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Abstract—Performance bugs are programming errors that slow
down program execution. While existing techniques can detect
various types of performance bugs, a crucial and practical aspect
of performance bugs has not received the attention it deserves:
how likely are developers to fix a performance bug? In practice,
fixing a performance bug can have both benefits and drawbacks,
and developers fix a performance bug only when the benefits
outweigh the drawbacks. Unfortunately, for many performance
bugs, the benefits and drawbacks are difficult to assess accurately.

This paper presents CARAMEL, a novel static technique that
detects and fixes performance bugs that have non-intrusive
fixes likely to be adopted by developers. Each performance
bug detected by CARAMEL is associated with a loop and a
condition. When the condition becomes true during the loop
execution, all the remaining computation performed by the
loop is wasted. Developers typically fix such performance bugs
because these bugs waste computation in loops and have non-
intrusive fixes: when some condition becomes true dynamically,
just break out of the loop. Given a program, CARAMEL detects
such bugs statically and gives developers a potential source-
level fix for each bug. We evaluate CARAMEL on real-world
applications, including 11 popular Java applications (e.g., Groovy,
Log4J, Lucene, Struts, Tomcat, etc) and 4 widely used C/C++
applications (Chromium, GCC, Mozilla, and MySQL). CARAMEL
finds 61 new performance bugs in the Java applications and 89
new performance bugs in the C/C++ applications. Based on our
bug reports, developers so far have fixed 51 and 65 performance
bugs in the Java and C/C++ applications, respectively. Most of
the remaining bugs are still under consideration by developers.

I. INTRODUCTION
Software performance is critical for the success of a soft-

ware project. Performance bugs1 are programming errors that
slow down program execution [7]. Performance bugs create
poor user experience, affect the user-perceived software qual-
ity, degrade application responsiveness, waste computational
resources, and lower system throughput [6], [39]. Even expert
programmers can introduce performance bugs, which have
already caused serious and highly publicized incidents [24],
[25], [38]. Well tested commercial products such as Internet
Explorer, Microsoft SQLServer, Visual Studio, and Acrobat
Reader are also affected by performance bugs [2], [37].

Several techniques [5], [11], [18], [20]–[22], [26], [43], [46],
[47], [50], [56], [58], [60]–[62] have been proposed to help
detect various types of performance bugs. However, there

1“Performance bug” is a well accepted term in some communities, e.g.,
Mozilla Bugzilla defines it as “A bug that affects speed or responsiveness” [7].
However, others believe “bug” requires specifications, and prefer to use the
terms “performance problem” or “performance issue”. We feel this is just a
naming issue and use the Mozilla Bugzilla term of “performance bug”.

are still many performance bugs that cannot be detected by
existing techniques. Furthermore, a crucial and practical aspect
of performance bugs has not received the attention it deserves:
how likely are developers to fix a detected performance bug?

In practice, when developers decide if they should fix a
performance bug, developers face a difficult choice between
the potential drawbacks and the potential benefits of the fix.

On one hand, similar to fixing functional bugs, fixing per-
formance bugs can have drawbacks. First, fixing performance
bugs may introduce severe functional bugs, which may lead to
program crash or data loss. The risk of having such negative
and noticeable effects can make developers very cautious about
improving performance. Second, fixing performance bugs may
break good software engineering practices, making the code
difficult to read, maintain, and evolve. For example, fixing
performance bugs may require breaking encapsulation, code
cloning, or specialization. Third, fixing performance bugs
takes time and effort, especially if the fix involves several soft-
ware modules or requires a complex implementation. Fourth,
fixing performance bugs, which manifest for some inputs, may
slow down other code, for some other inputs, and developers
must decide which of these slowdowns—the slowdown caused
by the performance bug for some inputs, or the slowdown
caused by the fix for some other inputs—is preferable.

On the other hand, fixing performance bugs has benefits,
i.e., it speeds up code. However, unlike fixing functional bugs,
the benefits of fixing a performance bug are often difficult to
assess accurately, especially when the fix is complex. First,
the speedup offered by the fix depends on the input, and
many inputs may not be sped up at all, because performance
bugs manifest only for certain inputs. Therefore, developers
need to estimate which inputs have which speedups, and how
frequent or important are these inputs in practice. Second, the
exact speedup offered by the fix for an input is difficult to
estimate without executing the code, and speedups of orders
of magnitude—i.e., speedups for which accurate estimates are
not necessary—are rare. Unfortunately, developers often have
access to only a few real-world inputs triggering a bug—or
none at all, if the bug was detected during development using
benchmarks, static tools, or code inspection—, and can find it
difficult to estimate the expected speedup for the rest of the
real-world inputs that may trigger the bug.

In practice, developers fix performance bugs when the bene-
fits outweigh the drawbacks. Specifically, developers are likely



to fix performance bugs that have simple and non-intrusive
fixes. Such fixes are unlikely to introduce new functional bugs,
do not increase code complexity and maintenance costs, are
easy to understand and implement, and are unlikely to degrade
performance for other inputs. In other words, the choice
between benefits and drawbacks is made easy for developers:
because the fixes are simple and non-intrusive, fixing the bugs
brings only benefits.

This paper makes the following contributions:
Novel Perspective: Compared with previous work, this

paper has a unique perspective towards detecting performance
bugs: we focus on detecting bugs that are very likely to be fixed
by developers. Following the above discussion, we propose
to detect performance bugs whose fixes clearly offer more
benefits than drawbacks to developers.

New Family of Performance Bugs: This paper identifies a
family of performance bugs that developers are very likely to
fix. Every bug in this family is associated with a loop2 and a
condition. When the condition becomes true during the loop
execution, all the remaining computation performed by the
loop is wasted. In the extreme case when the condition is true
at the start of the loop execution, the entire loop computation
is wasted. Developers typically fix performance bugs in this
family because (1) these performance bugs waste computation
in loops, and (2) these performance bugs have simple and non-
intrusive fixes: when some condition becomes true, just break
out of the loop. Typically, these bugs are fixed by adding one
line of code inside the loop, i.e., if (cond) break, which
we call a CondBreak fix. We call cond a L-Break condition.

Important Performance Bugs: The performance bugs in
this family are important: developers of real-world applications
typically fix these bugs. Developers are the ultimate arbiters
for what is useful and what is not useful for their project,
and developers typically think these bugs must be addressed.
Furthermore, these bugs are not all the performance bugs that
have non-intrusive fixes, and our work is a promising first step
in this important research direction.

