without executing tests of large volumes of concurrent
requests. Load-related problems can directly affect the customer-
perceived quality of systems and often cost companies millions of
dollars. Load testing is the standard approach for assessing how
a system behaves under load. However, designing, executing and
analyzing a load test can be very difficult due to the scale of the
test (e.g., simulating millions of users and analyzing terabytes of
data). Over the past decade, we have tackled many load testing
challenges in an industrial setting. In this paper, we document the
challenges that we encountered and the lessons that we learned
as we addressed these challenges. We provide general guidelines
for conducting load tests using an analytics-driven approach. We
also discuss open research challenges that require attention from
the research community. We believe that our experience can be
beneficial to practitioners and researchers who are interested in
the area of load testing.

Index Terms—load testing; test analysis; performance testing;
mining software repositories;

I. INTRODUCTION

Modern large-scale software systems such as e-commerce
websites (e.g., eBay and Amazon.com) and telecommuni-
cations systems (e.g., Gmail, WhatsApp, and Skype) must
support millions of concurrent user requests. Hence, the
behaviour of these systems under load is one of the most
important aspects of the systems’ quality because load-related
problems negatively impact the customers’ experience. Load-
related problems may be performance (e.g., memory leak) or
functional problems (e.g., buffer overflow) that only occur
when a system is under load. Further, load-related problems
are often very costly. For example, increasing the time to load
one of Amazon.com’s web pages by merely one second may
cost the company as much as 1.6 billion dollars in lost sales
per year [15]. Therefore, it is essential to thoroughly load test
such systems to uncover and fix problems before releasing the
systems into production.

Load testing is the standard approach for assessing how
large-scale software systems behave under load. The objective
of load testing is to uncover load-related problems [21].
Performance analysts design load tests to ensure that the test
loads are similar to the load seen in production (i.e., that the
test loads are “realistic”). When conducting a load test, the

systems are continuously monitored by collecting performance
counters (e.g., CPU and memory), and the system’s execution
logs and event traces (e.g., “User Peter logged in”). However,
conducting a load test and analyzing the performance counters
and execution logs that are collected during testing can be
extremely challenging and time-consuming [38].

Load testing produces and consumes a large amount of data.
For example, load test cases need to be derived from historical
usage data to ensure that the tests are realistic. However,
deriving accurate test cases requires performance analysts to
analyze terabytes or even petabytes of historical usage data [4].
Further, load tests usually last for hours (e.g., eight hours
to simulate a working day) or even days (e.g., one work
week) and the amount of collected performance counters and
execution logs during testing can be overwhelming. Finally,
performance analysts need to carefully review the collected
data during testing to uncover abnormal behaviour and to
determine if the test passes or fails.

We worked closely with our industrial partner on addressing
the challenges that they face when designing, executing and
analyzing load tests of large-scale software systems for over a
decade. The authors of this paper have spent several years
working at BlackBerry either as embedded researchers or
as performance analysts. During this time, we faced many
challenges that are associated with effectively and efficiently
designing, executing and analyzing load tests.

In this paper, we summarize and consolidate our previously
published work [3], [12], [13], [16], [22], [23], [25], [29], [30],
[33], [36], [37], and provide general guidelines for conducting
load testing using an analytics-driven approach. We discuss
how we leverage data mining techniques to improve the
efficiency and effectiveness of load testing. We also share
the lessons that we learned when developing and deploying
load testing tools in practice. Finally, we discuss open research
challenges that require attention from the research community.
Although we document our experience of conducting load
testing and related research at BlackBerry, the experience
is general and is applicable to other industrial settings. We
believe that our experiences can help 1) practitioners in de-
signing, executing and analyzing load tests; and 2) researchers
who are interested in conducting load testing research.



The main contributions of this paper are:
• We provide an experience report that discusses the chal-

lenges that we encountered when designing, executing
and analyzing load tests in an industrial setting.

• We also present the lessons that we learned while devel-
oping and deploying load testing tools in practice.

• We provide a general guideline on how to use an
analytics-driven approach for designing, executing and
analyzing load tests.

• We discuss several open research challenges which we
hope will inspire future research efforts in the software
engineering community.

Paper Organization. Section II provides a background on
the different stages of load testing, and an overview of our
analytics-driven approaches. Section III, IV, V, and VI discuss
challenges that we encountered and open research challenges
in test design, execution, and analysis. Section VII discusses
related work. Finally, Section VIII concludes the paper.

II. BACKGROUND AND OVERVIEW

In this section, we introduce the three phases of load testing:
test design, test execution, and test analysis, and describe the
existing practices in the industry. We also briefly discuss the
challenges that we faced in each of the three load testing
phases. Our discussions focus on blackbox testing and are
valid for a variety of large-scale enterprise systems, including
cloud and on-prem deployments.

