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The fundamental conflict between the enormous space of adaptive streaming videos and the limited capacity
for subjective experiment casts significant challenges to objective Quality-of-Experience (QoE) prediction.
Existing objective QoE models either employ pre-defined parametrization or exhibit complex functional form,
achieving limited generalization capability in diverse streaming environments. In this study, we propose an
objective QoE model, namely, the Bayesian streaming quality index (BSQI), to integrate prior knowledge
on the human visual system and human annotated data in a principled way. By analyzing the subjective
characteristics towards streaming videos from a corpus of subjective studies, we show that a family of QoE
functions lies in a convex set. Using a variant of projected gradient descent, we optimize the objective QoE
model over a database of training videos. The proposed BSQI demonstrates strong prediction accuracy in
a broad range of streaming conditions, evident by state-of-the-art performance on four publicly available
benchmark datasets and a novel analysis-by-synthesis visual experiment.

CCS Concepts: • Information systems → Multimedia streaming; • Human-centered computing →
User models; • Mathematics of computing→ Approximation;

Additional Key Words and Phrases: Quality-of-experience assessment, adaptive video streaming, quadratic
programming

ACM Reference format:

Zhengfang Duanmu, Wentao Liu, Diqi Chen, Zhuoran Li, Zhou Wang, Yizhou Wang, and Wen Gao. 2022.
A Bayesian Quality-of-Experience Model for Adaptive Streaming Videos. ACM Trans. Multimedia Comput.

Commun. Appl. 18, 3s, Article 141 (December 2022), 24 pages.
https://doi.org/10.1145/3491432

1 INTRODUCTION

Video traffic in various content distribution networks is expected to occupy 71% of all consumed
bandwidth by 2021 and exceed 82% by 2022 [10]. The explosion of data volume introduced by
video streaming will quickly drain available network bandwidth in the next decade. Concurrent
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with the scarcity of network resources is the steady rise in user demands on video quality. With the
emergence of new technologies such as 4K, high dynamic range, wide color Gamut, and high frame
rate, viewers’ expectation on video quality has been higher than ever. The diversity of streaming
environments and complexity of the human Quality-of-Experience (QoE) response have posed
significant challenges to optimal content distribution services.

Adaptive bitrate (ABR) algorithms are the primary tools for modern Internet over-the-top

(OTT) video streaming services. In dynamic adaptive streaming environment, ABR achieves
player-driven bitrate adaptation by providing video streams in a variety of bitrate and quality
levels and breaking them into small HTTP file segments. Throughout the streaming process, the
video player at the client adaptively switches among the available streams by selecting segments
based on playback rate, buffer condition, and instantaneous throughput, primarily to optimize
viewers’ QoE [6, 34, 37, 49, 69, 84].

With many ABR algorithms at hand, it becomes pivotal to measure their performance to guide
the network resource allocation. The most straightforward and reliable way to measure viewers’
QoE is to conduct a user study. However, subjective testing is expensive, inconvenient, and time-
consuming. Most importantly, it cannot be integrated into an ABR system to perform real-time
bitrate selection. Therefore, the development of an accurate objective QoE model lies in the root
of ABR systems. In general, the QoE modeling problem is very challenging due to the fundamen-
tal conflict between the enormous size of streaming video space and the limited number of videos
available for observation. To overcome the curse of dimensionality problem, all existing QoE mod-
els share a common two-stage structure: (1) quality-related features are extracted from a test video;
(2) a regression model, namely, the QoE function, is applied to map quality relevant features to a
scalar QoE score.

Over the past decade, a significant effort has been devoted into the development of objective
QoE models. Albeit the diversity of QoE model implementations, recent studies have gradually con-
verged to a three-dimensional chunk-level feature representation including visual quality, rebuffer-
ing duration, and quality adaptation [6, 21, 47, 59, 84]. The major difference among QoE prediction
schemes lies in the instantiation of the second stage. Depending on the underlying assumptions
about subjective quality integration mechanism, existing QoE models can be roughly categorized
into two classes. The first approach makes strong a priori assumptions about the mapping between
a set of quality-related features and the subjective QoE rating. Specifically, most QoE models [6, 21,
31, 46, 66, 69, 82–84] in this category employ a pre-defined QoE function without the access to the
training data. A common drawback of the approach is that the model configuration is often selected
on the basis of mathematical convenience rather than as a reflection of any prior beliefs. The second
type of model [1, 19, 24, 59, 68] takes a data-driven approach by leveraging sophisticated machine
learning models such as random forest [9] and neural network [29], effectively imposing a non-
informative prior to the model parameters. However, even with feature extraction, the dimension-
ality of latent space grows linearly with the number of segments, suggesting that the quality rep-
resentation of each video still lies in a very high dimensional space. In contrast, the largest stream-
ing video dataset in the literature only contains a thousand subject-rate datapoints, which can be
deemed extremely sparsely distributed in the latent space. As a result, these purely data-driven
models usually suffer from significant overfitting problem. The tradeoff between model underfit-
ting and overfitting is known as the bias-variance tradeoff in the machine learning literature [13].

In general, the key to the problem is to adaptively fuse appropriate prior knowledge about
subjective QoE and the likelihood of observing the training data [7]. This line of thought naturally
gives rise to a novel Bayesian framework for robust QoE prediction. We show that each of the
existing categories of QoE models corresponds to a special case in the Bayesian framework,
which inevitably results in sub-optimal performance. Furthermore, the proposed framework also
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provides us a principled way to integrate prior knowledge of the human visual system (HVS)

and a limited number of training samples.
Even given such a unified framework, the QoE modeling problem is still non-trivial. In partic-

ular, traditional prior distributions rely on a number of strong assumptions and generalizations,
strictly restricting the space of feasible solution. As a result, existing prior models cannot make
efficient use of the training data. However, simply removing these assumptions would degenerate
the maximum a posteriori approach to the maximum likelihood estimator, which suffers from the
overfitting problem with limited training samples. Therefore, a meaningful prior probability model
for the HVS configuration is of central importance for this application. Following this direction,
we perform a comprehensive analysis to the HVS properties based on a plethora of subjective QoE
studies, from which we derive a system of linear inequalities. We further show that a family of
objective QoE models lies within a convex set that results from a positive cone in a functional
space. This gives us both guidance on the form of our model as well as constraints.

Building upon the Bayesian framework and the well-characterized prior knowledge of HVS
properties, we derive a new QoE model named Bayesian Streaming Quality Index (BSQI). We
demonstrate that the model parameter estimation problem can be formulated as a quadratic pro-
gramming problem. Using a variant of projected gradient descent, we optimize the proposed model
over a database of training samples with limited adaptation patterns. The resulting model is com-
putationally efficient, mathematically well-behaved, and perceptually grounded.

To demonstrate the effectiveness of the new design principle, we compare BSQI to 14 objective
QoE models on four benchmark datasets covering a broad set of video contents, encoder configu-
rations, network conditions, ABR algorithms, and viewing devices. BSQI rivals or outperforms the
best existing scheme in all considered scenarios, with an average improvement of 4% in prediction
accuracy. We show that the proposed model is superior on average and in extreme cases via a set
of intuitive examples. We have made the implementation of all objective QoE models available at
https://github.com/zduanmu/ksqi to facilitate future objective QoE research.

In summary, this article makes the following key contributions:

• A Bayesian framework that unifies a wide spectrum of objective QoE models.
• Mathematical analysis on the space of QoE functions for adaptive streaming videos;
• Design of a Bayesian objective QoE model combining the constraints from our analysis and

human annotated data in a principled way;
• An open-source implementation and comprehensive evaluation of objective QoE models.

2 A BAYESIAN REVIEW OF OBJECTIVE QOE MODELS

The goal of objective QoE models is to predict the subjective quality rating y given a streaming
video x. The QoE prediction problem can be formulated as a Bayesian inference problem, where the
objective is to determine the probability distribution with a parametric modelp (y |x;θ ), which may
be followed by a decision making process that generates a deterministic estimate of y. Directly es-
tablishing a quantitative relationship between a streaming video x and its QoEy is challenging due
to the enormous space of x and small capacity for subjective measurements. To alleviate the prob-
lem, all existing objective models employ a common two-stage QoE prediction framework, which
sequentially transforms an input video to a low-dimensional latent representation and builds a
connection between the latent variable and subjective QoE rating. From a Bayesian perspective,
this approach corresponds to a hierarchical probability graphic model of the form

p (y |x;θ ) =

∫
p (z|x;θ1)p (y |z;θ2)dz, (1)
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where z, p (z|x;θ1), and p (y |z;θ2) are the low-dimensional latent variable, a feature extractor, and
a regression model, respectively. In this Bayesian network, the objective QoE model parameters θ
consist of both the parameters of the feature extractor and the regression model (i.e., θ = {θ1,θ2}).
In general, the marginalization over the latent variable z in Equation (1) is not tractable to compute
exactly. As a result, most methods consider an approximation that makes use of a point estimate
instead of performing the integration over z in Equation (1). We will separately review feature
extractors and regression models that are commonly used in the existing objective QoE models,
with an emphasis on their underlying assumptions.