Technique: This paper proposes CARAMEL, a novel static
technique for detecting performance bugs that have Cond-
Break fixes. CARAMEL takes as input a program and outputs
loops that can be fixed by CondBreak fixes, together with
a potential fix for each buggy loop. The fixes proposed by
CARAMEL can be directly applied to source-code and are
easy to read by developers. CARAMEL works on intermediate
code representation and analyzes each loop in five steps. First,
CARAMEL identifies the loop instructions that may produce
results visible after the loop terminates. Second, for each
such instruction, CARAMEL detects the condition under which
the instruction can be skipped for the remainder of the loop
without changing the program outcome. We call this condi-
tion an I-Break condition, similarly to the L-Break condition
described earlier for the entire loop. Third, CARAMEL checks
if all instructions from step two can be skipped simultaneously
without changing the program outcome, i.e., if all I-Break

2We focus on loops because most computation time is spent inside loops
and most performance bugs involve loops [19], [23], [45], [56], [61].

conditions can be satisfied simultaneously. The conjunction
of all I-Break conditions is the L-Break condition. Fourth,
CARAMEL checks if the computation waste in the loop is not
already avoided, i.e., if the loop does not already terminate
when the L-Break condition is satisfied. If all the previous
steps are successful, CARAMEL reports a performance bug.
Fifth, CARAMEL generates a fix for the performance bug. The
fix has the basic format if (cond) break, where cond is
the L-Break condition CARAMEL computed in the third step.

Automatic Fix Generation: Automated bug fixing is chal-
lenging in general [30], but CARAMEL is able to automatically
generate fixes for most bugs because CARAMEL takes advan-
tage of two characteristics of the performance bugs it detects:
(1) the bugs have CondBreak fixes, which can be inserted right
at the start of the loop, thus avoiding complex interactions with
other loop code, and (2) the L-Break condition in a CondBreak
fix is a relatively simple boolean expression (Sections II, III).

Evaluation: Our main measure of success for CARAMEL
is if real-world developers think the bugs found by CARAMEL
are important, as quantified by the number of bugs fixed. We
implement two CARAMEL tools, one for Java, CARAMEL-J,
and one for C/C++, CARAMEL-C. We evaluate CARAMEL-
J on 11 popular Java applications: Ant, Groovy, JMeter,
Log4J, Lucene, PDFBox, Sling, Solr, Struts, Tika, and Tomcat.
CARAMEL-J found 61 new real-world performance bugs of
which 51 bugs have already been fixed by developers. We
evaluate CARAMEL-C on 4 widely used C/C++ desktop and
server applications: Chromium, GCC, Mozilla, and MySQL.
CARAMEL-C found 89 new real-world performance bugs of
which 65 bugs have already been fixed by developers. Of the
bugs not yet fixed, 7 bugs are confirmed and still under consid-
eration by developers and 16 bugs are still open. 7 bugs were
not fixed because they are in deprecated code, old code, test
code, or auxiliary projects. Only 4 bugs were not fixed because
developers considered that the bugs have small performance
impact or that the fixes make code more difficult to read.
CARAMEL has few false positives, 19 for CARAMEL-J and
4 for CARAMEL-C. Out of 150 bugs, CARAMEL successfully
generates fixes for 149 bugs.

II. WHAT PERFORMANCE BUGS HAVE CONDBREAK FIXES?

We discuss below two bug characteristics that help un-
derstand what performance bugs have CondBreak fixes. We
call result instruction (RI) a loop instruction that may write
to variables live and memory reachable after the loop. RIs
are important in understanding performance bugs that have
CondBreak fixes. For example, if all RIs in a loop do not
(need to) execute under a certain condition, the entire loop,
including all non-RIs, can be skipped.

(A) Where the Computation Is Wasted: A loop-related
performance bug can waste computation either in an entire
iteration or in parts of an iteration, in consecutive or arbitrary
iterations, in iterations at the start, end, or middle of the loop.
Such a bug can have a CondBreak fix (i.e., break out of the
loop under a certain condition) if it wastes computation in
the entire iteration in one of the following three locations:
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(1) for every iteration in the loop, short as Every, (2) for every
iteration at the end of the loop, short as Late, or (3) for every
iteration at the start of the loop, short as Early. Bugs that waste
computation in category Every can be fixed by breaking out
of the loop if the L-Break condition is satisfied at the loop
entrance, effectively skipping the entire loop. Bugs that waste
computation in category Late can be fixed by breaking out of
the loop once the computation waste starts. Bugs that waste
computation in category Early can be fixed by iterating from
the end of the loop and breaking out of the loop once the
computation waste starts. Bugs that waste computation only
in parts of an iteration or only in specific iterations cannot be
fixed by CondBreak fixes and are not the focus of CARAMEL.

(B) How the Computation Is Wasted: In order for the
computation of an entire iteration to be wasted under a certain
condition, i.e., the L-Break condition, every RI in that iteration
has to fall into one of following three cases: (1) the RI is
not executed under the L-Break condition, short as No-Result,
(2) the RI is executed, but, under the L-Break condition, its
result does not change the values used by computation after the
loop, short as Useless-Result, or (3) the RI is executed and its
result changes the values used by computation after the loop,
but, under the L-Break condition, this result does not affect
the perceived outcome of the program, short as Semantically-
Useless-Result. Identifying Semantically-Useless-Result RIs
usually requires developers’ expert knowledge, and the L-
Break conditions are likely difficult to express in source-code.
CARAMEL focuses on No-Result and Useless-Result RIs.

Based on the above discussion, a loop can have a per-
formance bug fixed by a CondBreak fix if all RIs in the
loop belong to one of the six types shown in Figure 1. Note
that the three computation-waste locations in (A) effectively
describe which instances of an RI can be skipped in the
loop. We describe individual RIs of Types 1–4, i.e., the types
CARAMEL focuses on, in Sections II-A–II-D, and we present
how multiple RIs appear in the same bug in Section II-F. We
briefly discuss Type X and Type Y in Section II-E.

Every Late Early
No-Result Type 1 Type 2 Type Y
Useless-Result Type X Type 3 Type 4

Fig. 1. Types of RIs

The bugs in the following examples are previously unknown
real-world performance bugs found by CARAMEL. We re-
ported them to developers and the developers fixed all of them.

A. Type 1 RIs

Figure 2 shows a performance bug from Groovy containing
a Type 1 RI. Line 3 is the fix and it is not part of the
original buggy code. The only RI in this loop is return

true (line 7), which writes the method’s return value and
also causes the code after the loop to not execute. When
argTypes is initialized to a non-empty array, the RI cannot
execute throughout the loop, the entire loop computation is
wasted, and the loop can just be skipped. The reason is that
argTypes is never modified inside the loop. When argTypes

is initialized to a non-empty array, both argTypes == null

and argTypes.length == 0 (line 5) are false throughout
the loop, which makes isZeroArg false, which makes match
(line 6) false, which in turn means the RI cannot execute.

1 Class[] argTypes = ...
2 for (Iterator i = methods.iterator(); i.hasNext();) {
3 + if (!(argTypes == null) && !(argTypes.length == 0)) break; // FIX
4 MethodNode mn = (MethodNode) i.next();
5 boolean isZeroArg = (argTypes == null || argTypes.length == 0);
6 boolean match =mn.getName().equals(methodName) && isZeroArg;
7 if (match) return true; // RI
8 }

Fig. 2. Type 1 RI in a Groovy performance bug
This RI is of Type 1 because, if the I-Break condition is

true at the start of the loop, the RI is not executed (category
No-Result) in any iteration of the entire loop (category Every).
The I-Break condition for the RI is that both argTypes ==

null and argTypes.length == 0 are false. The L-Break
condition is the same as the I-Break condition because there
is only one RI. The CondBreak fix is the code added in line 3
(the + at the start of line 3 means the line is added), i.e., the
loop breaks when the L-Break condition is true. We discuss
fixes equivalent to the CondBreak fix in Section III-E.

