
1

Weiyi Shang

Introduction to SOEN 691: Mining
Large Software System Data for
DevOps

Who is this guy?

3

Academia

M.Sc., Ph.D.,
Post-Doc
Sept. 2008-
July. 2015

Industry

Performance
Engineer
Sept. 2010-
Aug. 2014

4

Mining large
software data

Software
engineering for
large systems

Prof. Shang’s research

Where am I?

Where am I?

ECSE	321 Logistics

Room # 3.129
Email:
shang@encs.concordia.ca

6

What are we doing here?

What	are	we	doing	here?

Learning about the how to leverage the
large scale data of software systems in
order to assist in DevOps. Topics include
(1) Logging
(2) Software performance
(3) Large-scale testing
(4) Empirical studies on software data
(5) Software configuration

8

Time of the class VERY IMPORTANT

1:30 to 4:00 PM
I will try to be here 15 minutes before
class for Q&A
I can’t do Q&A after the class

9

What if I want to meet with you?

Need advise:
Send me an email, I will arrange a
meeting in person.

Technical or course logistic questions:
POD/TA of the course:
Mehran Hassani:
mehran.hassany@gmail.com

10

What do I need
to survive?

What do I need to survive?

This is NOT a lecture course!

Good discussion, expressing
your opinion.
Read papers.
A good project.

12

What is DevOps?

Software Devlopment

14

Design and specification TestingCoding

Release engineering Evolution

Software Operation

15

Monitoring Troubleshooting Capacity planning

Anomaly detection Q&A Configuration Tuning

DevOps is the practice of operations and
development engineers participating
together in the entire service lifecycle, from
design through the development
process to production support.

DevOps is also characterized by
operations staff making use many of
the same techniques as developers
for their systems work.

What is DevOps?

Context of DevOps

Ultra-large-scale Systems (ULSS) :
Millions of Users,
Billions of Transactions

– Over 1 billion page views per day
– 44 billion SQL executions per day

– 8 billion minutes online everyday
– Over 1.2 million photos a sec at peak

0

200

400

600

800

1000

1200

2004 2006 2008 2010 2012

User Growth Over the Years (in millions)

Rapid Growth and Evolution

Large Interconnected
user base with varying
demands &
expectations

Gmail’s 25 to 55 minutes
outage affected 42 million
users.

Azure service was
interrupted for 11hrs,
affecting Azure users world-
wide.

Quality of such systems is
important

Jan 24th Nov 19thOct 28th

Facebook went down for
35 minutes, losing
$854,700.

2014

There is a gap between software
developers and operators

21

Developers

Operators

Does my system
perform well in

the field?

What does this error
message mean?

How do I resolve it?

22

Discrepancy between
development and deployment

Small sample data and
pseudo environment

Big data and
real-life environemnt

23

“… move back and forth from local
machines to cloud-based systems”

How to ensure systems run
correctly in the field?

24

Running correctly

Small sample data and
pseudo environment

Big data and
real-life environemnt

What	exactly	
does	this	

message	mean?

26

Testing

27

What happens in the field

Filed issues Higher intensity Different feature usage

Very different workloads

Fear of changeRisky deployments It works on my machine!

As a result…

How to release more reliable
applications faster and more
frequently?

The rapid release cycle of modern
software systems

Often release several times
in one day!

29

3
0

Nightly builds

Builds are often on a schedule:
- Typically, developers work during a day,

committing their changes that fix bugs
and add new features

- At night time, while developers are
sleeping, a build is executed to produce
deliverables with the day’s changes

- QA teams can pick up that build the next
day to test the new features and validate
the bug fixes

3
1

Build system interactions:
The problem with nightly builds

Night builds are too infrequent:
- As the amount of change per day has

grown, nightly builds have become difficult
- Consider the case when a nightly build

does not complete cleanly
- If hundreds of developers have

committed changes, it’s hard to tell who
caused the problem!

- Imagine you broke the build, but you
wrote the code yesterday! Hard to recall!

We need to run builds
More frequently to keep up
With fast-paced development!

Build system interactions:
Continuous Integration (CI)

Commit

Build

Test

Report

.java .xml

32

Fear of changeRisky deployments It works on my machine!

As a result…

How to release more reliable
applications faster and more
frequently?

How to make fast decisions?

