
Detecting	Performance	Anti-patterns	for	
Applications	Developed	Using
Object-Relational	Mapping

1

Mohamed	Nasser,	Parminder Flora

Tse-Hsun(Peter)	Chen Ahmed	E.	HassanWeiyi Shang Zhen	Ming	Jiang



Databases	are	essential	in	large-scale	
software	systems

2

Database



3

Application	developers	work	with	objects

More	intuitive	if	we	can	
map	objects	directly	to	DB



4

Object-Relational	Mapping	eliminates	
the	gap	between	objects	and	SQL

Database

• Lots	of	boilerplate	code
• Need	to	manage	object-DB	
translations	manually

Object	
Classes

Problem	of	using	raw	SQLs

ORM

Much	less	code	and	shorter	
development	time



ORM	is	widely	used	in	practice

5

• Java	Hibernate	has	more	than	8	
million downloads

• In	2013,	15%	of	the	17,000	Java
developer	jobs	require	ORM	
experience	(dice.com)

Different	ORM	technologies



An	example	class	with	ORM	code

6

@Entity
@Table(name	=	“user”)
public	class	User{

@Column(name=“id”)
private	int id;

@Column(name=“name”)
String	userName;

@OneToMany(fetch=FetchType.EAGER)
List<Team>	teams;

public	void	setName(String	n){
userName=	n

}
…	other	getter	and	setter	methods

User.javaUser	class	is	
mapped	to	“user”

table	in	DB

id	is	mapped	to	the	
column	“id”	in	the	

user	table

A	user	can	belong	
to	multiple	teams

Eagerly	retrieve	
associated	teams	
when	retrieving	a	

user	object



Accessing	the	database	using	ORM

7

User	u	=	findUserByID(1);

ORM
database

select	u	from	user
where u.id =	1;

u.setName(“Peter”);

update	user set	
name=“Peter”	
where user.id =	1;

Objects SQLs



Developers	may	not	be	aware	of	
database	access

Wow!	I	don’t	
need	to	worry	
about	DB	code!

ORM	code	with	
performance	anti-patterns

8

Bad	system	
performance

The	performance	difference	can	be	LARGE!



Performance	anti-pattern	
detection	framework

Performance	anti-pattern	detection	and	
ranking	framework	

Ranked	according	to	
performance	impact

Ranked	
Performance	
anti-patterns

Source	
Code

detection

ranking

9



Performance	anti-pattern	
detection	framework

Performance	anti-pattern	detection	and	
ranking	framework	

Ranked	according	to	
performance	impact

Ranked	
Performance	
anti-patterns

Source	
Code

detection

ranking

10



ORM	one-by-one processing
anti-pattern

@Entity
@Table (name=“company”)
Class	Company{

List<Department>	department;
}

for (Company c: companyList){
for (Department d:c.getDepartments()){

d.getDepartmentName();
}

}

11

Objects

SQL

Mapping a class
to a DB table

select department as d where d.companyID=1
select department as d where d.companyID=2
….
select department as d where d.companyID in (1,2,…)



Detecting	one-by-one	processing
using	static	analysis

12

First	find	all	the	classes	that	are	
mapped	to	DB

Identify	all	the	loops

Check	if	any	DB	access	is	inside	a	
loop

@Entity
@Table (name=“company”)
Class	Company{

List<Department>	
department;
}

for (Company c: companyList){
for (Department d:c.getDepartments()){

d.getDepartmentName();
}

}



ORM	excessive	data	anti-pattern
Class	User{

@EAGER
List<Team>	teams;

}

User	u	=	findUserById(1);
u.getName();
EOF

13

Objects

SQL

Eagerly	retrieve	
teams	from	DB

User	Table Team	Table

join Team	data	is	never	
used!



Detecting	excessive	data
using	static	analysis

14

First	find	all	the	objects	that	
eagerly	retrieve	data	from	DB

Class	User{
@EAGER
List<Team>	teams;

}

Identify	all	the	data	usages	of	
objects	

User	user	=	findUserByID(1);

Check	if	the	retrieved	data	is	ever	
used

user.getName();

user team

user team



Performance	anti-pattern	
detection	framework

Performance	anti-pattern	detection	and	
ranking	framework	

Ranked	according	to	
performance	impact

Ranked	
Performance	
anti-patterns

Source	
Code

detection

ranking

15



Performance	anti-pattern	
detection	framework

Performance	anti-pattern	detection	and	
ranking	framework	

Ranked	according	to	
performance	impact

Ranked	
Performance	
anti-patterns

Source	
Code

detection

ranking

16



Performance	anti-patterns	have	
different	impacts

17

User	user_in_1_team	=	findUserByID(1);

Retrieving	1	user	and	1	team

User	user_in_100_teams	=	findUserByID(100);

Retrieving	1	user	and	100	teams!