B. Type 2 RIs
Figure 3 shows a performance bug from PDFBox containing

a Type 2 RI. There are three loops in this code and two RIs, as
shown in the figure. RI 1 is an RI for all three loops because
it writes alreadyPresent, which is live at the end of all
three loops. Similarly, RI 2 is an RI for loops 1 and 2. The
“...” in the figure replace some complicated control flow and
method calls, which we skip for clarity. The “...” contain no
RIs. In this section, we focus our discussion on RI 2 because
RI 1 is of Type 3, which we will discuss in the next section.
Loop 3 does not have a bug, which we will further explain
in Section III-D. Loops 1 and 2 are both buggy, as explained
next for loop 1. Similar reasoning applies for loop 2.

1 boolean alreadyPresent = false;
2 while (itActualEmbeddedProperties.hasNext()) { // Loop 1
3 + if (alreadyPresent) break; // FIX
4 ... // non-RIs
5 while (itNewValues.hasNext()) { // Loop 2
6 ... // non-RIs
7 while (itOldValues.hasNext() && !alreadyPresent) { // Loop 3
8 oldVal = (TextType) itOldValues.next();
9 if(oldVal.getStringValue().equals(newVal.getStringValue())){

10 alreadyPresent = true; // RI 1
11 }}
12 if (!alreadyPresent) {
13 embeddedProp.getContainer().addProperty(newVal);// RI 2
14 }}}}}

Fig. 3. Type 2 RI in a PDFBox performance bug

For the first few loop 1 iterations, alreadyPresent is
false, the condition on line 12 evaluates to true, and RI 2
executes and performs useful computation. However, once
alreadyPresent is set to true on line 10, the condition on
line 12 remains false for the remainder of the loop, and all the
remaining computation in the loop can just be skipped. The
reason is that the entire loop cannot assign alreadyPresent

to false. Consequently, once alreadyPresent becomes true
on line 10, it remains true and disables the execution of RI 2
for the remainder of the loop.

RI 2 is of Type 2 because, once the I-Break condition
becomes true, RI 2 is not executed (category No-Result) for
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the remaining loop iterations (category Late). The I-Break
condition for RI 2 is that alreadyPresent equals true. We
will explain in the next section that the I-Break condition for
RI 1 is also that alreadyPresent equals true. The L-Break
condition is the conjunction of the two I-Break conditions,
i.e., alreadyPresent equals true. The CondBreak fix is the
code added in line 3, i.e., the loop breaks when the L-Break
condition is true.

C. Type 3 RIs

Figure 4(a) shows a performance bug from Tomcat contain-
ing two Type 3 RIs, RI 1 and RI 2. Both RIs set variable elExp
to true. Once either RI is executed, the remaining computation
in the loop is unnecessary, at best setting elExp to true again.

1 boolean elExp = ...
2 while (nodes.hasNext()) {
3 + if (elExp) break; // FIX
4 ELNode node = nodes.next();
5 if (node instanceof ELNode.Root) {
6 if (((ELNode.Root) node).getType() == ’$’) {
7 elExp = true; // RI 1
8 } else if (checkDeferred && ((ELNode.Root) node).getType()==’#’
9 && !pageInfo.isDeferredSyntaxAllowedAsLiteral() ) {

10 elExp = true; // RI 2
11 }}}

(a) A Type 3 RI in a Tomcat performance bug

1 valid &= child.validate(); // RI

(b) Type 3 RI in a Sling performance bug

Fig. 4. Type 3 RIs

RI 1 is of Type 3 because, once the I-Break condition be-
comes true, RI 1’s results for the remaining iterations (category
Late) do not change the values used by future computation
(category Useless-Result). Similar reasoning applies for RI 2.
The I-Break condition for RI 1 is that elExp equals true. RI 2
has the same I-Break condition. The L-Break condition is the
conjunction of the two I-Break conditions, i.e., elExp equals
true. The CondBreak fix is the code on line 3, i.e., the loop
breaks when the L-Break condition is true.

Note that, for RI 1 and RI 2 to be of Type 3, elExp can have
any type, not necessarily boolean, as long as elExp is assigned
a constant. In fact, even if elExp is not assigned a constant,
there is still an alternative way to set elExp to a value that
does not change after some time, as shown in Figure 4(b). In
Figure 4(b), once valid is set to false, the semantics of the &=
operator ensures valid remains false. The I-Break condition
is that valid equals false.

D. Type 4 RIs

Figure 5(a) shows a performance bug from JMeter contain-
ing a Type 4 RI (line 6). The variable length keeps getting
overwritten by the RI. Consequently, all iterations before the
last iteration that writes length are wasted. The reason is
that computation after the loop will only see the last value
written to length. This last value does not depend on previous
iterations, except for the value of idx, which can be computed
when iterating from the end of the loop.

The RI is of Type 4 because its results for early iterations
(category Early) do not affect the values used by future com-
putations (category Useless-Result). The I-Break condition for
the RI is that length has been written in the loop when

1 int length = ...
2 for (int idx = 0; idx < headerSize; idx++) {
3 @ for (int idx = headerSize - 1; idx >= 0; idx– –) { // FIX
4 Header hd = mngr.getHeader(idx);
5 if (HTTPConstants.HEADER.equalsIgnoreCase(hd.getName())) {
6 length = Integer.parseInt(hd.getValue()); // RI
7 + break; // FIX
8 }}

(a) Bug and Alternative fix

1 int length = ...
2 + boolean wasExecuted = false; // FIX
3 for (int idx = 0; idx < headerSize; idx++) {
4 @ for (int idx = headerSize - 1; idx >= 0; idx– –) { // FIX
5 + if (wasExecuted) break; // FIX
6 Header hd = mngr.getHeader(idx);
7 if (HTTPConstants.HEADER.equalsIgnoreCase(hd.getName())) {
8 + if (!wasExecuted) { // FIX
9 + wasExecuted = true; // FIX

10 length = Integer.parseInt(hd.getValue()); // RI
11 + } // FIX
12 }}

(b) CondBreak fix

Fig. 5. Type 4 RI in a JMeter performance bug. The fix in 5(a) is an
Alternative fix. The CondBreak fix is in 5(b).

iterating from the end of the loop. The L-Break condition is the
same as the I-Break condition because there is only one RI. For
clarity, the CondBreak fix is shown separately, in Figure 5(b).
This fix looks complex because we want to make the L-Break
condition (i.e., wasExecuted equals true) explicit in the code.
Differently from the Type 3 RI in Figure 4(a), the RI in this
example does not set length to a constant. Therefore, we have
to create an extra variable wasExecuted (lines 2, 5, 8, 9, 11)
to track whether length has been written. Figure 5(a) shows
a simpler, alternative fix, that does not use wasExecuted. In
the alternative fix, the reversed loop breaks the first time when
the RI is executed (line7). The simpler, alternative fix comes at
a price: it is correct only when the loop has one RI. Otherwise,
breaking out of the loop after one RI would incorrectly miss
the execution of remaining RIs.