2.1 Feature Extractors

The feature extractor p (z|x;θ1), which qualitatively determines which piece of information in a
streaming video is relevant to the QoE, plays a central role in the objective QoE model. In the past
decade, a wide variety of feature extraction schemes have been proposed, which can be roughly
categorized into two classes.

Assuming there exists a causal relationship between impairments in the communication pipeline
and the QoE, earliest feature extraction schemes attempted to identify a set of objective perfor-
mance measures that correlate well with the subjective quality evaluation. A unique property of
this approach is that the extracted features z do not depend on the visual signal x or its pristine
counterpart, but are functions of the distortion process. As a result of the decoupling between the
visual content and viewers’ QoE, the distortion process-based feature extractors are often referred
to as the Quality-of-Service (QoS)-based approach. There have been a wide variety of QoS-based
methods ranging from generic network-level features such as bit error rate, packet loss rate, net-
work jitter, round-trip time, and average bandwidth [39, 50, 57, 61, 75] to application-specific fea-
tures such as QP, encoding bitrate, rebuffering duration, and bitrate variation [46, 83, 84]. Although
this approach has achieved promising results in individual reports, it often struggles to deliver com-
petitive performance in a more comprehensive benchmark including more diverse source contents,
video encoders, and ABR algorithms [20]. The fundamental limitation of QoS approach resides in
the conditional independence between the service performance and the QoE score y given the vi-
sual signal x. In particular, a naïve subject can consistently assess the quality of a streaming video
without access to the underlying transmission channel.

Motivated by the limitations of the QoS-based approach, the second type of feature extraction
methods tackles the problem from a different perspective by simulating the properties of the HVS.
These artificial visual models typically implement well-known HVS functionalities such as contrast
sensitivity function, luminance masking, contrast masking, and saliency detection [17, 76]. The
final output of the computational models encodes certain quantities that are hopefully measured
by the HVS. Typical examples of the approach include References [1, 3, 6, 21], which are built
upon SSIMplus [64] or VMAF [42] as the chunk-level feature extractor. There perceptual feature
extractors have demonstrated a much better performance on benchmarks covering diverse content,
encoders, and viewing conditions [16].

Regardless of the underlying assumptions, recent QoE models [3, 6, 21, 24, 33, 83, 84] have agreed
that three most relevant features in the QoE of streaming videos are the presentation video quality,
rebuffering duration, and quality adaptation. These features are usually computed at chunk-level
because (1) the video statistics are usually highly non-stationary, and (2) streaming video distor-
tions are also temporally varying.

2.2 Regression Models

Even with the reduced dimensionality, the design of objective QoE models is still a challenging
task, partly because the sequential nature of the streaming video. There have been two distinct
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approaches to tackle the problem, both of which can be derived from the Bayesian perspective.
Given a dataset of observations Dz comprising Nx latent variables Z = (z1, . . . , zNx

) and their
corresponding target quality scores y = (y1, . . . ,yNx

), the objective of the regression model is to
obtain a set of parameters θ2 that optimizes the posterior parameter distribution p (θ2 |Dz ). The
maximum a posteriori solution of the QoE function can be expressed as

θ ∗2 = arg max
θ2

p (θ2 |Dz )

= arg max
θ2

p (Dz |θ2)p (θ2).
(2)

Existing QoE models can be categorized based on their assumptions about the prior parameter
distribution p (θ2) as follows:

• Strong Prior: Given the limited training data in the latent space, the first approach mainly
relies on strong prior assumptions about p (θ2) to estimate the posterior distribution. To sim-
plify the problem, four basic assumptions are commonly made. The first is that the notion
of QoE can be defined locally, and that the overall QoE can be obtained by a linear combi-
nation of the chunk-level QoE scores. Typically, one makes a Markov assumption that the
chunk-level quality distribution, when conditioned on its previous segment, is independent
of the segments beyond the neighborhood. The second is an assumption of temporal homo-
geneity: The chunk-level QoE distribution is the same across all temporal positions. The two
assumptions jointly suggest that

p (y |z;θ2) = N �
�y |

1

T

T∑
t=1

yt , β��, (3)

where yt = д(zt ;θ2)1 denotes the chunk-level QoE. It should be noted that the mapping
between the local latent variables zt and the local QoE yt shares a common functional form
across all temporal indices. The third is an independent assumption that the impact of each
dimension in zt is independent from other dimensions in predicting the local QoE scores.
This assumption can be mathematically expressed as д(zt ;θ2) =

∑J
j=1 дj (zt, j ;θ j

2 ), where zt, j

and дj (·;θ j
2 ) denote the jth dimension in zt and the dimensional-specific activation function,

respectively. In addition to the three assumptions, most objective QoE models in this cat-
egory make assumptions about the specific form of д(zt ;θ2) along each dimension. Initial
attempts incorporated certain functions with pre-defined parameters. Popular choices of the
activation operator include linear function [6, 46, 82, 84], exponential function [21, 31, 66],
and logarithmic function [69, 83]. In the case of linear function, the chunk-level QoE can be
computed by yt = θ�zt, where � denotes the transpose operator. Since the parameters are
fixed, we have p (θ2 = θ ∗2 ) = 1 and p (θ2 = θ ′) = 0 for any function θ ′ � θ ∗2 . Consequently,
the posterior distribution p (θ2 |Dz ) converges to the prior distribution p (θ2) for any likeli-
hood function and dataset as long as p (Dz |θ ∗2 ) > 0. Recent studies have indicated that these
overly simplistic models with manually tuned parameters have achieved limited success in
representing the relationship between the latent variables and the subjective QoE [3, 20].
One common drawback of the approach is that the prior distribution is often selected on
the basis of mathematical convenience rather than as a reflection of any prior beliefs. The

1According to the Markov assumption, the chunk-level quality yt is a function of zt−1 and zt . However, by the technique
of feature enrich, we can denote the feature set zt at each time instance t as the aggregation of the previous chunk-level
feature and the present chunk-level feature without loss of generality.
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resulting strong inductive bias may manifest itself in many ways. For example, the subjec-
tive QoE response with respect to each feature can vary significantly from exponential and
logarithmic functions. Generally speaking, the problem applies to all handcrafted QoE mea-
sures that rely on a pre-defined functional form. Furthermore, the additive assumption is also
problematic for QoE modeling, where the impact of one latent variable is hardly indepen-
dent to the other. In particular, recent experiments have illustrated that the joint impact of
conventional feature pairs on the QoE is statistically significant [3, 18, 21]. The assumption
becomes increasingly deficient as the dimensionality of the latent space expands.
• Non-informative Prior: Supposing HVS is too complex to understand, the second approach

aims to approximate the posterior distribution from the likelihood function p (Dz |θ2). With
the emergence of subject-rated QoE databases [3, 4, 16, 18, 20, 21, 24, 26], the data-driven
approach has dominated the objective QoE research. A broad range of statistical models such
as non-linear auto-regressive model [3], neural network [68], support vector machine [1],
random forest [19, 59], and Long-Short Term Memory (LSTM) [24] have been utilized to
map streaming video features to subjective opinion scores. These models employ a maximum
likelihood estimator

θ ∗2 = arg max
θ2

p (Dz |θ2) (4)

to obtain the optimal model parameters, effectively assuming a non-informative prior in
the Bayesian inference problem [7]. Although these QoE models can fit arbitrarily complex
continuous functions [30], they often suffer from the generalization problem. Specifically,
it has been observed that the performance of QoE models trained on one database reduces
significantly on other benchmark datasets, largely due to the distribution mismatch in the
visual content and the distortion process across datasets [3, 4, 16, 20, 26]. There are at least
four sources for the generalization problem. First, in spite of the reduced dimensionality,
the latent variable z still lives in a high dimensional space. Each streaming video is rep-
resented by a Z ×T -dimensional vector when chunk-level feature extractors are employed,
whereZ andT represent the number of chunk-level features and the total number of chunks,
respectively. However, a typical “large-scale” subjective test allows for a maximum of sev-
eral hundred or a few thousand test videos to be rated. Given the enormous space of latent
variables, a few thousand subject-rated samples are deemed to be extremely sparsely dis-
tributed in the space. Second, the learning-based models assume that the training samples
and testing samples come from the same distribution. However, the assumption has never
been justified in the existing studies and may hardly hold in practice. A motivating example
is shown in Figure 1, where the probability density functions of video presentation quality
measured by a state-of-the-art video quality assessment model VMAF [42], rebuffering dura-
tion and quality adaptation magnitude in six publicly available streaming QoE datasets are
presented. Clearly, there is significant variability on the characteristics of streaming videos
across different datasets, suggesting that an objective QoE model optimized on a simple
dataset such as WaterlooSQoE-I [21] may yield very poor predictions on complex datasets
as WaterlooSQoE-III [20], WaterlooSQoE-IV [14], and LIVE-NFLX-II [4], and vice versa. The
streaming video probability density estimation is further complicated by the concept drift
problem [25], where the characteristics of streaming video changes over time. For example,
the drift in streaming video distribution may arise from the advancement of video acquisi-
tion [35, 38, 55], compression [11, 54, 71], transmission [6, 34, 37, 49, 69, 84], and reproduc-
tion systems [43, 53, 79], and the steady rise in viewers’ expectation on video quality [19, 58].
Third, the maximum likelihood estimator generally assumes that each (z,y) pair in the train-
ing setDz is independent and identically distributed. In practice, however, the existing QoE
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Fig. 1. There exists significant variance on the characteristics of streaming videos, evident by the distribu-

tions of (a) VMAF, (b) rebuffering duration, and (c) adaptation magnitude in six publicly available datasets.