One	can	only	reveal	performance	
impact	by	execution



Measuring	the	impact	using	repeated	
measurements	and	effect	sizes

18

We	use	effect	sizes	(Cohen’s	D)	to	measure	
the	performance	impact

Effect	sizes	=	

We	repeat	each	test	30	times	to	obtain	stable	
measurement	results

Size	of	performance	impact	is	not	defined:

Performance	measurements	are	unstable:



Studied	systems	and	detection	results

Large	open-source	
e-commence	system

>	1,700	files
>	206K	LOC

Enterprise	system
>	3,000	files
>	300K	LOC

Spring	open-source	system
Online	system	for	a	pet	clinic	

51	files
3.3K	LOC

482	excessive	data >	10	excessive	data 10	excessive	data

19



Performance	impact

Research	questions

Ranks	of	the	anti-patterns	at	
different	scales

20



Performance	impact

Research	questions

Ranks	of	the	anti-patterns	at	
different	scales

21



Assessing	anti-pattern	impact	by	
fixing	the	anti-patterns

Execution
Response	timeuser.getName()

Code	with	
anti-patterns

fetchType.set(LAZY)
user.getName()

Code	without
anti-patterns 22

Execute	test	
suite	30	times

Response	time	
after	fixing	the	
anti-patterns

Avg.	%	
improvement	and	
effect	sizes

Execution

Execute	test	
suite	30	times



Performance	anti-patterns	have	
medium	to	large	effect	sizes

0%

20%

40%

60%

80%

100%

Excessive	Data

BL

EA

PC

23

%
	im

pr
ov
em

en
t	i
n	
re
sp
on

se
	ti
m
e

large	
effect	size

large	
effect	size medium

effect	size



Performance	impact

Research	questions

Ranks	of	the	anti-patterns	at	
different	scales

24

Removing	anti-pattern		
improves	response	by	~35%



Performance	impact

Research	questions

Ranks	of	the	anti-patterns	at	
different	scales

25

Removing	anti-pattern		
improves	response	by	~35%



Performance	problems	usually	arise	
under	large	load

26



Performance	problems	revealed	at	
small	scales	may	be	more	serious

27

We	should	first	fix	the	anti-patterns	that	
have	larger	effects	at	smaller	scales

Input	scales	may	have	
exponential effects	on	

performance

Different	input	scales Performance	at	
different	input	scales



Comparing	ranked	anti-patterns	at	
different	data	scales

28

Ranked	
Performance	
anti-patterns	

from	small	data

detection

ranking

Ranked	
Performance	
anti-patterns	
from	large	data

?
Small	size	input

Large	size	input



Anti-patterns	have	large	effects	on	
performance	even	at	smaller	data	scales

29

0

10

20

30

40

50

0

1

2

3

4

5

Ef
fe
ct
	si
ze

Effect	sizes	and	the	ranks	of	the	anti-patterns	
are	consistent	in	different	data	scales



Performance	impact

Research	questions

Ranks	of	the	anti-patterns	at	
different	scales

30

Removing	anti-pattern		
improves	response	by	~35%

Ranks	of	the	anti-patterns	
are	consistent	in	different	

data	scales



31



32



33



34



35



Review	anti-pattern	(what	you	should	
NOT	do)

36

Obvious	results:	Students	are	asked	to	rethink	the	validity	of	such	a	critique	had	they	not	
read	the	paper	(since	quite	often	things	 look	quite	obvious	 once	an	elegant	and	simple	
solution	has	been	proposed).	

N+1	systems:	Students	are	asked	to	think	deeper	about	the	goal	of	our	 field	– Are	we	in	
search	for	a	unifying	 theory	that	unifies	knowledge	across	the	whole	field	(and	hence	a	
considerable	amount	of	systems	must	be	studied	 for	each	paper)?	Or	are	we	more	case	
study	focused	and	are	concerned	about	showing	 that	the	work	can	help	at	least	a	few	
systems	(that	are	possibly	 impacting	 the	lives	of	many)?	

Industry	vs.	open	source:	A	classic	critique	is	to	complain	 that	the	studied	projects	are	
open	source	ones	or	industrial	ones.	Students	are	asked	to	go	beyond	 the	specific	projects	
and	to	think	about	the	overall	impact	of	the	results	and	on	 the	availability/rarity	of	the	
studied	data.	

Not	novel	(e.g.,	Replication	studies):	This	is	rarely	raised	once	students	are	halfway	
through	 their	assignment.	

Un-addressable	critiques:	Students	are	asked	to	combine	their	critique	with	a	realistic	way	
to	address	it.



Assignment

37

Implement	a	tool	to	
detect	this	pattern.

And	test	on	one	of	
the	releases	in	
BroadLeaf

https://github.com/Br
oadleafCommerce/Br
oadleafCommerce/rel
eases