E. Type X and Type Y RIs

A Type X instruction would be similar to RI 1 and RI 2
in Figure 4(a) if the value of elExp would be a constant true
before the loop started. In practice, CARAMEL never found
such RIs. A Type Y RI cannot write to the same memory
locations in different loop iterations. Checking that all dynamic
instances of the same static instruction can only write to
disjoint memory locations requires complex static analysis,
and CARAMEL does not perform such checks.

F. Bugs with Multiple RIs

A buggy loop can contain multiple RIs of the same or
different types. The only constraint is that a Type 4 RI cannot
co-exist with Type 2 or Type 3 RIs because the former requires
the bug fix to skip iterations at the start of the loop and the
latter requires the bug fix to skip iterations at the end of the
loop. In practice, we did not encounter Type 1 RIs co-existing
with other types of RIs. Some RIs can be of multiple types,
as shown next for RI 3 and RI 9. The L-Break condition is
the conjunction of all RIs’ I-Break conditions.

Figure 6 shows an example bug with multiple RIs from
PDFBox. Unlike the bugs in Figure 3 and Figure 4(a), this bug
has nine RIs that have different I-Break conditions. RI 1 and
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RI 2 are Type 2 RIs because once annotNotFound is set to
false (line 9), annotNotFound cannot become true again and
the condition on line 6 evaluates to false in the remaining loop
iterations. Similar reasoning applies for RI 4–8, sigField-
NotFound (line 14), and the condition on line 11. RI 3 and
RI 9 are simultaneously Type 2 (similarly to RI 1–2 and RI 4–
8, respectively) and Type 3. The I-Break conditions for RI 1–3
and RI 4–9 are annotNotFound equals false and sigField-

NotFound equals false, respectively. The L-Break condition
is the conjunction of all nine I-Break conditions, i.e., both
annotNotFound and sigFieldNotFound equal false.

1 boolean annotNotFound = ...
2 boolean sigFieldNotFound = ...
3 for ( COSObject cosObject : cosObjects ) {
4 + if (!annotNotFound && !sigFieldNotFound) break; // FIX
5 ... // some non−RIs
6 if (annotNotFound && COSName.ANNOT.equals(type)) {
7 ... // RI 1 and some non-RIs
8 signatureField.getWidget().setRectangle(rect); // RI 2
9 annotNotFound = false; // RI 3

10 }
11 if (sigFieldNotFound && COSName.SIG.equals(ft)&&apDict!=null){
12 ... // RI 4, RI 5, RI 6, RI 7 and some non-RIs
13 acroFormDict.setItem(COSName.DR, dr); // RI 8
14 sigFieldNotFound=false; // RI 9
15 }}

Fig. 6. Multiple RIs in a PDFBox performance bug

III. DETECTING AND FIXING PERFORMANCE BUGS THAT
HAVE CONDBREAK FIXES

We next present the high-level CARAMEL algorithm (Sec-
tion III-A) and the algorithm steps (Sections III-B–III-E).

A. High-Level Algorithm

Figure 7 shows the high-level algorithm for CARAMEL.
CARAMEL is a static technique that works on intermediate
code representation (IR). CARAMEL receives as input the loop
to analyze and various information to help the static analysis,
e.g., the control flow graph for the method containing the loop,
pointer aliasing information, and a call graph.

1 void detectPerformanceBug(Loop l, Method m, AliasInfo alias) {
2 Set〈Instruction〉 allRIs = getRIs(l, m, alias);
3 Set〈Condition〉 allCond = new Set〈Condition〉();
4 for (Instruction r : allRIs) {
5 Condition one = typeOne(r, l, m, alias);
6 Condition two = typeTwo(r, l, m, alias);
7 Condition three = typeThree(r, l, m, alias);
8 Condition four = typeFour(r, l, m, alias, allRIs.size());
9 if(one.false()&&two.false()&&three.false()&&four.false()) return;

10 allCond.putIfNotFalse(one, two, three, four);
11 }
12 if(satisfiedTogether(allCond) && notAlreadyAvoided(allCond, l)) {
13 String fix = generateFix(allCond, l, m);
14 reportBugAndFix(fix, allRIs, allCond);
15 }}

Fig. 7. CARAMEL high-level algorithm

CARAMEL works in five steps. First, CARAMEL computes
the loop RIs using routine static analysis (line 2). Second,
for each RI r, CARAMEL checks if r belongs to one of the
four types presented in Section II and computes r’s I-Break
condition accordingly (lines 4–10). If r does not belong to any
of the four types, all the conditions computed on lines 5–8 are
false and therefore the loop does not have a bug (line 9). If r
is of one of the four types, CARAMEL saves for further use
r’s I-Break condition (line 10). Third, CARAMEL checks if
all RIs can be skipped simultaneously without changing the

program outcome, i.e., if the I-Break conditions for individual
RIs can be satisfied simultaneously (line 12). The conjunction
of the I-Break conditions is the L-Break condition. Fourth,
CARAMEL checks if the computation waste in the loop is not
already avoided, i.e., if the loop does not already terminate
when the L-Break condition is satisfied (line 12). Fifth, using
the L-Break condition, CARAMEL generates a fix (line 13) and
reports the bug (line 14). The bug report contains the fix, and,
for each RI, the RI type and I-Break condition.

The above algorithm enables CARAMEL to detect and fix
performance bugs that involve multiple RIs, either of the same
or different types, similar to the bugs in Figures 3, 4(a), and 6.
This is because, after step two, CARAMEL works only with a
collection of conditions, and CARAMEL is not concerned with
how these conditions were obtained in step two.
Preliminary: Boolean Expressions: To compute the I-Break
conditions and the L-Break condition, CARAMEL reasons
about boolean expressions. CARAMEL represents and reasons
about a boolean expression as one or multiple Atoms connected
by boolean operators (NOT, AND, OR). An Atom refers to
either a boolean variable or a boolean expression containing
non-boolean operators. Atoms do not contain other Atoms.
For example, an Atom could be a method call returning a
boolean value or a comparison between two integers. To keep
complexity low and scale, CARAMEL does not reason about
operations inside Atoms. An Atom can be either true or false
but not both simultaneously.