datasets typically generate multiple streaming videos for each reference video to cover the
diversity of distortion processes, suggesting that the training data are not independent and
identically distributed. Fourth, the consistency of subjective QoE ratings among streaming
video databases is only moderate due to drastically different experimental conditions. Strictly
speaking, the quality ratings of a streaming video xt collected from a subjective experiment
are essentially samples from a context conditional quality distribution p (y |xt , t), where t

encodes the information about experiment environment, instruction, training process, pre-
sentation order, and experiment protocol. As a result, the subjective quality ratings obtained
from different experiments cannot be simply aggregated into a larger QoE dataset p (y |xt ).
These data challenges constantly arise in QoE research and will remain a challenging issue
in the future.

One common drawback of both approaches is the lack of perceptually meaningful prior distribu-
tions. In particular, none of these models make use of the knowledge about natural videos, dis-
tortion processes, and the HVS, despite the plethora of dedicated subjective experiments over the
past decade. It remains to be seen how much improvement can be achieved with these informative
priors in the Bayesian framework.

3 PRIOR QOE MODEL

In this section, we derive a prior QoE model by analyzing a corpus of subjective QoE experiments.
To simplify the discussion, we start with a deterministic formulation of the prior QoE model. In
the end of the derivation, we will also present a probabilistic interpretation of the resulting prior
model.

3.1 Deterministic View

Formally, the overall QoE can be denoted as Q ({pt ,τt ,Δpt }Tt=1), where pt , τt , and Δpt = pt − pt−1

represent the presentation quality, the rebuffering duration, the magnitude of quality adaptation
of chunk t , respectively. T denotes the number of chunks in the streaming video. Defining the
space of QoE functions helps us build a model of these functions. It not only guides us as to the
form such a model should take, but also determines the constraints these functions must satisfy.
We begin by summarizing observations from a collection of existing subjective QoE studies and
then formulate the domain knowledge to define the space of these functions. For the brevity of
math formulation, we will use simplified notations for the rest of this section unless otherwise
stated. Specifically, we will omit all the identical variables of the QoE function Q in the same
equation and only emphasize the factors that are different. First, various subjective tests [12, 32]
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have attested that rebuffering duration is negatively correlated with the overall QoE of streaming
videos. Formally, we may summarize this observation by

Q (τt = τ
1) ≥ Q (τt = τ

2),∀τ 1 ≤ τ 2, t . (5)

Note that we have used the simplified notation in Equation (5) to show that the two compared
video streams are only different in the rebuffering duration of chunk t .

The second assumption is that, given the same rebuffering length, the QoE drop tends to be
greater when the presentation quality of the previous chunk is higher, i.e.,

Q (pt−1 = p
1,τt = 0) −Q (pt−1 = p

1,τt = τ ) ≤
Q (pt−1 = p

2,τt = 0) −Q (pt−1 = p
2,τt = τ ),∀τ ,p1 ≤ p2, t .

(6)

Such a trend has been observed in recent subjective tests [5, 21] and may be explained by the
expectation confirmation theory [58].

The third assumption is elicited from the fact that, given a constant presentation quality and a
fixed total duration of rebuffering, the overall QoE degrades as the number of rebuffering occur-
rences increases [31, 52, 60]. Mathematically, this may be expressed as

Q (τt−1 = τ
1,τt = τ

2) ≤ Q (τt−1 = 0,τt = τ
1 + τ 2),∀τ 1,τ 2, t . (7)

The fourth remark is that, given the same rebuffering duration, videos with higher presentation
quality consistently deliver higher overall QoE, despite the greater penalty for the rebuffering
event [48]. This statement can be formulated as

Q (pt = p
1) ≤ Q (pt = p

2),∀p1 ≤ p2, t . (8)

We then analyze the functional properties with respect to the quality adaptation. The fifth
assumption suggests that people always assign a penalty to presentation quality degradation,
reward to quality elevation, and neither penalty nor reward when no quality adaptation oc-
curs [18, 28, 52, 63]. Mathematically, the assumption can be expressed as{

Q (Δpt = δp1) ≤ Q (Δpt = 0), ∀δp1 ≤ 0, t
Q (Δpt = δp2) ≥ Q (Δpt = 0), ∀δp2 ≥ 0, t

. (9)

Further analysis [18, 52, 56, 63] on the relationship between the QoE adjustment and the inten-
sity of quality adaptation Δp indicates that subjects tend to give greater QoE penalty or reward
when quality drops or improves by a greater amount. This finding, together with the fifth assump-
tion, prompts our sixth assumption: QoE is monotonically increasing with regards to Δp:

Q (Δpt = δp1) ≤ Q (Δpt = δp2),∀δp1 ≤ δp2, t . (10)

Experiments in Reference [18] find that quality degradation occurring in the high-quality range
leads to greater amount of penalty than that occurring in the low-quality range, while quality
elevation in the high-quality range results in smaller rewards. Such an observation leads to the
seventh assumption that

Q (pt = p
1,Δpt = δp) −Q (pt = p

1,Δpt = 0) ≥
Q (pt = p

2,Δpt = δp) −Q (pt = p
2,Δpt = 0),∀δp,p1 ≤ p2, t .

(11)

Another commonly observed trend in QoE is that the reward for a positive quality adaptation
is relatively smaller than the penalty for a negative one, given the same intensity of quality adap-
tation and the same average presentation quality [18, 56, 63]. Formally, this can be summarized by

Q (pt = p
1,Δpt = 0) −Q (pt = p

1,Δpt = −δp) ≥
Q (pt = p

1 − δp,Δpt = δp) −Q (pt = p
1 − δp,Δpt = 0),∀p1,δp ≥ 0, t .

(12)
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In summary, we define the space of QoE functions Q as

WQ � {Q : R3T → R|Q satisfying constraints (5) to (12)}. (13)

The inequality constraints in Equation (13) represent a positive cone [7], which is convex by its
definition.

3.2 Probabilistic View

The conversion from the inequality constraints in Equation (13) to its probability representation
is straightforward. Let θ2 denote the parameters of the regression function Q , then the constraint
in Equation (5) corresponds to the following prior distribution:

p1 (θ2) =

{
ϵ, ∀Q ({pt ,τt ,Δpt }Tt=1;θ2) satisfying (5)
0, otherwise

, (14)

where ϵ represents certain probability density for each feasible parameter configuration such that
p1 (θ2) sum to 1. The constraints in Equations (6)–(12) can be transformed into prior probability
distributions of θ2 in a similar fashion, which can be denoted as p2 (θ2)–p8 (θ2), respectively. The
simple aggregation of constraints in Equation (13) implicitly assumes the independence of individ-
ual assumptions. Therefore, the joint prior probability distribution of QoE models may be obtained
by

p (θ2) =

∏8
i=1 pi (θ2)∫

θ

∏8
i=1 pi (θ )dθ

. (15)

4 A BAYESIAN QOE MODEL

Our discussion on the prior QoE models has been encouraging. However, the general form of
the QoE function still exhibits a very high dimensionality. To obtain a meaningful approximation,
some further assumptions have to be made. In this section, we present the roadmap to design a
perceptually grounded objective QoE model.

4.1 Additional Assumptions

The observations from existing psychophysical experiments not only illustrate the feasible func-
tional form of QoE models, but also point out the joint impact among the three-dimensional fea-
tures in QoE. As a result, we can effectively replace the specific form assumption and the feature-
wise independent assumption in the traditional prior model by the HVS imposed constraints
in Equation (13). However, existing subjective QoE studies do not provide enough information in
the temporal aspects. For example, how an impairment that appears early in a streaming session
affects the QoE of subsequent video segments in a long run is still a subject of ongoing research.
There have also been limited studies [66] investigating the validity of the temporal homogeneity
assumption. In this study, we adopt a conservative approach by inheriting the Markov assump-
tion and the temporal homogeneity assumption. Nevertheless, the proposed Bayesian framework
is general enough to incorporate more prior knowledge once they become available.