A. A Brief Introduction to Designing, Executing and Analyzing
Load Tests

Load testing assesses systems’ behaviour under load to
detect load-related problems [21]. A workload is composed
of a mix of requests that are sent at specific rates (e.g., 99
login requests per second or 1,337 tweets posted per second).
Load testing can help uncover both functional (e.g., deadlocks)
and non-functional problems (e.g., response time that violates
service-level agreements). Figure 1 shows an overview of the
different phases in load testing: test design, test execution, and
test analysis. Below, we briefly discuss our experiences within
each of these three load testing phases.
Test Design. The quality and effectiveness of a load test are
highly dependent on the workload that is derived during the
test design phase. Hence, performance analysts often attempt
to design realistic workloads that model how users interact
with the systems [24], [26]. However, in our experience, we
find that designing workloads that are reflective of the field
is a difficult because 1) the complexity of collecting and
analyzing terabytes or even petabytes of field data; and 2)
the constantly evolving field load [7]. Therefore, performance
analysts must regularly analyze the field data and update the
load test in response to the evolving field workloads. Hence,
the current industry practice is to use an existing benchmark or
to analyze the field data. However, benchmarks tend to capture
the aggregated users’ behavior (i.e., the overall request rates)
and ignore detailed usage information (e.g., how an individual
user interacts with the system). Further, once these workloads

are derived they are rarely updated despite the constantly
evolving nature of field workloads.

Test Execution. Load tests are executed in a testing envi-
ronment (“lab”) using dedicated hardware [27], [39]. The lab
may consist of several servers and external services. The lab is
configured to simulate a real-world environment (e.g., adding
network latency [32]). In current industry practice, load tests
are executed for a pre-specified time (e.g., several hours or
even days) or until specific thresholds are met (e.g., number of
received requests) [35]. Performance counters (e.g., CPU and
memory) and system execution logs are recorded during tests.
Both types of data provide insight into the system’s behaviour
under load. In our experience, the effectiveness of the load
tests is not clear because the duration of the load tests may not
be sufficient to uncover load-related problems. However, load
tests need to be conducted on an almost daily basis to ensure
the quality of each build of the system, and it not clear whether
it is cost-effective to repeatedly execute the same scenarios
over an extended period of time.

Test Analysis. Performance analysts analyze the performance
counters and execution logs that are collected during a load
test to determine whether any load-related problems were
uncovered during testing. Performance counters are system
performance data (e.g., CPU usage) that are collected at
fixed time interval (e.g., every 30 seconds). Performance
analysts may collect hundreds or thousands of performance
counters [25]. Therefore, terabytes of performance counters
may be collected during testing. Execution logs, which are
generated by the systems, record events that occur during
system execution (e.g., “User Peter logged in”). Terabytes or
petabytes of logs may be collected during testing. As a result,
performance analysts usually use heuristics to detect potential
problems (e.g., searching for the keywords “Warning,” “Error”
or “Failure” in the execution logs) because too much data is
collected for manual analysis. However, in our experience [23],
we find that such heuristics are often insufficient to reliably
determine whether a system “passes” a load test. Hence, the
main challenge during test analysis is to effectively determine
whether a system “passes” a load test by analyzing the
large volume of collected log and counter data. In addition,
performance analysts must also diagnose the underlying root
cause of any problems.

B. Overview of the Challenges and Lessons Learned

In this section, we present some of the challenges that
we encountered when designing, executing and analyzing
load tests. We use analytics-driven approaches to improve the
current practices of load testing. We believe that documenting
these challenges and the lessons that we learned may help
practitioners develop their own automated system performance
assurance and analysis pipeline, and may inspire novel re-
search opportunities in load testing.

Figure 1 shows the challenges associated with each phase
of load testing. In the following four sections (Section III,
IV, V, and VI), we discuss our experience in addressing
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Fig. 1. An overview of the three phases in load testing (test design, test execution, and test analysis), and the challenges that we encountered.

these challenges. In each of these sections, we describe 1)
the challenge, 2) our approach to address the challenge and
3) the lessons that we learned. Finally, we present some open
research challenges.

III. TEST DESIGN CHALLENGES: DESIGNING REALISTIC
WORKLOAD AND HANDLING WORKLOAD EVOLUTION

A. Challenge Description

Performance analysts need to ensure the performance and
quality of the system when it is deployed in production and
used by real users. Hence, load test workloads are usually
derived from the field (i.e., alpha/beta testing data or actual
field data) [6]. Workloads are based on the behaviour of
thousands or millions of users interacting with the system.
(We use the word “user” to represent any kind of endpoint
that is accessing the system; for example, humans, mobile
devices, or SQL queries.) Therefore, simulating the “realistic”
usage of a system during testing should lead to load tests that
are more representative of the field. However, field workloads
continuously evolve as the user base changes, as features
are added or removed, and as feature usage changes. Such
evolving field workloads often lead to “outdated” tests that
are not reflective of the field. Thus, it is important to have an
automated approach that helps performance analysts with test
design and validation by leveraging real-world field data.

B. Our Solutions to Test Design Challenges

Users’ behaviour affects the systems in two ways. First,
users’ aggregated behaviour (e.g., number of requests per
second) has an impact on the systems’ performance (this is the
“traditional” notion of a workload). Second, users’ individual
behaviour also has an impact on the systems’ performance.
We found cases when a feature only causes errors when over-
stressed by an individual user (i.e., one user executing the
feature 1,000 times has a different impact on the system’s
behaviour in contrast to 100 users each executing the feature
10 times) [36]. Therefore, we need to assess both the aggregate
and user-level behaviour of the system’s users.