For space limitations, we do not go into the details of how
CARAMEL works with boolean expressions, and we give only
a high-level overview for two techniques used by CARAMEL.
These two techniques can be substituted by more sophisti-
cated techniques, such as symbolic execution. However, for
CARAMEL’s purposes, these two techniques offer good results
at considerably reduced complexity. Technique T-PathExec
computes the execution condition of a loop instruction as the
disjunction of all path constraints that correspond to the acyclic
execution paths leading from the loop header to the instruction.
A path constraint is the conjunction of all branch conditions,
represented by Atoms and negated when necessary, along a
path. CARAMEL uses T-PathExec in steps two and four of the
CARAMEL algorithm. Technique T-Instantiation computes,
for a boolean expression E (in DNF form) and some Atoms
set, the values of the set Atoms for which E is guaranteed
false or true. Conversely, T-Instantiation determines if E may
be true or false, irrespective of Atoms in set. T-Instantiation
tries all possible combinations of values for the set Atoms and
uses logic rules such as “False AND Unknown equals False” to
determine the value of E. For example, for E = $Atom1 AND

$Atom2 and set = {$Atom1}, T-Instantiation determines that,
when $Atom1 equals true, E is Unknown, and, when $Atom1

equals false, E is false. In the usage context of CARAMEL,
set has few Atoms (e.g., when identifying Type 1 RIs, set
contains the loop-invariant Atoms in E, which is rarely more
than 3), and therefore T-Instantiation rarely tries more than
8 combinations. CARAMEL uses T-Instantiation in steps two,
three, and four of the CARAMEL algorithm.
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B. Detecting the Four RI Types

In the second step of the CARAMEL algorithm, CARAMEL
determines if a given RI (all RIs are known from step one)
belongs to one of the four types and, if so, the RI’s I-Break
condition. We describe here each type and the algorithm CAR-
AMEL uses to detect it. Identifying all RIs that belong to each
type would require complicated and non-scalable analysis. At
the same time, not all RIs that belong to each type are common
and have I-Break conditions that are easy to express in source-
code. CARAMEL focuses on RIs whose type can be identified
using scalable analysis and whose I-Break conditions are easy
to express in source-code. CARAMEL can miss some RIs that
belong to these four types, as explained below.

Type 1: An RI r is of Type 1 if there exists a condition
C such that r cannot execute throughout the loop if C is true
when the loop starts. The I-Break condition for r is C. To judge
whether r belongs to Type 1, CARAMEL searches for r’s I-
Break condition. Theoretically, the I-Break condition could
be composed of any variables and expressions that appear or
do not appear in the entire program. However, inferring or
searching for such generic I-Break conditions is difficult. In
practice, CARAMEL considers only I-Break conditions that
(1) can be computed by analyzing the potential execution
paths that may reach r from the loop header and (2) are
composed of Atoms that can be proved to be loop-invariant
based on control and data-flow analysis. Constraint (1) makes
detecting candidate I-Break conditions feasible and scalable,
while constraint (2) makes it easy to prove that a candidate
I-Break condition cannot change its value throughout the
loop execution. Additionally, constraint (1) ensures the I-
Break condition is easy to express in source-code, because
the candidate I-Break conditions contain only variables and
expressions already present in the loop.

The CARAMEL algorithm uses T-PathExec to compute the
execution condition rExecCond for r, gets the loop-invariant
Atoms in rExecCond, uses T-Instantiation to get these Atoms’
values for which rExecCond is guaranteed to be false irrespec-
tive of the values of other Atoms in rExecCond, and constructs
r’s I-Break condition based on these Atom values.

Type 2: An RI r is of Type 2 if there exists a condition
C such that r cannot execute once C becomes true during the
loop execution. The I-Break condition for r is C. Detecting
Type 2 and Type 1 RIs are similar and have similar challenges.
CARAMEL applies similar constraints when searching for r’s
I-Break condition, with only one difference for constraint (2).
For Type 2 checking, CARAMEL only considers Atoms that
are assigned one constant in the loop. This constraint makes it
easy to prove that a candidate I-Break condition cannot change
its value after all its component Atoms are updated in the loop.

The CARAMEL algorithm for detecting Type 2 RIs is
similar to the algorithm for detecting Type 1 RIs, with
two modifications. First, instead of identifying loop-invariant
Atoms in rExecCond, the Type 2 algorithm detects Atoms
in rExecCond that are assigned only one boolean constant
value in the loop. Second, when CARAMEL computes the

Atoms’ values for which rExecCond is guaranteed to be false,
CARAMEL takes into account that the Atoms identified above
can take only the corresponding constant values.

Type 3: An RI r is of Type 3 if, after a certain loop iteration,
r can only write to the same output locations it wrote in
previous iterations and the values written are identical to the
existing values in these locations; we call these existing values
S. The I-Break condition is that the output locations contain
S. To judge whether r belongs to Type 3, CARAMEL exam-
ines r’s output locations and output values. Theoretically, r
could be any instruction, including a call to a method with
complex control flow that writes to many memory locations.
Reasoning about such a general r is difficult. In practice,
CARAMEL focuses only on RIs that (1) have a single output
location, (2) either write a constant (similar to Figure 4(a))
or perform the &= or |= operations (similar to Figure 4(b)),
which effectively correspond to S being constants false or true,
respectively, and (3) have an output location that is not written
to in the loop with other values except S. Constraint (1) makes
it easy to detect r does not change its output locations, while
constraints (2) and (3) make it easy to prove that, after a certain
loop iteration, r can only write S. Additionally, constraint (2)
ensures the I-Break condition is easy to express in source-code,
because S can be identified statically.

The CARAMEL algorithm uses straightforward static analy-
sis to implement the above checks.

Type 4: An RI r is of Type 4 if r outputs values independent
of computation in early iterations, except for the loop index
computation, and if r cannot change its output locations. The
I-Break condition is that the values in the output locations
have been updated the first time when iterating from the
end of the loop. To judge whether r belongs to Type 4,
CARAMEL examines r’s output locations and output values.
Theoretically, r could be any instruction, including a method
call, and checking the above conditions for such a general r
is difficult. In practice, CARAMEL focuses only on RIs that
(1) have a single output location, (2) appear in loops that have
no cross-iteration data dependency, except for the loop index
computation, and (3) appear in loops that have only one RI.
Constraint (1) makes it easy to detect that r does not change
its output locations and constraint (2) makes it easy to prove
that the output values are independent of computation in earlier
iterations. Additionally, constraint (3) ensures the fix is similar
to the alternative fix in Figure 5(a), instead of the CondBreak
fix in Figure 5(b).

The CARAMEL algorithm checks if the loop has one RI
and if no instruction in the loop body writes to memory or
variables live between iterations, except for the loop index.

C. Checking Whether RIs can be Skipped Simultaneously

In the third step of the CARAMEL algorithm, CARAMEL
checks if a scenario exists for which all RIs can be simultane-
ously skipped without changing the program outcome, i.e., all
RIs’ I-Break conditions can be satisfied simultaneously. The
L-Break condition enabling this scenario is the conjunction of
all I-Break conditions.
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Figure 8 gives a simplified example from Lucene of why
CARAMEL performs this check. The two RIs in this loop are
of Type 1 and have I-Break conditions roundNum < 0 equals
true and roundNum < 0 equals false, respectively. However,
this loop does not contain a performance bug because the
executions of the two RIs cannot be skipped simultaneously,
i.e., roundNum < 0 cannot simultaneously be true and false.

1 int roundNum = ...
2 StringBuilder sb = ...;
3 for (final String name : colForValByRound.keySet()) {
4 if (roundNum < 0) {
5 sb.append(Format.formatPaddLeft(”−”, template)); // RI 1
6 } else {
7 sb.append(Format.format(ai[n], template)); // RI 2
8 }}

Fig. 8. Simplified code from Lucene. The RIs are of Type 1, but these RIs
do not create a performance bug.