Mathematically, the Markov assumption and the temporal homogeneity assumption can be
jointly expressed by

Q
(
{pt ,τt ,Δpt }Tt=1

)
=

1

T

T∑
t=1

q(pt ,τt ,Δpt ),

where q is the chunk-level QoE function, which is invariant to t . By incorporating these as-
sumptions, we reduce the original problem to the estimation of a three-dimensional function
q(pt ,τt ,Δpt ).
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We further assume that the influence of presentation quality, rebuffering, and quality adaptation
are additive. Formally, the QoE of chunk t is determined by

q(pt ,τt ,Δpt ) = pt + St +At ,

where St and At denote the rebuffering QoE function and the adaptation QoE function of chunk t ,
respectively. We adopt the additive assumption because of its good mathematical property, inter-
pretability, low complexity, and broad acceptance [6, 21, 31, 46, 51, 69, 83, 84]. With the aid of these
additional assumptions, we present the roadmap to design a perceptually grounded objective QoE
model. For simplicity, we will drop the subscript t in the rest of this section unless otherwise spec-
ified. Note that we do not assume the influences of presentation quality, rebuffering, and quality
adaptation are independent to each other if the QoE functions S and A vary with respect to the
presentation quality p.

4.2 Modeling the Presentation Quality

Traditionally, for the sake of operational convenience, bitrate is often used as the major indica-
tor of video presentation quality [34, 44, 49, 51, 69, 84]. However, bitrate may heavily deviate from
perceptual quality. The presentation-quality model should provide meaningful and consistent QoE
predictions across video contents, video resolutions, and viewing conditions/devices. To the best
of our knowledge, currently the only video QoE models that satisfy such requirements are SSIM-
plus [64] and VMAF [42]. Both models perform consistently well on various subject-rated video
databases [2, 45], making them an appropriate component in BSQI. In the rest of the article, we
present our results using VMAF as our presentation quality model, as it is open source and thus
facilitates reproducible research. Although the presentation-quality scores are not available to the
adaptive streaming player by default, they can either be embedded into the manifest file that de-
scribes the specifications of the video or carried in the metadata of the video container. Thanks to
the light overhead, the feature embedding technique has been successfully deployed in practical
QoE measurement [21, 78] and ABR optimization systems [6, 81].

4.3 Modeling the Rebuffering QoE Function

In general, the rebuffering QoE function S is a function of presentation quality, rebuffering, and
quality adaptation. However, we have not found any evidence from the literature that the quality
adaptation may change the perception of rebuffering. As a result, the supporting domain of S
reduces to {(p,τ ) |p ∈ [0, P],τ ∈ [0,τmax]}, where P indicates the best quality, and τmax is the
maximum rebuffering duration. By incorporating the inequality constraints in Equation (13), it is
easy to derive the theoretic space of the rebuffering QoE function S

WS �{S : R2 → R|S (p, 0) = 0, S (p,τ 1) ≥ S (p,τ 2),

S (p1,τ ) ≥ S (p2,τ ), S (p,τ 1) + S (p,τ 2) ≤ S (p,τ 1 + τ 2),

S (p1,τ ) + p1 ≤ S (p2,τ ) + p2,∀p,τ ,τ 1 ≤ τ 2,p1 ≤ p2},
(16)

where we have assumed that no rebuffering corresponds to a penalty of 0.
Strictly speaking,WS is a space of continuous functions, but we may approximate it in terms

of a vector space by densely sampling the supporting domain of S . By uniformly sampling both p
and τ , we approximate the function S with a finite-size matrix S ∈ R(N+1)×(N+1) , where an element
si, j denotes the QoE penalty when (p,τ ) = ( i−1

N
P , j−1

N
τmax). We then vectorize S as s ∈ R(N+1)2

for the convenience of further formulation. We employ the uniform vectorization for two reasons.
First, the exact form of QoE functions (e.g., exponential, logarithmic) cannot be known a priori. In
this regard, the uniform sampling implicitly serves as a non-informative prior on the form of QoE
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functions. Our second motivation is closely related to the smoothness assumption, which will be
detailed in subsequent discussion. In particular, when the QoE functions are band-limited, they
can be fully recovered from these samples when the sampling density is larger than the Nyquist
rate. Finally, we are able to approximate the functional spaceWS with a vector space

Ws � {s ∈ R(N+1)2 |Gs s ≤ hs ,Bs s = cs },

where Gs , hs ,Bs , and cs are constructed so all the entries in s should satisfy the constraints in
Equation (16).

Even though the theoretical space of the rebuffering QoE function is restricted to a positive
cone, it is still infinite-dimensional. Ideally, the optimal rebuffering QoE function should be the
one that best explains the subjective data and lives in the theoretical space. Specifically, given a
training set of Ms video sequences, each of which has Cs chunks, one or more rebuffering events,
no adaptation, and a mean opinion score (MOS) Qm to indicate its overall QoE, we want to
obtain a vector s∗ ∈ Ws that minimizes the mean squared error between the model prediction and
subject-rated data

ϵF
s �

1

Ms

Ms∑
m=1

⎡⎢⎢⎢⎢⎣Qm −
1

Cs

Cs∑
c=1

(Pmc
+ simc

, jmc
)
⎤⎥⎥⎥⎥⎦

2

,

where Pmc
and simc

, jmc
denote the presentation quality and rebuffering QoE penalty at chunk c

of video m, respectively. However, existing subject-rated streaming video datasets contain very
limited samples, which are sparsely distributed in the feature space. In particular, some (p, τ ) com-
binations never appear in the training set, suggesting the optimization problem is ill-conditioned.
To obtain a meaningful solution, we impose smoothness prior on the function S . In practice, many
subjective experiments have empirically shown the smoothness of the QoE functions [3, 21]. Math-
ematically, smoothness regularization can be represented as the second-order differences along i
and j axes

ϵS
s �

1

(N + 1)2

N+1∑
i=1

N+1∑
j=1

⎡⎢⎢⎢⎢⎣
(
∂2si, j

∂i2

)2

+

(
∂2si, j

∂j2

)2⎤⎥⎥⎥⎥⎦ .
It is not hard to see that both ϵF

s and ϵS
s take quadratic forms of s. As a result, we are able to estimate

the rebuffering QoE matrix S by solving the following quadratic programming problem:

minimize
s

Ls = ϵF
s + λϵ

S
s

subject to s ∈ Ws,
(17)

where λ > 0 is a weighting factor. The convexity ofWs and the objective function implies that
there exists a unique solution for the optimization problem. The problem can be efficiently solved
with projected gradient descent-based algorithms such as alternating direction method of multi-
pliers [8].

4.4 Modeling the Adaptation QoE Function

Similarly, the supporting domain of A can be reduced to {(p,Δp) |p ∈ [0, P],Δp ∈ [−p, P − p]}
because of the limited understanding of the connections between the perception of quality adap-
tation and rebuffering duration. By incorporating the inequality constraints in Equation (13), we
can show that the adaptation QoE function A lies in the space

WA � {A : R2 → R|A(p, 0) = 0,A(p,δp1) ≤ A(p,δp2),
A(p,−δp) +A(p − δp,δp) ≤ 0,
A(p1,δp) ≥ A(p2,δp),∀p,δp,p1 ≤ p2,δp1 ≤ δp2},

(18)
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where we have assumed that no adaptation corresponds to a penalty of 0.
Following the same approach, we work with the discrete version of ofA. By uniformly sampling

bothp and Δp, we approximate the functionAwith a finite-size matrix A ∈ R(N+1)×(N+1) , where an
entryai, j denotes the QoE change when (p,Δp) = ( i−1

N
P , j−i

N
P ), and then vectorize A as a ∈ R(N+1)2

.
Finally, the vector space of adaptation experience function becomes

Wa �
{
a ∈ R(N+1)2 Gaa ≤ ha ,Baa = ca

}
,

where Ga , ha ,Ba , and ca are according to the constraints in Equation (18).
Given a training set of Ma video sequences, each of which hasCa chunks, no rebuffering events,

and a MOS Qm , we aim to optimize

La � ϵF
a + λϵ

S
a ,

where

ϵF
a �

1

Ma

Ma∑
m=1

⎡⎢⎢⎢⎢⎣Qm −
1

Ca

Ca∑
c=1

(Pmc
+ aimc

, jmc
)
⎤⎥⎥⎥⎥⎦

2

, (19)

and

ϵS
a �

1

(N + 1)2

N+1∑
i=1

N+1∑
j=1

⎡⎢⎢⎢⎢⎣
(
∂2ai, j

∂i2

)2

+

(
∂2ai, j

∂j2

)2⎤⎥⎥⎥⎥⎦ . (20)

Here, simc
, jmc

denotes the quality adaptation experience at chunk c of videom. The optimal quality
adaptation experience matrix A can be obtained by solving the following quadratic programming
problem:

minimize
a

La = ϵF
a + λϵ

S
a

subject to a ∈ Wa.
(21)

Minimizing the loss functions in Equations (17) and (21) is equivalent to solving the maximum
a posteriori problem (2), with a Gaussian likelihood function and a prior probability distribution
given by the product among a Gaussian distribution over Equation (17), a Gaussian distribution
over Equation (20), and a uniform distribution in Equation (15).