We developed an approach for comparing the behaviour of
users during a load test with the behaviour of users from
a historical execution [36]. Our approach consists of the
following three phases:

1) Data preparation – we abstract the execution logs to ex-
ecution events using a technique similar to token-based clone
detection [22], [23] (see Section V-B2 for more details). We
then generate workload signatures that represent the behaviour

of the systems’ users (a “signature” is a mathematical construct
that we us to quantify a workload). We generate two types of
workload signatures. An user-level workload signature repre-
sents the collection of features that are used by an individual
user. They are generated by 1) identifying all of the unique
user IDs (e.g., names, email addresses, or device IDs) that
appear in the execution logs; and 2) counting the number of
times that each type of execution event is attributable to each
user ID. An aggregate user workload signature represents the
traditional notion of a “workload” (i.e., the total number and
mix of features used in the systems). The information can be
used to determine the aggregate workload when designing load
tests. Workload signatures are generated by 1) grouping the
execution logs into time intervals (i.e., grouping the execution
logs that occur between two moments in time); and 2) counting
the number of times that each type of execution event occurs
within that time interval.

2) Clustering – we cluster the workload signatures into
groups where a similar set of events have occurred. Clustering
consists of three steps: 1) we calculate the dissimilarity (i.e.,
distance) between every pair of workload signatures; 2) we
use a hierarchical clustering procedure to cluster the workload
signatures into groups where a similar set of events have
occurred; and 3) we convert the hierarchical clustering into
k partitional clusters (i.e., where each workload signature is a
member in only one cluster).

3) Cluster analysis – we analyze the clusters to identify the
execution events that correspond to the differences between
the workload signatures from the load test and the historical
execution. Cluster analysis consists of two steps: 1) we detect
outlying clusters (i.e., clusters that contain workload signatures
that occur during the load test significantly more than in the
historical execution) using one-sample upper-tailed z-test for
a population proportion and 2) we identify key execution
events that best explain the differences between the systems’
workload during the load test in comparison to the systems’
workload during the historical execution using unpaired two-
sample two-tailed Welch’s unequal variances t-test and Co-
hen’s d [36].

�
�

�
�

We suggest comparing the systems’ workload during testing
to the systems’ workload in the field to determine whether
tests are comprehensive and realistic [36].



C. Lessons Learned

Load tests are often designed to meet throughput targets
(e.g., 100 requests serviced per second). However, focusing on
the aggregate user behaviour (i.e., the request rates) ignores the
variability and the importance of the individual user behaviour
(i.e., how a particular user interacts with the system).

Prior industry practice only focuses on analyzing request
rates, rather than analyzing individual user behaviour. Our
approach can uncover unique user behaviour and code paths
that were not previously tested. We were also able to con-
firm the underlying cause of load-related problems and help
highlight the importance of persona-based load testing (i.e.,
designing workloads using a combination of personas that
model the behaviour of real-world users). A persona models
the interaction of a particular type of real-world user with
the system. For example, the personas for an e-commerce
system could include “shopaholics” (i.e., users who make
many purchases) and “window shoppers” (users who view
many items without making any purchases). These personas
correspond to different feature preferences (e.g., “shopaholics”
will use payment features whereas “window shoppers” will
make more use of search features). Therefore, persona-based
load testing helps performance analysts ensure that their
system performs well under a realistic workload. Our approach
also helps performance analysts uncover previously unknown
personas that have impacts on the system performance. Using
our approach, we were able to show that load tests using
workloads that were only designed to meet throughput targets
are insufficient to confidently claim that the systems will
perform well in production. Our approach is used regularly
(e.g., every several months) to analyze the most recent user
usage data from the field in order to verify whether the load
tests are still up-to-date.

D. Open Research Challenges

How to Automatically Generate Test Data? Generating
load test data that satisfies several system constraints (e.g.,
database schema or business logic) is extremely difficult.
For example, performance analysts need to understand the
database schema to avoid violating foreign key constraints
when inserting test data into the database. In addition, the
data insertion speed must be fast, because the test data many
include hundreds of tables and millions of records. Hence, it
may be necessary to skip certain data validation steps (e.g.,
user authentication on external servers). Approaches that can
help performance analysts quickly generate a large amount of
test data that satisfies all of the system’s constraints may be
very beneficial [18].

IV. TEST EXECUTION CHALLENGES: REDUCING TEST
EXECUTION EFFORTS

A. Challenge Description

Load tests usually last several hours or even several days. In
modern development practice, such as DevOps, load tests are
executed on a daily basis to ensure the quality of the evolving

systems [2], [8]. Hence, it is important to reduce the load
test execution efforts while ensuring the tests are successfully
executed and that the collected testing data is sufficient for
assessing the system’s behaviour. To address this challenge,
we first discuss one of our approaches to determine whether
a test is valid or not (e.g., environment issues such as disk
failures) in Section IV-B1. We then discuss an approach that
we use to determine when to stop a test in Section IV-B2.