To perform this check, CARAMEL applies T-Instantiation
on the conjunction of selected I-Break conditions, effectively
checking there exists at least one combination of the involved
Atoms’ values that makes the conjunction true. CARAMEL
optimizes this check by applying it on selected, instead of all
I-Break conditions, because the definitions of some RI types
already guarantee that their corresponding I-Break conditions
will never conflict with each other. For example, the I-Break
condition for a Type 3 RI cannot conflict with the I-Break
condition for a Type 1 RI. The reason is that the Atoms in the
I-Break condition of a Type 1 RI must be loop-invariant and
therefore cannot appear in a Type 3 RI’s I-Break condition.

D. Checking the Computation Waste is Not Already Avoided

In the fourth step of the CARAMEL algorithm, CARAMEL
checks the execution is not already exiting the loop when the
L-Break condition is true. Loop 3 in Figure 3 (lines 7–11)
is an example of why CARAMEL performs this check. As
mentioned in Section II-B, loop 3 does not have a performance
bug and we now explain why. The only RI in loop 3 is RI 1
(line 10), which is of Type 3 and therefore it may seem loop 3
performs useless computation once alreadyPresent is set
to true. However, once alreadyPresent becomes true, the
loop exits (!alreadyPresent, line 7), and therefore the loop
does not have a performance bug. CARAMEL performs this
check using T-PathExec, which is used to detect the execution
condition for loop exits, and T-Instantiation, which is used to
detect if the paths to loop exits may be taken in the original
code when the L-Break condition is true.

E. Automatic Fix Generation

In the fifth step of the CARAMEL algorithm, CARAMEL
generates source-code fixes. Automatic bug fixing is a difficult
problem in general, but it is feasible for CARAMEL because
CARAMEL focuses on bugs that have CondBreak fixes.

CARAMEL generates fixes in two steps. First, CARAMEL
generates a source-code level L-Break condition composed of
source-code level variables declared and initialized outside of
the loop. Because the variable and method names are available
at the IR level, this process is straightforward in general. The
only challenge is that some Atoms in the L-Break condition
may involve variables that are not suitable for the final

source-code fix. Specifically, some variables are introduced by
compiler in the IR representation and do not exist in the source-
code, while some other variables are declared or initialized
inside the loop by developers and therefore cannot be used in
the fix at the start of the loop. The solution is straightforward:
CARAMEL repetitively replaces these unsuitable variables with
their assigned expression. This step guarantees not to change
the value of the L-Break condition because of the way the
I-Break conditions are defined in Section III-B.

Second, CARAMEL formats the fix according to the types
of the RIs, and computes the line number where the fix is
to be inserted using line number information from the inter-
mediate source code representation. When the loop contains
RIs of Type 1, 2, or 3, the fix simply inserts if (L-Break

condition) break after the loop header, as shown in the
Section II examples. In the special case when the loop contains
only Type 1 RIs, the fix is if (L-Break condition ==

false) theLoop, effectively executing the loop only when
the L-Break condition is false. This alternative fix is equivalent
with the CondBreak fix, but is preferred by developers. When
the loop contains a Type 4 RI, CARAMEL reverses the loop if
the loop has an integer index variable that is incremented by
one in the loop header, similar to that in Figure 5(a); otherwise,
CARAMEL reports fix generation failure. General loop reversal
is difficult to do automatically, but treating the above case was
enough to fix the bugs we encountered in practice. CARAMEL
can handle more cases for loop reversal in the future.

F. False Positives, False Negatives, and Incorrect Fixes

CARAMEL can have false positives, false negatives, and
can generate incorrect fixes, though in practice these issues
were not significant (Section V). These issues are typically
created by unsoundness or incompleteness in the underlying
static analysis framework. We discuss sources of false positive
in Section V-B. CARAMEL can have false negatives because,
due to unsoundness in the static analysis, CARAMEL can label
non-RI instructions as RI, and the spurious RIs can make
unnecessary loop computation look useful. In practice this was
not a major problem, as CARAMEL found 150 new bugs in
15 widely used Java and C/C++ applications. Theoretically,
CARAMEL can generate an incorrect fix for a real bug because,
due to incompleteness in the static analysis (Section V-B),
CARAMEL may not detect some RIs. If this happens, the L-
Break condition does not contain all the I-Break conditions
and the fix causes the execution to exit the loop too early. In
practice CARAMEL did not generate any incorrect fix.

IV. TWO IMPLEMENTATIONS

We implement two CARAMEL tools, for both Java and
C/C++ programs, which we call CARAMEL-J and CARAMEL-
C, respectively. We implement CARAMEL-J and CARAMEL-
C using WALA [1] and LLVM [29] static analysis frame-
works, respectively. Implementing the high-level algorithms
in Section III-B takes into account the fact that the IRs
provided by WALA and LLVM are in SSA form. CARAMEL-
J uses the pointer aliasing information provided by WALA.
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CARAMEL-C conservatively assumes that every write to heap
is an RI. The analysis in both CARAMEL-J and CARAMEL-
C is inter-procedural. The implementation closely follows
the presentation in the previous section. The only exception
is that CARAMEL-C currently detects only bugs that have
one RI, and therefore CARAMEL-C does not perform step
three in the CARAMEL algorithm. We do not discuss further
implementation details due to space limitations.

V. EVALUATION

We evaluate CARAMEL on real-world applications from
Java and C/C++ using our two CARAMEL implementations,
CARAMEL-J and CARAMEL-C, respectively. We use 11 pop-
ular Java applications (Ant, Groovy, JMeter, Log4J, Lucene,
PDFBox, Sling, Solr, Struts, Tika, and Tomcat) and 4 widely
used C/C++ desktop and server applications (Chromium, GCC,
Mozilla, and MySQL). Figure 9 gives a short description of
these applications. We analyze the latest code versions of
these applications, except for Lucene, for which we use a
slightly older version, because CARAMEL does not support
Java 7. Of all the Lucene bugs found by CARAMEL, only two
bugs are in code that no longer exists in the latest version.
In total, CARAMEL generates 173 bug reports. This section
first presents the 150 new bugs found by CARAMEL. It then
discusses the 23 false positives reported by CARAMEL, the fix
generation results, and CARAMEL’s running time. We conduct
the experiments on two Intel i7, 4-core, 8 GB machines,
running at 2.5 GHz and 3.4 GHz for the Java and C/C++
experiments, respectively.

L # App Description LoC Classes(J)
Files(C)

Ja
va

1 Ant build tool 140,674 1,298
2 Groovy dynamic language 161,487 9,582
3 JMeter load testing tool 114,645 1,189
4 Log4J logging framework 51,936 1,420
5 Lucene text search engine 441,649 5,814
6 PDFBox PDF framework 108,796 1,081
7 Sling web app. framework 202,171 2,268
8 Solr search server 176,937 2,304
9 Struts web app. framework 175,026 2,752
10 Tika content extraction 50,503 717
11 Tomcat web server 295,223 2,473

C
/C

++

12 Chromium web browser 13,371,208 10,951
13 GCC compiler 1,445,425 781
14 Mozilla web browser 5,893,397 5,725
15 MySQL database server 1,774,926 1,684

Fig. 9. The applications used in experiments

A. New Bugs Found by CARAMEL

CARAMEL is very effective at detecting performance bugs.
CARAMEL finds a total of 150 new bugs, 61 bugs in Java
applications and 89 bugs C/C++ applications. Of these, 116
bugs, 51 and 65 in Java and C/C++, respectively, have already
been fixed by developers. Of the bugs not yet fixed, 7 bugs
are confirmed and still under consideration by developers and
16 bugs are still open. 7 bugs were not fixed because they are
in deprecated code, old code, test code, or auxiliary projects.
Only 3 bugs were not fixed because developers considered that
the bugs do not have a significant performance impact. Only 1

bug was not fixed because developers considered that the fix
hurts code readability.