Leverage your data!

What data do we have?

36

requests

requests

requests Performance
counters

Logs

Trace

Crash
report

Source	Control
Issue

tracking

What kind of techniques can we
learn from the class?

37

Statistical analysis
Data mining

Machine learning
Code analysis

…
More importantly:

How to conduct proper SE and
System studies

Help can these data help?

38

Can you give me
several examples?

Linux	2.4 Linux	2.6

Build dependency graph

Bugs often repeat

What are the bugs in real world?

• Obvious/dumb bugs exist in real code.
– while	subtle	and	unique	bugs	exist,	there	are	also	many	
errors,	even	in	production	code,	that	are	blatant,	well-
understood,	and	easy	to	find	if	you	know	what	to	look	
for.	

• Because	of	the	sheer	complexity	of	modern	object
oriented	languages	like	Java,	the	potential	for	
misuse	of	language	features	and	APIs	is	enormous

Simple pattern matching can find
many bugs.

Generating bug patterns
(examples)

A longer list fromFindBugs:
http://findbugs.sourceforge.net/bugDescriptions.html

FindBugs results on JDK1.7

Propagating code changes

4
4

Method
A	is	

changed

Method
A	calls

Method	B

Method
C calls

Method	A

Change	
methods	B

and	C

Method
A is	

changed

When	method	A	is	changed,	
90%	of	the	time	method	D is	

changed.	

Change	
method	D

History	
helps!

Should I test\review my?

Who produces more buggy
code?

Build system interactions:
Continuous Integration (CI)

Commit

Build

Test

Report

.java .xml

47

Software	
metrics

Likelihood	of	
introducing	a	

bug

Chicken Versus Egg Problem

Some practices have become
convention

Detecting performance regression

51

What is a performance
regression?

52

Old version New version

Does the new version have
worse performance than
the old version?

How to detect performance
regression?

53

Old	Version

New	version

requests

requests

requests

Performance
counters

Performance
counters

Are you testing realisticaly?

54

We can
compare field

and test
workloads
using logs

55

Is the
behavior of
this person
covered in

testing?

56

Understanding error messages

57

Practitioners have challenges in
understanding log lines

58

Fetch	failure

What	exactly	
does	this	

message	mean?

What	could	
be	the	
cause?

Is	it	affecting	
my	data?

Looking for an expert is not the
optimal approach to resolve log
inquiries

59

Over	20%	of	the	
inquires	have	no	reply.

Wrong	answers	may	be	
posted	in	reply	to	
inquiries.

Identifying	the	expert	
of	a	log	line	is	
challenging.

First	reply	can	take	up	
to	210	hours.

60

Attach development knowledge to
logs

Code
commit

Issue reports
Source code

/*
…
*/

Call
graph

Code comments

How can these data help?

61

More will be covered
in the class later.

How will I be
evaluated?

How will I be evaluated?

Paper presentation and discussion (20%):
10% as presenter+5% as discussant+5%
activity in class

Each group (2 people) acts as presenter
once and discussant once in a term.
Audience randomly picked for summary.
You need to read ALL papers.

63

How will I be evaluated?

Weekly paper critique (10%)

5 weeks in total (since there is one week
for presentation).
Done individually.
Done over Easychair.
Submitted before Tuesday.

64

How will I be evaluated?

Assignment (20%):
Including developing a code analysis and
metrics extraction tool.
3 page report in IEEE format+submitting
the source code+executable.

Details covered in week2.
65

How will I be evaluated?

Project (50%): 10% project update+20%
final report+20%
Topics: paper replication, or any other
topics lated to the class
Project proposal: no grade, just for help
Project update: 10 minutes presentation
Project presentation: 15 minutes 20%
Project report: 20% 10 pages IEEE
format 66

Where are the course mateirals?

67

Course website:
http://users.encs.concordia.ca/~shang/soen691/cur
rent

More importantly

68

Weiyi Shang

Challenges of mining large software
data for DevOps

How to monitor ULSS with minimal overhead?

69

More frequent
monitor

Overhead

How to better	leverage	logs	in	practice?

70

Release	1 Release	2 Release	3

How to ensure optimal configuration?

71

How to model	and	save	power	consumption?

72

Large	software	systems	generate	large	amounts	
of	performance	counters

73