B. Our Solutions to Test Execution Challenges

1) Determining the validity of a test: Performance analysts
need to quickly determine that a test is invalid and should
be stopped early. An invalid test happens when the system
encounters some environmental or external failures that are not
directly related to the system’s quality. For example, if some
unexpected problems, such as network failure or running out of
disk space (e.g., forgetting to clean the old logs before running
a new test), occur when conducting a load test, performance
analysts may only find out that the test is invalid after the test
is completed. In such cases, the time and computing resources
are wasted, and the results of load testing are delayed.

We learned that to quickly determine that a test is invalid
and should be stopped, we need real-time monitoring of the
system under test. We leverage logs that are generated during
load tests to monitor the system in real-time. In practice,
logs are collected through central logging infrastructure (e.g.,
syslog) and are continuously sent to a remote logging server.
Thus, we implement a framework to automatically monitor and
analyze the logs on the logging server in real-time. If an unre-
coverable issue occurs (e.g., disk failure), the framework will
notify the performance analysts and they can decide whether
the test should be stopped. Hence, performance analysts do not
need to wait until a test is completed to determine whether the
test results are invalid.

2) Finding test stopping criteria: There are no criteria to
determine how long a load test should be executed. Although
load tests often execute for a sufficiently long enough time
to simulate real-world usage, much of the generated data is
repetitive and non-informative. Therefore, if we can know that
continuing the load test would not provide any new infor-
mation about the system’s performance, we can then simply
stop the test. Reducing the test time can help minimize the
costs of load testing resources. We measure repetitiveness in
performance counters that are already generated from the load
test, to determine whether to stop the test [3]. To quantify the
repetitiveness of the generated performance data, we randomly
pick a short time period from the data and exhaustively search
for another time period that contains similar data. We leverage
statistical analysis to determine whether the data in two time
periods are similar or not. If we could find another time period
that contains similar data, we consider the randomly picked
time period as repeated. We conduct such process of picking
a random time period and searching for a similar time period
for a large number (e.g., 1,000) of times to determine the
probability of having a time period that contains repeated data.
We use this probability as a measure of repetitiveness in the



load test results. Performance analysts can use this measure
to determine whether to stop the test based on their own
experience. In addition, we developed an automated tool that
suggests the stopping of a test if the repetitiveness stabilizes
during a load test in real-time by continuously monitoring and
analyzing the counters. We find that by using our approach,
we can reduce the testing time by over 50%.

Modern large-scale systems usually rely on different ex-
ternal services [28]. For example, a system may depend on
external services for authentication, notification, or billing. As
the number of external services increases, the performance
variations that we observe during a test may be due to in-
stabilities from external services (e.g., when external services
receive irregular heavy load). Performance analysts usually do
not have access or control over such external services. The
variation in the external services’ performance may impact
measuring the repetitiveness of the load test results. Therefore,
it is important to eliminate uncontrolled performance variation
from external services when conducting load tests. To reduce
the uncontrolled variation during the test, we often implement
mock services as a replacement for external services.�

�

�

�
To reduce test execution, we continuously monitor if a test
is valid (i.e., no unexpected error such as network failure).
Then, we suggest stopping the load tests early if the results
are highly repetitive.

C. Lessons Learned

The amount of resources that is required for load testing
may be significant. However, our approaches have been used
in practice to reduce the required resources to execute load
tests on large-scale enterprise systems. Performance analysts
use our approaches to reduce the costs of executing load tests
in a continuous delivery pipeline (i.e., executing load tests
to verify daily builds). We also find that deploying mock
services reduces the required resources to execute load tests
because mock services have the bare minimum functionalities
of a real service. Performance analysts also have full control
of the behaviour of the mock services when conducting load
tests (e.g., adding network delays). External services may not
be equipped with the necessary hardware for executing load
tests without paying extra money. Performance analysts may
even need to notify the operators of the external services and
specifically schedule time for executing load tests. In some
cases, we have even seen external services crashing under
the load, which significantly delays the test execution plan.
Prior to adopting our approaches, the number of executed load
tests was much lower than the number of new system builds,
which delays the development of the system. Increasing the
number of executed load tests also increases the probability
of uncovering load-related problems.

D. Open Research Challenges

How Can We Reduce the Costs of Running Load Tests?
Executing load tests is expensive due to the long execution
time and the required hardware. In some cases, performance

analysts need to use the same production hardware settings
(e.g., hundreds or thousands of servers) to ensure the perfor-
mance of the system when it is deployed. Hence, it is difficult
to run different types of tests (e.g., reproduce different per-
formance problems that are reported by several customers) at
the same time, which significantly slows down the entire load
testing process. We believe that reducing the size of the load
tests can further help improve the system performance (e.g.,
executing a smaller test on fewer machines will reach similar
conclusions). However, there exists no proposed solution in
the literature yet [21].