We manually inspected all Java and C/C++ bugs reported by
CARAMEL and we find they are similar. The only exception
is that CARAMEL-C can currently detect only bugs with one
RI (Section IV), and therefore all the C/C++ bugs in this
evaluation have one RI. The bug examples shown so far in
the paper are from Java code. Figure 10 shows an example
bug from GCC, which contains a Type 3 RI. This bug was
confirmed and fixed by developers.

1 bool irred invalidated = ...
2 FOR EACH EDGE (ae, ei, e−>src−>succs) {
3 + if (irred invalidated) break; // FIX
4 if (ae != e && ae−>dest != EXIT BLOCK PTR
5 && !bitmap bit p (seen, ae−>dest−>index)
6 && ae−>flags & EDGE IRREDUCIBLE LOOP) {
7 irred invalidated = true; // RI
8 }}

Fig. 10. A GCC performance bug found by CARAMEL

Figure 11 shows the detailed results for the new bugs found
by CARAMEL. The numbers in the table refer to the numbers
of distinct buggy loops, with each loop containing one or
multiple RIs. 16 out of the 61 Java bugs in Figure 11 contain
more than one RI. As explained in Section II-F, most of
these 16 bugs contain RIs of the same type, with only a few
bugs containing RIs of Type 2 and Type 3, as shown in the
table (the column headers show the type of the RIs in the
bug). CARAMEL-C can currently detect only bugs with one
RI (Section IV), and therefore no C/C++ bug in Figure 11
contains multiple RIs.

Application Type 1 Type 2+3 Type 3 Type 4 SUM
RIs RIs RIs RIs

Ant 0 0 1 0 1
Groovy 2 0 7 0 9
JMeter 0 0 3 1 4
Log4J 0 0 5 1 6
Lucene 6 0 7 1 14
PDFBox 1 5 3 1 10
Sling 0 0 6 0 6
Solr 0 0 2 0 2
Struts 2 0 2 0 4
Tika 0 0 1 0 1
Tomcat 0 0 3 1 4
Chromium 0 0 13 9 22
GCC 1 0 21 0 22
Mozilla 0 0 20 7 27
MySQL 3 0 13 2 18
SUM: 15 5 107 23 150

Fig. 11. New bugs found by CARAMEL

CARAMEL found bugs in all 15 applications in Figure 11,
including in GCC, which is highly tuned for performance and
has been developed for more than two and a half decades.
Indeed, all the bugs that we reported to GCC have already
been fixed by developers.

CARAMEL found all four RI types in bugs. Looking at the
type breakdown in Figure 11, we see Type 3 RIs are more
frequent than RIs of other types. We manually inspect all the
bugs reported by CARAMEL and we find the bugs containing
Type 3 RIs typically appear in code performing a linear search
for objects that have certain properties, such as the bugs in
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Figure 4. This is a common operation in real-world code,
and therefore it presents more opportunities for developers to
introduce such bugs.

B. False Positives

CARAMEL reports few false positives, as shown in Fig-
ure 12. We manually inspect all false positives and find three
causes. Complex Analysis false positives occur when CARA-
MEL incorrectly judges, in step three of its algorithm, that
some L-Break conditions are satisfiable. Such false positives
can be reduced by complex analysis, as described in this
section, but the number of such false positives does not justify
the added complexity. Concurrent false positives are caused by
expressions that appear to be loop-invariant, but that in reality
can be modified by a concurrent thread. Such false positives
can be reduced using static analysis [41] or heuristics [57].
Infrastructure false positives occur because WALA may give
incomplete results, as described later in this section.

Application Complex Aly. Concurrent Infrastructure
Ant 0 1 0
Groovy 0 0 0
JMeter 0 0 0
Log4J 0 2 0
Lucene 2 3 0
PDFBox 0 0 1
Sling 0 0 1
Solr 0 0 1
Struts 1 0 1
Tika 2 0 0
Tomcat 1 0 3

Chromium 0 0 0
GCC 1 0 0
Mozilla 2 0 0
MySQL 1 0 0

SUM: 10 6 7

Fig. 12. False positives and their cause

Figure 13 shows a Complex Analysis false positive from
Tomcat. Here, CARAMEL detects that RI 1 and RI 2
are of Type 1 with I-Break conditions allRolesMode

== AllRolesMode.AUTH_ONLY_MODE equals false (line 5)
and allRolesMode == AllRolesMode.STRICT_AUTH_ON-

LY_MODE equals false (line 9), respectively. CARAMEL incor-
rectly judges, in step three of its algorithm, that it is possible
to satisfy these two I-Break conditions simultaneously, and
CARAMEL reports a bug. However, this conclusion is wrong
because AllRolesMode is an enumeration with three values
and the loop is executed only when allRolesMode is not
equal to the third value. Therefore, when the loop executes,
allRolesMode can only have one of the two remaining values.
CARAMEL could avoid this false positive by employing a com-
plex analysis that takes into account the values enumeration
variables can take, and that determines the condition under
which the entire loop is executed.

Figure 14 shows a Concurrent false positive from Lucene.
Here, CARAMEL detects Atoms channel.isClosed() and
thread == null (lines 1, 2) as loop-invariant, and therefore
concludes that the RI on line 2 is of Type 1. However, this

1 AllRolesMode allRolesMode = ...;
2 for (int i = 0; i < constraints.length; i++) {
3 SecurityConstraint constraint = constraints[i];
4 if (constraint.getAllRoles()) {
5 if (allRolesMode == AllRolesMode.AUTH ONLY MODE) {
6 log.debug(”Granting access for ...”); // RI 1
7 }
8 String[] roles = request.getContext().findSecurityRoles();
9 if (roles.length == 0 && allRolesMode == AllRolesMode.

STRICT AUTH ONLY MODE) {
10 log.debug(”Granting access for ...”); // RI 2
11 }}}

Fig. 13. Complex Analysis false positive from Tomcat

conclusion is wrong because channel and thread are both
shared variables that can be modified by another thread, in
parallel with this loop’s execution. This is a typical custom
synchronization that can be detected by existing tools [57].

1 while (!channel.isClosed()) {
2 if (thread == null) return; // RI
3 try {sleep(RETRY INTERVAL);} catch (Exception e) {/∗ignored∗/}
4 }

Fig. 14. Concurrent false positive from Lucene

The Infrastructure false positives appear because, to scale
to large programs, we instruct WALA to not analyze code
inside some libraries, e.g., java.awt and javax.swing, as
recommended in WALA’s performance guidelines [1]. This
may cause WALA to give incomplete results, which may cause
CARAMEL to miss some RIs in step one of its algorithm.