4.5 Overall QoE

The optimal solutions of Equations (11) and (12) s and a correspond to the vectorized St and At ,
respectively. Once we solve the optimization problem on a training set, the segment level QoE
takes the form Qt = pt + St + At , as introduced at the beginning of Section 3. In practice, one
usually requires a single end-of-process QoE measure. We use the mean value of the predicted
QoE over the whole playback duration to evaluate the overall QoE. To reduce the memory usage,
the end-of-process QoE can be computed in a moving average fashion

Yt =
(t − 1)Yt−1 +Qt

t
,

where Yt is the cumulative QoE up to the t th segment in the streaming session.

5 EXPERIMENTS

In this section, we first describe the experimental setups and evaluation criteria. We then compare
BSQI with classic and state-of-the-art objective QoE models. Furthermore, we develop an efficient
methodology for examining the best-case performance of objective QoE models. Finally, we con-
duct a series of ablation experiments to identify the contributions of the core factors in BSQI.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 18, No. 3s, Article 141. Publication date: December 2022.



A Bayesian Quality-of-Experience Model for Adaptive Streaming Videos 141:13

Table 1. Comparison of Objective QoE Models

QoE model Features Markov Temporal homogeneity Independence Functional form Training method
Mok2011 [51] τ � � � linear —
FTW [31] τ � � � exponential —
Liu2012 [46] r , τ � � � linear —
Xue2014 [83] QP, τ � � � logarithmic ML
Yin2015 [84] r , τ , ΔR � � � linear —
Spiteri2016 [69] r , τ � � � logarithmic —
Bentaleb2016 [6] p, τ � � � linear —
SQI [21] p, τ , Δp � � ✗ exponential —
P.1203 [59] r , s , τ , Δr , QP ✗ ✗ ✗ random forest ML
VideoATLAS [1] p, τ , Δp ✗ ✗ ✗ SVR ML
NARX-QoE [3] p, τ , Δp ✗ ✗ ✗ NARX ML
TV-QoE [27] p, τ ✗ ✗ ✗ HM ML
LSTM-QoE [24] p, τ , Δp ✗ ✗ ✗ LSTM ML
Bi-LSTM [22] p, τ , Δp ✗ ✗ ✗ Bi-LSTM ML
BSQI p, τ , Δp � � ✗ piecewise linear MAP

Notations: r , bitrate; τ , rebuffering duration; Δr , bitrate variation; p , presentation quality measured by state-of-the-art
video quality assessment methods; Δp , quality variation; s , spatial resolution. Abbreviations: QP, quantization
parameter; SVR, support vector machine; NARX, nonlinear auto-regressive model; HM, Hammerstein-Wiener model;
ML, maximum likelihood; MAP, maximum a posteriori.

5.1 Experimental Setup

The experiment assumes the availability of type of viewing device, detailed rebuffering statistics
(the duration and the start time of each rebuffering event), detailed adaptation statistics (the start
time of each adaptation event), and segment-level video information including bitrate, framerate,
spatial resolution, average QP, and segment-level VMAF. The scope is restricted by the available
information provided by the benchmark datasets, which will be detailed in subsequent sections.
The objective QoE models are evaluated under a comparable setting, where no competing model
has the access to the finer (frame) level information.

5.1.1 Objective QoE Models. We evaluate the performance of 15 objective QoE models for adap-
tive streaming videos. The competing algorithms are chosen to cover a diversity of design philoso-
phies, including eight classic parametric QoE models: FTW [31], Mok2011 [51], Liu2012 [46],
Xue2014 [83], Yin2015 [84], Spiteri2016 [69], Bentaleb2016 [6], and SQI [21], six state-of-the-art
learning-based QoE models: VideoATLAS [1], NARX-QoE [3], TV-QoE [27], P.1203 [59], LSTM-
QoE [24], Bi-LSTM [22], and the proposed BSQI. A description of the existing QoE models is shown
in Table 1. The implementation for VideoATLAS is obtained from the original authors, and we im-
plement the other 13 QoE models. We use mode 0 of P.1203 according to the available information
in the benchmark datasets. We have made the implementation of the models publicly available at
https://github.com/zduanmu/ksqi. For the purpose of fairness, the parameters of all models are op-
timized on the WaterlooSQoE-I [21] and the WaterlooSQoE-II [18] datasets, except for P.1203 [59]
whose training methodology is not specified in the original paper and NARX-QoE [3], TV-QoE [27],
LSTM-QoE [24], and Bi-LSTM [22]. Since the WaterlooSQoE-I [21] and the WaterlooSQoE-II [18]
datasets do not provide continuous time QoE ratings, we optimize NARX-QoE [3], TV-QoE [27],
LSTM-QoE [24], and Bi-LSTM [22] on the LIVE-NFLX-I dataset. The WaterlooSQoE-I dataset con-
tains 60 compressed videos without rebuffering, 60 compressed videos with initial buffering, and
60 compressed videos with rebuffering. The WaterlooSQoE-II dataset involves 588 video clips with
variations in compression level, spatial resolution, and frame-rate. For the models with hyper-
parameters, we randomly split the datasets into 80% training and 20% validation sets, and the
hyper-parameters with the lowest validation loss are chosen. For BSQI, we set the maximum re-
buffering duration τmax to 10, while the penalty of a rebuffering event longer than 10 can be easily

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 18, No. 3s, Article 141. Publication date: December 2022.

https://github.com/zduanmu/ksqi


141:14 Z. Duanmu et al.

obtained by extrapolating the rebuffering QoE function S. We set the quantization bin number
N = 10 for both discretized rebuffering and adaptation QoE functions. The maximum presenta-
tion quality value p = 100 is inherited from state-of-the-art VQA measures SSIMplus and VMAF.
Although we can learn an initial buffering experience matrix independent from S, it introduces
unnecessary model complexity. Instead, we discount the impact of initial buffering with 1

9 and set
the expectation to the initial quality p−1 to 80 following the recommendation by Reference [21].
We apply OSQP [70] to solve the quadratic programming problems in Equations (17) and (21). The
fidelity-flatness tradeoff parameter α = 1 is optimized on the validation set. In the subsequent
section, we will also show that BSQI performs consistently over a broad range of α .

5.1.2 Benchmark Databases. We compare BSQI with state-of-the-art objective QoE models on
four subject-rated adaptive streaming video datasets, including LIVE-NFLX-I [5], LIVE-NFLX-
II [4], WaterlooSQoE-III [20], and WaterlooSQoE-IV [14]. The LIVE-NFLX-I dataset consists of
112 streaming videos derived from 14 source content with 8 handcrafted playout patterns. The
LIVE-NFLX-II dataset consists of 420 streaming videos generated from content-adaptive encod-
ing profiles, bitrate adaptation algorithms, and network conditions. The WaterlooSQoE-III dataset
contains 450 streaming videos of 20 source contents recorded from a set of streaming experiments.
The WaterlooSQoE-IV dataset contains 1, 350 highly realistic streaming videos constructed from
5 video contents, 2 video encoders, 9 real-world network traces, 5 ABR algorithms, and 3 view-
ing devices. The streaming videos in different datasets are of diverse characteristics, since they
are generated from different source videos, encoding profiles, adaptive streaming algorithms, and
network conditions. We do not evaluate Xue2014 [83] on the LIVE-NFLX-I dataset, because their
quantization parameters (QP) and encoded representations of the streaming videos are not
publicly available. We also do not evaluate NARX-QoE [3], TV-QoE [27], LSTM-QoE [24], and
Bi-LSTM [22] on the LIVE-NFLX-I dataset, as it serves as the training set for these models.

5.1.3 Evaluation Criteria. Three criteria are employed for performance evaluation by compar-
ing MOS and objective QoE scores according to the recommendation by the video quality experts
group [74]. We adopt Pearson linear correlation coefficient (PLCC) to evaluate the prediction
accuracy, Spearman ranking-order correlation coefficient (SRCC), and Kendell rank cor-

relation coefficient (KRCC) to assess prediction monotonicity. A better objective QoE model
should have higher PLCC, SRCC, and KRCC.