How to Reduce the Costs of Creating and Maintaining
Realistic Mock Services? We find that mock services are
essential for improving the repeatability of the identified load-
related problems and for reducing dependencies on external
service providers. One challenge that we find with creating
mock services is that it is a manual-intensive process. Per-
formance analysts need to first understand the protocols and
format of the payloads that the external services use, and
implement a mock service based on the result. In the case
where the communication is encrypted between the systems
and external services, performance analysts need to spend time
decrypting the communicated messages. When the external
services evolve, the mock services also need to be updated
to include the new feature/behaviour. Hence, providing auto-
mated approaches for creating and maintaining mock services
can significantly reduce the costs of load testing.

V. TEST ANALYSIS CHALLENGE: DETERMINING
WHETHER A TEST PASSES OR FAILS

A. Challenge Description.

There are no clear criteria for determining whether a system
“passes” or “fails” a load test. Even if a system complies
with its service level agreement, there can still be performance
problems that need to be uncovered and resolved (e.g., mem-
ory leaks). Due to the amount of data that is collected during
load testing, it is important to provide automated tools that
can help performance analysts uncover anomalies that happen
during a test. We use anomaly detection based approaches to
decide whether a test passes or fails [23], [33]. Such anomalies
often indicate either performance or functional problems that
require further attention from performance analysts. We first
proposed approaches to detect performance anomalies (i.e.,
performance regressions) using performance counters [33].
Then, we proposed approaches to detect functional anomalies
(e.g., potential functional problems) using logs [23].

B. Our Approaches for Detecting Anomalies

1) Automatically detecting performance anomalies: Perfor-
mance regressions occur when problems are introduced after
recent code changes (e.g., the new version is slower). However,
since there can be hundreds of performance counters that are
collected during a load test, it is difficult and time-consuming
to manually identify the counters that suffer from performance
regressions. We use a model-based performance regression



detection approach to automatically detect performance re-
gressions [33]. Since there exists no clear passing and failing
criteria for load tests, our approach provides an indicator of
the test outcome (e.g., pass/fail) by mining historical tests.

We first group performance counters into clusters using a
clustering algorithm (i.e., hierarchical clustering). Each data
point in the cluster analysis can be viewed as a vector that
represents the performance counters (e.g., CPU, memory, and
disk I/O) sampled at a particular interval. For example, if
a load test runs for an hour and performance counters are
recorded every minute, there would be 60 data points for this
load test, and each point is a vector that stores sampled values
for CPU, memory, and disk I/O. After the cluster analysis, we
can allocate the data points into several clusters (i.e., some
points have similar characteristics). We then build a regression
model using the data points in each cluster (e.g., if we have
five clusters, we would have five regression models).

If new test data arrives, we first find the cluster to which it
belongs. Then, we use the corresponding regression model that
is trained using previous tests to determine whether the model
has a low prediction error when applied on the new test data. If
the predicted values are lower than the actual observed values
(e.g., the system is slower than expected), then a performance
regression might have happened, and a warning is sent to
performance analysts for further verification. We also find that
by clustering the counters together, performance analysts can
quickly determine the type of performance regressions (e.g.,
whether it is CPU or memory related), which helps in the
performance regression verification process.

2) Automatically detecting functional anomalies: It is chal-
lenging to verify the functional correctness in a fine-grained
manner in a load test due to its size. Hence, performance ana-
lysts usually use keywords to search for errors in the log [23].
However, in many cases the problematic log lines may not
contain such keywords, or the log lines are only indication
of abnormal system behaviours (e.g., a log line that indicates
the queue size is smaller than 0, which is likely caused by a
buffer overflow, but no “error” keyword is logged). We develop
an approach to automatically identify anomalies in log lines
that may represent incorrect system behaviour. Our approach
uncovers the dominant behavior (i.e., execution sequences) for
the application and flags anomalies (i.e., deviations) from the
dominant behavior. We identify execution sequences by first
abstracting logs into events (i.e., remove parametric variables
from log lines), then linking related events together using
information such as thread IDs (i.e., the log lines are generated
by the same thread, which usually corresponds to the same
user activity). We then use a statistical approach called z-stat
to identify anomalous event sequences [23]. The z-stat gives
a score to the data distribution to indicate how far away the
data is from the normal distribution. Thus, the larger the z-stat
score is, the more likely an anomaly exists. For example, if
Event A → Event B happens 10,000 times and Event A →
Event C happens only 1 time, the z-stat score will be very
large, and Event A → Event C will be identified as anomalous
and will require attention from performance analysts.

TABLE I
AN EXAMPLE OF ABSTRACTING LOG LINES INTO EVENTS.