C. Automatic Fix Generation

CARAMEL successfully generates fixes for 149 out of 150
bugs. We manually inspected all these fixes and confirmed
all are correct. For one bug in Tomcat, CARAMEL-J could
not generate a fix due to a limitation in WALA. Specifically,
WALA does not always provide line number information
for assignment instructions. Therefore, for this Tomcat bug,
CARAMEL could not generate a fix like the fix in Figure 5(a),
because CARAMEL did not know where to insert the break.
For the other bugs involving Type 4 RIs, WALA did not suffer
from this problem and CARAMEL could generate fixes. Note
that loop headers are not assignment instructions. Therefore,
generating fixes immediately before or after loop headers,
which is how CARAMEL generates fixes for loops containing
other RI types (Section III-E), is not affected by this limitation.

We compare the fixes generated by CARAMEL with the
fixes adopted by developers and find they are similar, with
one exception. For bugs containing only one Type 3 RI,
CondBreak fixes are different from manual fixes, because
developers prefer to insert a break immediately after the RI.
CARAMEL could have easily followed developers’ style and
generated the same fixes, if WALA was able to provide the line
number of the RI. However, as describe above, WALA cannot
guarantee to provide line number for assignment instructions,
and CARAMEL chooses to generate the basic CondBreak fixes,
inserted right after the loop header.

D. Overhead

Figure 15 shows CARAMEL’s running time in minutes.
Columns Sequential and Parallel give the time for the se-
quential and parallel version CARAMEL using three threads,
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respectively. CARAMEL’s parallel version divides the loops
in N groups, starts N threads, and lets each thread analyze
the loops in one group. CARAMEL-J’s parallel execution takes
up to two hours, for all but three applications. Most of this
time is spent in WALA’s inter-procedural pointer analysis. We
consider this running time acceptable, because developers do
not need to write test code, like for a dynamic bug detection
technique, or devise complex usage scenarios, like for a
profiler. Furthermore, after the initial run, subsequent runs of
CARAMEL on the same code can focus only on code that has
changed, in the spirit of regression testing [59]. The speedup
of the parallel version over the sequential version is over 2.5X
for all but four applications, which shows CARAMEL makes
effective use of modern multi-core machines. CARAMEL-C
is much faster than CARAMEL-J because CARAMEL-C does
not use interprocedural pointer-alias analysis, but instead con-
servatively assumes that every write to heap is an RI. We did
not consider necessary to parallelize CARAMEL-C because the
running time is small, ranging from several minutes for GCC
and MySQL up to one and a half hours for Chromium.

Application Sequential Parallel Speedup (X)
Ant 183 72 2.54
Groovy 345 128 2.70
JMeter 118 52 2.27
Log4J 108 45 2.40
Lucene 1068 417 2.56
PDFBox 106 38 2.79
Sling 355 190 1.87
Solr 1062 627 1.69
Struts 226 77 2.94
Tika 113 42 2.69
Tomcat 258 89 2.90

Chromium 85 n/a n/a
GCC 3 n/a n/a
Mozilla 52 n/a n/a
MySQL 10 n/a n/a

Fig. 15. CARAMEL running time (minutes)

VI. DISCUSSION

Importance of Bugs That Have CondBreak Fixes: The
importance of a bug is ultimately decided by developers: if the
developers think the bug is important enough to fix, it means
that detecting and fixing that bug is important. We evaluated
CARAMEL on 15 real-world applications, and 116 of the bugs
found by CARAMEL are already fixed by the developers.

Generality of Bugs That Have CondBreak Fixes: These
are definitely not all the bugs that have non-intrusive fixes.
However, these bugs are general: 15 real-world applications,
written both in Java and in C/C++, contain such bugs. We hope
CARAMEL’s promising results will motivate future research to
detect other performance bugs that have non-intrusive fixes.

Estimating the Offered Speedup: CARAMEL is a static
technique and cannot easily estimate the speedup offered
by the bug fix. Developers may appreciate such additional
information. However, as our results show, developers typically
fix the bugs reported by CARAMEL even without knowing the
exact speedup. Future work can try to estimate the speedup,
perhaps using techniques inspired by [9], [19].

VII. RELATED WORK
Improving Performance and Detecting Performance

Problems: Several techniques identify slow code [13], [21],
[36], [40], [56], [60], runtime bloat [5], [15], [43], [58],
or increasing execution time [11], [16], [61]. Siegmund et
al. [50] and Guo et al. [20] predict how configuration options
influence performance, Trubiani et al. [53] consider uncertainty
in performance modeling, Malik et al. [33] detect devia-
tions in load tests, and Lu and Song [51] investigate design
points in performance statistical debugging. Other techniques
generate performance tests [8], [10], [18], [48], [62], detect
performance regression [47], latent performance bugs [26],
concurrency performance problems [32], [46], [52], and idle
time [4]. Unlike all these techniques, CARAMEL makes the
novel design decision to focus on performance bugs that have
simple and non-intrusive fixes. Specifically, CARAMEL detects
performance bugs that have CondBreak fixes. Such bugs are
not covered by previous work.

Automatic Bug Fixing: Several recent techniques have
been propose to automatically fix bugs [30]. GenProg [17],
[55] uses genetic programming, LASE [28], [35], SysEdit [34],
and FixWizard [44] use edits similar to previous edits. Other
techniques [3], [12], [14], [27], [31], [42], [49], [54] repair
bugs using approaches such as SMT, semantic analysis, soft-
ware contracts, developer input, etc. Unlike these techniques,
CARAMEL automatically fixes performance bugs. Furthermore,
taking advantage of the unique properties of the bugs it detects,
CARAMEL successfully fixes 149 out of 150 bugs.

VIII. CONCLUSIONS

Performance bugs affect even well tested software written
by expert programmers. In practice, fixing a performance
bug can have both benefits and drawbacks, and developers
fix a performance bug only when the benefits outweigh the
drawbacks. Unfortunately, the benefits and drawbacks can be
difficult to assess accurately. This paper presented CARAMEL,
a novel technique that detects and fixes performance bugs that
have non-intrusive fixes likely to be adopted by developers.
Specifically, CARAMEL detects performance bugs that have
CondBreak fixes: when a condition becomes true during loop
execution, just break out of the loop. We evaluated CARA-
MEL on real-world applications, including 11 popular Java
applications (Ant, Groovy, JMeter, Log4J, Lucene, PDFBox,
Sling, Solr, Struts, Tika, and Tomcat) and 4 widely used C/C++
applications (Chromium, GCC, Mozilla, and MySQL). CARA-
MEL found 61 new performance bugs in the Java applications
and 89 new performance bugs in the C/C++ applications. Of
these bugs, developers have already fixed 51 performance
bugs in the Java applications and 65 performance bugs in the
C/C++ applications. CARAMEL makes a promising first step
in detecting performance bugs that have non-intrusive fixes.
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