5.2 Performance Comparison

Tables 2, 3, and 4 show the PLCC, SRCC, and KRCC on the benchmark datasets, respectively, where
top-two best performers are highlighted with bold-face. We have several observations. First, the
objective QoE models that employ advanced VQA models as the presentation quality measure
generally perform favorably against the conventional bitrate-based QoE models. In particular, Ben-
taleb2016 significantly outperforms Yin2015, where the only difference between them is the presen-
tation quality measure. Second, although the learning-based QoE models perform competitively
on certain test sets, they fail miserably on the other benchmark datasets. Specifically, the SRCC
performance degradation of P.1203 and VideoATLAS from one dataset (LIVE-NFLX-II) to another
(LIVE-NFLX-I) can be as large as 0.406 (from 0.821 to 0.415) and 0.597 (from 0.673 to 0.076), suggest-
ing that the learning-based models exhibit low generalizability to diverse streaming environments.
By contrast, BSQI achieves state-of-the-art performance on all benchmark datasets, thanks to the
constraints given by domain knowledge. Third, the classic QoE models with a fixed parametric
form cannot faithfully capture the subjective QoE response on streaming videos with complex
distortion patterns, evident by the low prediction accuracy on WaterlooSQoE-III. In spite of the
authors’ effort in designing functional forms to conform known HVS properties [21, 31, 83], the
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Table 2. PLCC between the Objective QoE Model Prediction and MOS on the Benchmark Datasets

QoE model LIVE-NFLX-I LIVE-NFLX-II WaterlooSQoE-III WaterlooSQoE-IV Average Weighted Average
Mok2011 [51] 0.292 0.512 0.173 0.046 0.256 0.166
FTW [31] 0.286 0.568 0.323 0.147 0.331 0.263
NARX-QoE [3] — 0.532 0.323 0.194 0.350 0.284
Xue2014 [83] — 0.788 0.387 0.166 0.447 0.328
LSTM-QoE [24] — 0.734 0.456 0.301 0.497 0.414
Bi-LSTM [22] — 0.702 0.582 0.279 0.521 0.420
Liu2012 [46] 0.524 0.732 0.609 0.282 0.537 0.438
Yin2015 [84] 0.376 0.673 0.722 0.323 0.524 0.466
TV-QoE [27] — 0.685 0.438 0.422 0.515 0.475
VideoATLAS [1] 0.100 0.644 0.385 0.675 0.451 0.586
P.1203 [59] 0.325 0.817 0.769 0.636 0.637 0.679
Bentaleb2016 [6] 0.741 0.898 0.625 0.682 0.737 0.713
Spiteri2016 [69] 0.612 0.731 0.809 0.685 0.709 0.714
SQI [21] 0.756 0.910 0.673 0.717 0.764 0.745

BSQI 0.753 0.905 0.794 0.720 0.793 0.769

Table 3. SRCC between the Objective QoE Model Prediction and MOS on the Benchmark Datasets

QoE model LIVE-NFLX-I LIVE-NFLX-II WaterlooSQoE-III WaterlooSQoE-IV Average Weighted Average
Mok2011 [51] 0.335 0.516 0.152 0.056 0.265 0.171
FTW [31] 0.325 0.549 0.184 0.082 0.285 0.197
NARX-QoE [3] — 0.433 0.315 0.132 0.293 0.226
Xue2014 [83] — 0.778 0.388 0.219 0.462 0.360
Bi-LSTM [22] — 0.685 0.593 0.255 0.511 0.405
LSTM-QoE [24] — 0.710 0.488 0.299 0.499 0.415
TV-QoE [27] — 0.635 0.422 0.395 0.484 0.446
Liu2012 [46] 0.438 0.732 0.598 0.468 0.559 0.539
Yin2015 [84] 0.441 0.686 0.741 0.541 0.602 0.601
VideoATLAS [1] 0.076 0.673 0.469 0.670 0.472 0.603
Spiteri2016 [69] 0.493 0.711 0.798 0.662 0.662 0.680
P.1203 [59] 0.415 0.821 0.797 0.668 0.675 0.708
Bentaleb2016 [6] 0.650 0.883 0.718 0.692 0.735 0.730
SQI [21] 0.644 0.906 0.690 0.690 0.735 0.732

BSQI 0.655 0.893 0.776 0.699 0.756 0.747

QoE functions can vary significantly from exponential and logarithmic functions. However, BSQI
does not assume a particular form of QoE functions and instead maximizes the mathematically
well-behaveness. In summary, we believe the performance improvement arises because (1) BSQI
is equipped with an HVS-inspired VQA measure that generalizes well on a variety of video con-
tents, encoders, and viewing devices; (2) the training procedure optimizes the quality prediction
accuracy regularized by the prior knowledge on HVS; and (3) the proposed model does not make
inaccurate a priori assumptions on the form of QoE functions.

5.3 Best-case Validation

Objective QoE model is not only used to evaluate, but also to optimize a variety of ABR algorithms
and systems. A good rule of thumb is that an optimized system is only as good as the optimization
criterion used to design it [77]. Conversely, the performance of an objective QoE model can be
assessed via synthesizing optimal streaming videos with respect to that objective QoE model fol-
lowed by visual inspection of the generated stimulus [76, 80]. Specifically, given a set of encoded
and segmented videos and a realistic network trace, we can generate an optimal streaming video
in terms of each objective QoE model. Subjective evaluation of the synthesized stimuli provides a
best-case validation of the underlining objective QoE models. A good objective QoE model should
produce perceptually better streaming videos comparing to the other schemes.
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Table 4. KRCC between the Objective QoE Model Prediction and MOS on the Benchmark Datasets

QoE model LIVE-NFLX-I LIVE-NFLX-II WaterlooSQoE-III WaterlooSQoE-IV Average Weighted Average
Mok2011 [51] 0.275 0.425 0.112 0.044 0.214 0.137
FTW [31] 0.251 0.425 0.135 0.072 0.221 0.156
NARX-QoE [3] — 0.455 0.285 0.094 0.278 0.201
Xue2014 [83] — 0.582 0.262 0.148 0.148 0.253
LSTM-QoE [24] — 0.632 0.465 0.194 0.430 0.332
Bi-LSTM [22] — 0.659 0.548 0.223 0.477 0.371
Liu2012 [46] 0.324 0.524 0.434 0.319 0.319 0.378
TV-QoE [27] — 0.589 0.395 0.346 0.443 0.402
Yin2015 [84] 0.327 0.482 0.543 0.379 0.379 0.427
VideoATLAS [1] 0.050 0.491 0.330 0.480 0.338 0.432
Spiteri2016 [69] 0.376 0.501 0.597 0.461 0.484 0.490
P.1203 [59] 0.300 0.619 0.604 0.479 0.501 0.520
Bentaleb2016 [6] 0.479 0.712 0.521 0.495 0.552 0.538
SQI [21] 0.475 0.735 0.496 0.504 0.553 0.543

BSQI 0.488 0.722 0.584 0.575 0.572 0.558

In this article, we select 12 high-quality videos of diverse complexity to constitute the test sam-
ple set. All videos have the length of 30 seconds. Using the source sequences, each video is encoded
with two types of encoding strategy including the traditional fixed bitrate encoding [54] and the
state-of-the-art per-title encoding suggested by Netflix [11]. In the fixed bitrate encoding, each
video is encoded into 10 pre-defined representations. While in the per-title encoding, the number
of compressed versions and the choice of encoding configuration depend on the characteristics of
source videos. For each video, we select the bitrate-resolution pair such that: (i) At a given bitrate,
the produced representation should have as high quality as possible; and (ii) the perceptual differ-
ence between two adjacent bitrates should fall just below one just-noticeable different (the differ-
ence in VMAF≈ 10). We segment the test sequences the encoded videos with GPAC’s MP4Box [40]
with a segment length of 2 seconds for the following reasons: First, 2-second segments are widely
used in the development of ABR algorithms [49, 84] and deployment of real-world streaming appli-
cations [23, 41], primarily due to its flexibility for stream adaption to bandwidth changes and for its
strong impact on reducing the latency of video delivery. Second, it allows us to derive test videos in
an efficient way such that they cover a diverse adaptation patterns in a limited time. We randomly
selected 12 network traces from both the 3G HSDPA dataset [65] and the 4G Belgium dataset [73]
to cover a diversity of network conditions. The HSPDA dataset contains network traces that have
significant variability and low average bandwidth, making it a strong test for the QoE models
in the complicated scenarios. Traces in the Belgium dataset exhibit higher average throughput
and lower standard deviation, which closely represents the realistic streaming environment. We
compare BSQI with three objective QoE models that have guided the development of ABR algo-
rithms, including Yin2015, Spiteri2016, and Bentaleb2016. We present results for the offline optimal
scheme [49, 69], which is computed using dynamic programming with complete future through-
put information. The dynamic programming-based method generates globally optimal streaming
videos for the considered QoE models, completely eliminating the influence of inaccurate through-
put estimation. For each source video, we randomly select a network trace and optimize the stream-
ing videos with respect to the four objective QoE models. In the end, we obtain a total of 192 stream-
ing videos generated from 24 (source videos, network traces) pairs ×2 encoding strategies × 4 ABR
algorithms. An online demonstration of the experiment is available at Reference [15].