Before abstraction After Abstraction

Add to cart, item=computer, price=800 Add to cart, item=$v, price=$v
Check out, total amount is 800 Checkout, total amount is $v
Add to cart, item=book, price=18 Add to cart, item=$v, price=$v
Check out, total amount is 18 Checkout, total amount is $v

In order to use an advanced analysis approach (e.g., data
mining or machine learning algorithms) to analyze logs, we
need to make the structure of log lines consistent. However,
one challenge when implementing log abstraction is that logs
follow a semi-structured format. Most systems use ad-hoc
and non-standardized logging formats, which makes auto-
mated analysis very complex. For example, it may not always
be easy to automatically identify which words correspond
to parametric variables in a log line. Moreover, since the
format of logs may change over time [34], a pre-defined
log abstraction approach (e.g., using only regex to abstract
the parametrize variables) may not always work and will
require continuous maintenance. Table I shows an example
of abstracted logs. One can see that, only after the abstraction
may performance analysts apply different machine learning or
data mining algorithms to analyze logs. Otherwise, machine
learning algorithms cannot distinguish the difference between
the first two log lines, and will treat them as separate events.
Hence, we use an automated approach to process the log lines
and abstract them into events (i.e., become structure data) [22].

Our approach tries to find log lines that have a very similar
structure with slight differences due to parameterization (e.g.,
computer vs book in Table I). We first use regular expressions
to abstract the parameters (e.g., word=value), then we tokenize
the log lines using spaces. We group the log lines that have the
same number of words and parameters together. For example,
the first and third log line in Table I both have five words and
two parameters, so they will be grouped together. Abstracted
log lines in the same groups are merged to the same event. To
improve the precision of our approach, we also merge the log
lines in the same group if they differ from each other by one
token at the same position. As an example, if we only use “=”
to identify parameters in the log, we will not be able to abstract
the second and the fourth log lines in Table I. However, since
these two log lines have the same number of tokens and the
token similarity differs by only one token (i.e., 800 and 18
in our example), we group these two log lines together as
the same event. Note that, as mentioned in Section III-B,
log abstraction is needed for comparing workloads in the test
design step.�

�

�

�
To help performance analysts detect anomalies, we provide
two anomaly detection approaches. We leverage perfor-
mance counters to detect performance anomalies (i.e., re-
gressions); we leverage logs to detect functional anomalies.

C. Lessons Learned

Performance analysts have been using the presented ap-
proaches to detect anomalies for many years. Our approaches



are integrated into the continuous delivery process to verify
the result of each load test. Our log abstraction and anomaly
detection techniques are generic and are used to analyze logs
from many systems within the organization with minimal
changes. The approaches are well-received by the analysts. We
were told that our approach of finding functional anomalies
can also help uncover how customers are using the systems
by highlighting the dominant behaviour. Our approach also
helps improve the logging practices of developers. Developers
are aware of the benefits of aforementioned approaches, so
they try to unify the structure of the logs to ease analysis and
avoid significant changes on logging formats. We find that log
abstraction is one of the most important steps for in-depth
log analysis. Log abstraction helps transform logs into events
that can then be analyzed using advanced statistical or machine
learning models. Nevertheless, based on our experience, many
companies do not perform any log abstraction. Hence, standard
logging infrastructure that can systematically separate the
static and dynamic content of logs can help increase the
adoption of log abstraction for more advanced analysis.

D. Open Research Challenges

How to Verify a Fix Without Re-executing the Entire
Load Test Again? Conducting load tests can be very time
and resource consuming. However, when the root cause of a
problem is located and a fix is provided, performance analysts
need to re-run the same test again to verify if the problem
is resolved. Hence, approaches that can help performance
analysts quickly verify a fix would be of great value. For
example, perhaps the load test can be simplified to only trigger
the modified code in order to reduce the execution time.
Is Having no Performance Regressions Good Enough? A
major part of load test analysis is to identify performance
regressions (e.g., performance anomalies in new builds). How-
ever, having no performance regression does not necessarily
mean that the performance of the system is problem-free.
In our experience, we have seen people increase the recom-
mended requirement of the hardware when deploying their
system since their system does not scale well. If we can suc-
cessfully quantify the performance of a system along different
aspects, we may help developers know where they should
focus their efforts when improving the system performance.
For example, developers may use bug detection approaches
to uncover existing performance problems that are not related
to performance regressions [11]–[13]. Also, approaches that
automatically find optimal performance configurations can be
very beneficial [10]. We believe that finding such problems
can further help improve system performance and scalability.
We encourage further research efforts on integrating other per-
formance assurance approaches into the continuous delivery
process to compliment load testing.

VI. TEST ANALYSIS CHALLENGE: PROBLEM DIAGNOSIS

A. Challenge Description
In Section V, we discuss the approaches that we proposed

and were adopted by our industrial partner to detect anomalies

in load tests. After deploying the tools, we find that it is also
important to help performance analysts further diagnose the
root cause of the detected problems. Such problem diagnosis
can significantly reduce the required manual effort for ana-
lyzing load test results. However, there are a few challenges
that are associated with problem diagnosis, such as uncovering
detail information in the workload, finding the reasons for
performance deviation, and identifying the performance differ-
ences (e.g., anomalies). In the following subsection, we discuss
our proposed solutions to the aforementioned challenges.

B. Solutions to Problem Diagnosis Challenges

1) Generating Important Metrics for Uncovering Load-
related Problems: Identifying and generating important met-
rics that can be used for problem diagnosis is a major challenge
in load testing. For example, if all we know is the time when
a system is slow, it is challenging for us to uncover the root
cause of a performance problem for that system. We need to
gather additional information and from which we can then
extract meaningful metrics (e.g., a particular event that is
extremely slow when the entire system is slow). The more
important metrics that we have, the higher the chance that we
can uncover and locate load-related problems.

Software logs contain valuable information about the system
execution. Such information is necessary for uncovering load-
related problems [31], [41]. However, parsing and analyzing
logs can be difficult due to the fact that logs are unstructured.
Hence, based on our experience, we find that it is beneficial to
provide performance analysts a general framework for extract-
ing important metrics from logs. The framework requires some
domain knowledge from the performance analysts to define
some patterns in the logs. The pattern does not need to be
related to only one printed line in logs (e.g., a log line that
indicates a user is logged in), since many metrics that are
extracted from logs require analyzing multiple log lines at the
same time. These patterns usually reflect the business logic of
the system, which helps performance analysts understand the
root cause of the problem and ease the debugging process.
After specifying the patterns, the framework extracts the
metrics based on a pre-defined time interval (e.g, what is
the maximum, mean, and minimum service subscription rate
per each user at a ten-second interval), and the extracted
metrics can be mapped to hardware counters such as CPU and
memory usage. If a problem is located, performance analysts
can quickly see how the extracted metrics correlate with the
performance counters, and thus can uncover the root cause of
the problem in a timely manner [25].

2) Quickly Identify Performance Deviation Using a User-
Friendly Dashboard: Performance counters provide perfor-
mance analysts with valuable insights into the performance
of their systems during testing. However, hundreds or thou-
sands of different performance counters are collected during
testing [25]. Performance analysts are easily overwhelmed by
the task of determining which performance counters indicate
performance anomalies and when such anomalies occur during
tests (tests may last for hours or days, yet an anomaly may only



Fig. 3. When performance analysts click on a counter in Figure 2, they are
shown the counter plotted over the duration of the test. This figure shows the
Pool Paged Bytes (the portion of shared system memory that can be paged to
the disk paging file [1]) on the Workload Driver machine during the current
load test (in red) and the baseline test in grey). Performance analysts can
quickly see that the Pool Paged Byes on the Workload Driver machine is
much higher during the current load test than in the baseline test (especially
between the 40th-60th minute of the load test).

last minutes or even seconds). Therefore, in addition to the
performance anomaly detection approach that we mention in
Section V-B1, we also implement a dashboard to help perfor-
mance analysts quickly identify the most troubling anomalies.
Figure 2 shows an example of our dashboard. Performance
analysts can click on any counter in the dashboard to further
investigate the difference between two tests (Figure 3). Tests
can be automatically certified as “passing” if there are no
deviations, “conditionally passing” if there are a few deviations
or “failing” if there are many deviations.

We guide performance analysts to the point in time when
the performance deviation (e.g., anomaly) occurred using
our dashboard. Performance analysts can quickly determine
the nature of the deviation (e.g., the CPU usage exceeds
its historical values for a few seconds or memory usage
exceeds its historical values for the entire test) and can use
this knowledge to start a manual investigation. For example,
performance analysts can identify the execution logs leading
up to an anomaly for manual investigation. Our dashboard
can also be supplemented with domain knowledge to combine
our automatically generated statistical analysis with manually
generated domain knowledge. For example. performance ana-
lysts can specify test phases (e.g., warm-up or cool-down) or
periods of time when specific features are tested (e.g., feature
A is tested for one hour, then feature B for one hour).

3) Quickly Comparing Results Across Tests: The system
is always evolving, and the underlying software stack and
configurations of the hardware may also change from time to
time. There are two challenges associated with such evolution.
First, as the performance data ages, the baseline test (tests for
determining if a performance regression occurs) may change,
so many of the discussed performance regression and anomaly
detection approaches will not work using the old baseline test.
Thus, it is important to keep track of the system versions and
the detailed test environment for each load test. Second, it is
important to compare the load testing result with prior tests to
study how the system performance changes over time as the

system evolves. By doing so, we can make sure that the system
performance is not getting worse very slowly over time (i.e.,
performance regresses very slowly so it cannot be captured
using statistical tests).

To overcome the above-mentioned challenges, we develop
a load test repository. Similar to a version-control system
that stores and maintains source code history, the load test
repository stores and maintains all the detailed information
of load tests that were conducted during the development
history; such as the test environment, the version of the system
under test, test description, summary of the test results, and
the data that is generated during the test (e.g., performance
counters and logs). One advantage of having a centralized load
test repository is that the data can be easily shared among
performance analysts. In addition, our load test repository
allows performance analysts to compare the results of different
load tests for problem diagnosis. For example, a performance
analyst can compare two similar tests that are conducted in
version 1 and version 35. Such comparison allows performance
analyst to spot any possible performance regressions that might
have been missed by the automated performance regression
detection approaches. Our load test repository also allows
performance analysts to search the conducted tests using
different attributes, such as the version of the system under
test and the version of the software library that is used. As a
result, performance analysts can quickly compare the current
test with tests that were conducted in an old environment, and
manually examine any performance differences [16].�




�

	

To help performance analysts with problem diagnosis, we
implement a log analysis framework that can extract im-
portant metrics that reflect system operation. We implement
a dashboard that allows performance analysts to quickly
identify when and where anomalies happen. Finally, we
develop a load test repository that allows performance
analysts to quickly compare tests to identify problems.