We perform a subjective user study that adopts the pairwise comparison methodology in
which a pair of streaming videos generated from the same video contents and network traces are
presented to human viewers. The subjective experiment is set up as a normal indoor home setting
with an ordinary illumination level, with no reflecting ceiling walls and floors. A customized
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Fig. 2. Pairwise comparison matrix R. Each entry indicates the preference of the row model against the

column model. R − RT are drawn here for better visibility.

interface is created to render a pair of 1,920 × 1,080 videos side-by-side on a 27-inch 4K monitor.
The display is calibrated in accordance with the recommendations of ITU-R BT. 500 [36]. For each
video pair, the subjects are forced to choose which one has a better perceptual quality. A total
of 15 naïve subjects, including 7 males and 8 females aged between 18 and 55, participate in the
subjective experiment. Visual acuity and color vision are confirmed from each subject before the
subjective test. A training session is performed, during which, three video pairs that are different
from the videos in the testing set are presented to the subjects. We used the same methods to
generate the videos used in the training and testing sessions. Therefore, subjects knew what
distortion types would be expected before the test session, and thus learning effects are kept
minimal in the subjective experiment. For each subject, the whole study takes three hours, which
is divided into six sessions with a five-minute break in between.

The results of the subjective experiment can be summarized as a 4 × 4 matrix R, where ri, j rep-
resents the probability of QoE model i better than QoE model j. Figure 2 shows the result matrix R,
where the higher value of an entry (warmer color), the stronger the row model against the column
model. It is obvious that BSQI performs favorably to the competing models. We further aggregate
the pairwise comparison results into a global ranking via the maximum likelihood method for
multiple options [48, 62, 72]. Let μ = [μ1, μ2, μ3, μ4] ∈ R4 be the global ranking score vector; we
maximize the log-likelihood of μ

arg max
μ

∑
i, j

ri, j log(Φ(μi − μ j ))

subject to
∑

i

μi = 0,

where Φ(·) is the standard normal cumulative distribution function. The constraint
∑

i μi = 0 is
introduced to resolve the translation ambiguity. The optimization problem is convex and enjoys
efficient solvers. A larger μi means the optimal streaming video in terms of the ith model is percep-
tually better than the optimal samples generated by other QoE models in general. Figure 3 shows
the experimental results. It can be seen that BSQI significantly outperforms the standard QoE
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Fig. 3. Global ranking results of the four QoE models.

models. By taking a closer look at the trace-specific experiment results, we find that BSQI con-
sistently delivers the best performance across different experiment setups, although the improve-
ment is less significant on the 4G dataset. We notice that the small performance gain in the 4G
experiment arises from the abundant bandwidth resource, especially when the highest resolution
of streaming videos is restricted by the pairwise comparison experiment. Note that the maximum
width/height of one test stimulus can be at most half of the width/height of the display. We expect a
more significant improvement in the realistic setting where 4K, high dynamic range, and high fram-
erate video contents are involved. The results have significant implications on the development of
ABR algorithms. Specifically, state-of-the-art ABR algorithms have achieved a performance plateau
level and significant improvement has become difficult to attain. However, the enormous differ-
ence in perceptual relevance between the bitrate-based QoE model and BSQI suggests that further
improvement is attainable simply by adopting perceptually motivated optimization criterion.

5.4 Statistical Significance Test

To ascertain that the improvement of the proposed model is statistically significant, we carry out
a statistical significance analysis by following the approach introduced in Reference [67]. First,
we linearly scale MOSs in each dataset to the same perceptual scale [0, 100]. Second, a nonlinear
regression function is applied to map the objective quality scores to predict the subjective scores
independently on the four testing datasets. The prediction residuals of each QoE models from all
datasets are aggregated into a vector. We observe that the prediction residuals all have zero-mean,
and thus the model with lower variance is generally considered better than the one with higher
variance. We conduct a hypothesis testing using F-statistics. Since the number of samples exceeds
50, the Gaussian assumption of the residuals approximately hold based on the central limit the-
orem [7]. The test statistic is the ratio of variances. The null hypothesis is that the prediction
residuals from one quality model come from the same distribution and are statistically indistin-
guishable (with 95% confidence) from the residuals from another model. After comparing every
possible pair of objective models, the results are summarized in Table 6, where a symbol “1” means
the row model performs significantly better than the column model, a symbol “0” means the oppo-
site, and a symbol “-” indicates that the row and column models are statistically indistinguishable.
It can be observed that the proposed model is statistically better than all other methods on the
combination of all existing benchmark datasets.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 18, No. 3s, Article 141. Publication date: December 2022.



A Bayesian Quality-of-Experience Model for Adaptive Streaming Videos 141:19

Table 5. PLCC between the Variants of BSQI Prediction and MOS on the Benchmark Datasets

QoE model LIVE-NFLX-I LIVE-NFLX-II WaterlooSQoE-III WaterlooSQoE-IV Average Weighted Average
BSQI with bitrate 0.622 0.722 0.670 0.618 0.658 0.647
BSQI with log bitrate 0.686 0.715 0.787 0.738 0.732 0.741
BSQI with QP — 0.776 0.416 0.184 0.459 0.343
BSQI with VMAF 0.753 0.905 0.794 0.720 0.793 0.769

Table 6. Statistical Significance Matrix Based on F-statistics on the Combination of WaterlooSQoE-III,

WaterlooSQoE-IV, LIVE-NFLX-I, and LIVE-NFLX-II Datasets

FTW Mok2011 NARX-QoE Liu2012 LSTM-QoE Bi-LSTM Yin2015 TV-QoE P.1203 VideoATLAS Bentaleb2016 Spiteri2016 SQI BSQI
FTW - - 0 0 0 0 0 0 0 0 0 0 0 0

Mok2011 - - - 0 0 0 0 0 0 0 0 0 0 0
NARX-QoE 1 - - 0 0 0 0 0 0 0 0 0 0 0

Liu2012 1 1 1 - 0 0 0 0 0 0 0 0 0 0
LSTM-QoE 1 1 1 1 - - - - 0 0 0 0 0 0
Bi-LSTM 1 1 1 1 - - - - 0 0 0 0 0 0
Yin2015 1 1 1 1 - - - - 0 0 0 0 0 0
TV-QoE 1 1 1 1 - - - - 0 0 0 0 0 0
P.1203 1 1 1 1 1 1 1 1 - - - 0 0 0

VideoATLAS 1 1 1 1 1 1 1 1 - - - - 0 0
Bentaleb2016 1 1 1 1 1 1 1 1 - - - - 0 0
Spiteri2016 1 1 1 1 1 1 1 1 1 - - - 0 0

SQI 1 1 1 1 1 1 1 1 1 1 1 1 - 0
BSQI 1 1 1 1 1 1 1 1 1 1 1 1 1 -

A symbol “1” means that the performance of the row model is statistically better than that of the column model, A
symbol “0” means that the row model is statistically worse, and a symbol “-” means that the row and column models
are statistically indistinguishable.

Table 7. PLCC between the Variants of BSQI Prediction and MOS on the Benchmark Datasets

Constraint # LIVE-NFLX-I LIVE-NFLX-II WaterlooSQoE-III WaterlooSQoE-IV Average Weighted Average
None 0.731 0.903 0.663 0.681 0.745 0.720

(5) 0.743 0.902 0.788 0.718 0.788 0.766
(5)(6) 0.748 0.904 0.780 0.719 0.788 0.765

(5)(6)(7) 0.748 0.896 0.800 0.713 0.788 0.764
(5)(6)(7)(8) 0.753 0.905 0.794 0.720 0.793 0.769

(5)(6)(7)(8)(9) 0.753 0.905 0.794 0.720 0.793 0.769

(5)(6)(7)(8)(9)(10) 0.753 0.905 0.793 0.720 0.793 0.769

(5)(6)(7)(8)(9)(10)(11) 0.753 0.905 0.794 0.720 0.793 0.769

(5) 0.744 0.902 0.788 0.718 0.788 0.766
(6) 0.743 0.906 0.758 0.717 0.781 0.760
(7) 0.743 0.895 0.798 0.713 0.788 0.764
(8) 0.753 0.902 0.787 0.717 0.790 0.766
(9) 0.745 0.884 0.770 0.691 0.773 0.744
(10) 0.745 0.884 0.770 0.692 0.773 0.744
(11) 0.745 0.884 0.770 0.691 0.773 0.744
(12) 0.746 0.884 0.770 0.692 0.773 0.744

BSQI 0.753 0.905 0.794 0.720 0.793 0.769

5.5 Ablation Experiment

We conduct a series of ablation experiments to single out the core contributors of BSQI. We first
take bitrate [46, 84], logarithmic bitrate [69], and QP [83] as the video presentation quality measure
as opposed to VMAF and then train the QoE model with the proposed optimization framework.
To map the range of video presentation quality measure into the same perceptual scale [0, 100],
we apply a linear transform to the alternative measures before the training stage. From Table 5,
we observe that BSQI achieves the best performance with the adoption of state-of-the-art video
quality measure such as VMAF.

Next, we analyze the impact of the knowledge-imposed constraints on the quality prediction per-
formance. We start from a baseline model by solving the problems in Equations (17) and (21) with
no constraints and gradually increase the number of constraints. We then investigate the validity
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Fig. 4. Performance of BSQI with different number of bins.

Fig. 5. Performance of BSQI with different λ.

of each observation by imposing only one constraint in a variant model. The results are listed in
Table 7, from which the key observations are as follows: First, the performance of BSQI generally
improves with respect to the number of imposed constraints, advocating the effectiveness of prior
knowledge in regularizing the objective QoE functions. Second, while some of the constraints do
not improve the performance of BSQI by themselves, the joint model achieves state-of-the-art per-
formance. This suggests that the constraints may be complementary to each other. Third, the con-
straint (7) has drastically different impacts on the LIVE-NFLX-II dataset and the WaterlooSQoE-III
dataset, suggesting that the validity of the constraint may be influenced by other factors. A careful
investigation may further improve the performance of the proposed QoE model.

5.6 Impact of Step Sizes

In previous experiments, we set the bin sizes of video presentation quality and rebuffering duration
to 10 and 1, respectively. To investigate the impact of step sizes, we train several variants of BSQI,
where the number of bins ranges from 5 to 20. We show the experimental results in Figure 4.
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Theoretically speaking, the performance of BSQI should increase monotonically with respect to
the precision of feature representations. However, the observation does not echo our expectation,
which may be a consequence of insufficient training data and intrinsic noise in the subjective
opinion scores. Nevertheless, BSQI is generally very robust to a broad range of bin sizes.

5.7 Impact of the Weighting Parameter

The parameter λ in BSQI determines the tradeoff between fidelity and smoothness of the QoE func-
tions. Although the optimal parameter is obtained from cross-validation in previous experiments,
we also perform an experiment to investigate the impact of λ. Specifically, we train several ver-
sions of BSQI, where λ ranges from 0.01 to 10,000. The results are shown in Figure 5, from which
we can observe that the performance of BSQI is generally insensitive to λ.

6 CONCLUSIONS

We propose a novel objective QoE model for adaptive streaming videos, namely, BSQI, by regulariz-
ing a non-parametric model with known HVS properties. BSQI outperforms the existing objective
QoE models by a sizable margin over a wide range of video contents, encoding configurations, net-
work conditions, and viewing devices, which we believe arises from a perceptually motivated video
quality representation, a knowledge-constrained optimization framework, and a non-parametric
model of QoE functions.

The proposed model may be improved in many ways. First, BSQI is readily extendable when
new knowledge of HVS properties is acquired. With proper modifications of the non-parametric
functions, we may incorporate more features such as motion strength [47] into the QoE model. Sec-
ond, there may be better ways to combine the video presentation quality, rebuffering experience,
and quality adaptation experience. For example, we can jointly model all influencing factors by es-
calating the dimensionality of the non-parametric model. Third, how to integrate the QoE model
into the adaptive bitrate selection algorithm for optimal playback control is another challenging
problem that is worth further investigations.

APPENDIX

A PROOF OF CONVEXITY

Let f and д be two different functions in the theoretical QoE function spaceWQ . We aim to show
that ∀λ ∈ [0, 1], the function λf + (1−λ)д also satisfies the constraints (5)–(12). Let us consider the
constraint in Equation (5). Based on our assumption, we have f (τt = τ

1) ≥ f (τt = τ
2),∀τ 1 ≤ τ 2, t

and д(τt = τ
1) ≥ д(τt = τ

2),∀τ 1 ≤ τ 2, t . It follows that

(λf + (1 − λ)д) (τt = τ
1) = λf (τt = τ

1) + (1 − λ)д(τt = τ
1)

≥ λf (τt = τ
2) + (1 − λ)д(τt = τ

2)

= (λf + (1 − λ)д) (τt = τ
2).

(22)

Therefore, the functional space given by constraint (5) represents a convex set. Similarly, we can
show that each of the linear inequalities (6)–(12) also constitutes a convex set. It follows that the
intersection of two/more convex sets is also a convex set, which completes the proof.

REFERENCES

[1] C. G. Bampis and A. C. Bovik. 2017. Learning to predict streaming video QoE: Distortions, rebuffering and memory.
ArXiv preprint arXiv:1703.00633 (Mar. 2017).

[2] C. G Bampis, A. C. Bovik, and Z. Li. 2018. A simple prediction fusion improves data-driven full-reference video quality
assessment models. In Picture Coding Symposium. IEEE, 298–302.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 18, No. 3s, Article 141. Publication date: December 2022.



141:22 Z. Duanmu et al.

[3] C. G. Bampis, Z. Li, and A. C. Bovik. 2017. Continuous prediction of streaming video QoE using dynamic networks.
IEEE Sig. Process. Lett. 24, 7 (Jul. 2017), 1083–1087.

[4] C. G. Bampis, Z. Li, I. Katsavounidis, T. Y. Huang, C. Ekanadham, and A. C. Bovik. 2018. Towards perceptually opti-
mized end-to-end adaptive video streaming. ArXiv preprint arXiv:1808.03898 (Aug. 2018).

[5] C. G. Bampis, Z. Li, A. K. Moorthy, I. Katsavounidis, A. Aaron, and A. C. Bovik. 2017. Study of temporal effects on
subjective video quality of experience. IEEE Trans. Image Process. 26, 11 (Nov. 2017), 5217–5231.

[6] A. Bentaleb, A. C. Begen, and R. Zimmermann. 2016. SDNDASH: Improving QoE of HTTP adaptive streaming using
software defined networking. In ACM International Conference on Multimedia. ACM, 1296–1305.

[7] C. Bishop. 2006. Pattern Recognition and Machine Learning. Springer-Verlag, Berlin.
[8] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. 2011. Distributed optimization and statistical learning via the

alternating direction method of multipliers. Found. Trends® Mach. Learn. 3, 1 (July 2011), 1–122.
[9] L. Breiman. 2001. Random forests. Mach. Learn. 45, 1 (Oct. 2001), 5–32.

[10] Cisco Mobile VNI. 2017. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021 White Pa-

per. Retrieved from https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-
vni/mobile-white-paper-c11-520862.html.

[11] J. De Cock, Z. Li, M. Manohara, and A. Aaron. 2016. Complexity-based consistent-quality encoding in the cloud. In
IEEE International Conference on Image Processing. IEEE, 1484–1488.

[12] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan, and H. Zhang. 2011. Understanding the impact
of video quality on user engagement. ACM SIGCOMM Comput. Commun. Rev. 41, 4 (Aug. 2011), 362–373.

[13] Pedro Domingos. 2000. A unified bias-variance decomposition. In International Conference on Machine Learning. 231–
238.

[14] Z. Duanmu, D. Chen, Z. Li, W. Liu, Z. Wang, Y. Wang, and W. Gao. 2019. Waterloo Streaming Quality-of-Experience

Database IV. Retrieved from http://ece.uwaterloo.ca/~zduanmu/waterloosqoe4.
[15] Z. Duanmu, W. Liu, D. Chen, Z. Li, Z. Wang, Y. Wang, and W. Gao. 2019. Pairwise Comparison of Objective QoE Models

via Analysis-by-synthesis. Retrieved from http://ivc.uwaterloo.ca/research/KSQI/demo/.
[16] Z. Duanmu, W. Liu, Z. Li, D. Chen, Z. Wang, Y. Wang, and W. Gao. 2020. Assessing the quality-of-experience of

adaptive bitrate video streaming. arXiv preprint arXiv:2008.08804 (2020).
[17] Z. Duanmu, W. Liu, Z. Wang, and Z. Wang. 2021. To Appear. Quantifying visual image quality: A Bayesian view. Ann.

Rev. Vis. Sci. (Sep. 2021, To Appear).
[18] Z. Duanmu, K. Ma, and Z. Wang. 2017. Quality-of-experience of adaptive video streaming: Exploring the space of

adaptations. In ACM International Conference on Multimedia. ACM, 1752–1760.
[19] Z. Duanmu, K. Ma, and Z. Wang. 2018. Quality-of-experience for adaptive streaming videos: An expectation confir-

mation theory motivated approach. IEEE Trans. Image Process. 27, 12 (Dec. 2018), 6135–6146.
[20] Z. Duanmu, A. Rehman, and Z. Wang. 2018. A quality-of-experience database for adaptive video streaming. IEEE

Trans. Broadcast. 64, 2 (June 2018), 474–487.
[21] Z. Duanmu, K. Zeng, K. Ma, A. Rehman, and Z. Wang. 2017. A quality-of-experience index for streaming video. IEEE

J. Select. Topics Sig. Process. 11, 1 (Sep. 2017), 154–166.
[22] Tho Nguyen Duc, Chanh Minh Tran, Phan Xuan Tan, and Eiji Kamioka. 2019. Bidirectional LSTM for continuously

predicting QoE in HTTP adaptive streaming. In International Conference on Information Science and Systems. 156–160.
[23] Encoding.com. 2016. Microsoft Smooth Streaming. Retrieved from https://www.encoding.com/microsoft-smooth-

streaming/.
[24] N. Eswara, S. Ashique, A. Panchbhai, S. Chakraborty, H. P. Sethuram, K. Kuchi, A. Kumar, and S. S. Channappayya.

2020. Streaming video QoE modeling and prediction: A long short-term memory approach. IEEE Trans. Circ. Syst.

Video Technol. 30, 3 (Mar. 2020), 661–673.
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