C. Lessons Learned

Based on the feedback from the performance analysts, we
find that automated tools are extremely important for analyzing
load test results. Before the tools were developed, performance
analysts spent much time parsing logs and analyzing counters
in an ad-hoc fashion. After deploying the tools, we were told
that performance analysts can significantly reduce the test
analysis time. Moreover, performance analysts prefer tools
that can directly flag problems in a test and prioritize the
uncovered problems. We also find that it is important to
leverage historical information, since the information preserves
the knowledge of repeated problems and allows performance
analysts to retrospectively improve their load testing process.
The developed tools are used by performance analysts on a
daily basis to analyze the results of load tests. Overall, we
find that data visualization is key for the adoption and success
of the tools, since data visualization allows performance ana-
lysts to quickly understand the root causes of any uncovered
problems.



Fig. 2. Performance analysts are presented with a table of performance counters that is sorted by the magnitude of the difference in the counter values
between the current load test and one or more baseline tests (i.e., A Baseline Test). For example, TCPv4 Connections Reset (i.e., the number of times
that the TCP connections have made a direct transition to the CLOSED state from either the ESTABLISHED state or the CLOSE-WAIT state [1]) on the
User Interface Machine machine (first row) shows the largest difference in the counter values between the current and baseline load test. Performance analysts
can also quickly navigate the table using the search boxes (e.g., search for counters collected from only one machine).

D. Open Research Challenges

Can We Provide Auto-diagnosis for Previously Uncovered
Problems? Our visualization approaches significantly reduce
the required manual efforts on problem diagnosis. However,
in our experience, we find that similar problems may occur
again in the future as the systems evolve (e.g., developers
make similar mistakes). Hence, automated approaches that
can diagnose previously-uncovered problems (e.g., identifying
recurring problematic patterns [13]) can further help perfor-
mance analysts reduce problem diagnosis efforts.

VII. RELATED WORK

In this section, we discuss prior work that is relevant to our
paper. We categorize the related work into two categories: 1)
experience reports on conducting load tests; and 2) using data
analysis approaches for uncovering load-related problems.
Experience Reports on Conducting Load Tests. Weyuker et
al. [40] discuss their experience on conducting load tests. They
discuss the goal of load testing and the role of requirements
when doing load testing. They also discuss how one can
conduct load tests using the proposed approaches by walking
the readers through an example. Avritzer et al. [5] propose a
way to design system-independent workloads for evaluating
the performance of the systems. The authors discuss how
they use the approach to help a company. Garousi [17]
propose a performance engineering process for stress testing
real-time systems. The author applies the process on a case
study system and documents the challenges that he encounters
and discusses open research questions. Menasce et al. [26]
describe the aspects where load testing helps improve system
quality, and provide approaches for conducting load tests.
Grechanik et al. [19] propose a feedback-directed approach
that automatically selects appropriate inputs for performance
tests to uncover problems. Grechanik et al. also discuss how
their approach helps practitioners with problem diagnosis.

Many prior studies discuss load testing challenges that are
related to this paper. However, these studies usually only report
the experience on a particular phase of load testing and do
not leverage analytics (i.e., data mining) approaches. On the
other hand, we discuss our experience and the data analytics
approaches that we use in assessing the various stages of load
test (i.e., test design, execution, and analysis).

Using Data Analytics Approaches for Uncovering Load-
Related Problems.

Similar to this paper, many prior studies use data analytics
approaches when analyzing system data, since the amount
of system-generated data can be tremendous. Prior studies
apply statistical tests to detect performance anomalies and
regressions [20], [25], [29], [30]. Some studies have used more
advanced machine learning models such as Tree-Augmented
Bayesian Networks [14] and linear regression [9], [33] to
detect load-related problems. However, prior papers focus
mostly on detecting problems in the load test results. In this
paper, we focus on discussing our experience on using an
analytics-driven approach to assist in not only test analysis
but also test design and execution.

VIII. CONCLUSION

How a system behaves under load is one of the most im-
portant aspects of a system’s quality because any load-related
problem can negatively impact the users’ experience and
potentially cost a company billions of dollars each year. Load
testing is the standard approach for assessing the behaviour of
a system under load and for uncovering load-related problems.
However, there are many challenges that are associated with
load testing. Performance analysts need to execute tests that
simulate millions of concurrent users and they need to analyze
the terabytes of data that are collected during testing. We
have been working closely with our industrial partner on
conducting load testing research in an industrial setting. In
this paper, we document and discuss the challenges that we
encountered and the learned lessons over the past decade. We
provide a general guideline on conducting load testing using
an analytics-driven approach. We discuss how we leverage the
data that is collected during load testing and from the field to
address challenges in designing, executing and analyzing load
tests. We also discuss open research challenges that require
future research efforts. We believe that our experiences can
help practitioners who wish to adopt load testing in their
software development process, and can help researchers who
are interested in conducting research in this area.
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