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ABSTRACT

Image denoising has been an active research topic in the past
decades for its broad real-world applications, but surprisingly
little work has been dedicated to the quality assessment of de-
noised images. In this work, we first build a database that con-
tains noisy images at different noise levels and denoised im-
ages created by both classical and state-of-the-art denoising
algorithms. We then carry out a subjective experiment using
a multi-stimulus ranking approach to evaluate and compare
the quality of the denoised images. Data analysis shows that
there are both considerable agreement and significant varia-
tions between human subjects on their opinions of denoised
images. Our results also show that state-of-the-art objective
image quality models only moderately correlate with sub-
jective opinions, and further investigations that involve both
structural fidelity and naturalness measures are desirable in
future development of advanced objective models.

Index Terms— image quality assessment, image denois-
ing, human visual system

1. INTRODUCTION

Real-world images are subject to noise contaminations dur-
ing acquisition, transmission, and processing. Denoising of
images is highly desirable, not only to produce better percep-
tual quality, but also to help improve the performance of the
subsequent processes such as compression, segmentation, re-
sizing, and recognition. In the past decades, a large number
of image denoising algorithms have been proposed, ranging
from simple linear filtering to sophisticated methods based
on advanced statistical image models. With multiple denois-
ing algorithms available, a natural question is which one pro-
duces the best quality images. Without an appropriate quality
measure, fair comparison is impossible and further improve-
ment is aimless. Surprisingly, in the literature of image qual-
ity assessment (IQA), little work has been dedicated to the
evaluation of denoised images. In practice, researchers often
resort to common IQA measures such as peak signal-to-noise-
ratio (PSNR) and the structural similarity index (SSIM) [1] to
compare image quality and denoising algorithms, but proper
validations of these measures are lacking.

Since human eyes are the ultimate receivers in most ap-
plications, subjective test is considered the most reliable ap-

proach to evaluate the quality of denoised images. There
have been a number of well-known subjective database for
image quality assessment (IQA) [2, 3, 4, 5, 6], but unfortu-
nately, none of them contains denoised images as a category.
Consequently, direct comparison of different denoising algo-
rithms cannot be performed, and whether existing objective
IQA measures are proper quality indicators of denoised im-
ages remains an unanswered problem.

The purpose of this work is first to build a database that
contains noisy images at different noise levels and denoised
images produced by different denoising algorithms. Subjec-
tive experiment is then conducted using the database, and the
results can be used to 1) study the human behaviors in evalu-
ating denoised image quality; 2) evaluate the relative perfor-
mance of classical and state-of-the-art denoising algorithms;
and 3) test the performance of existing objective IQA algo-
rithms in predicting the subjective quality of denoised images
and explore potential ways to improve them.

2. SUBJECTIVE QUALITY ASSESSMENT

2.1. Image Database

Ten original high-quality natural images of size 512 x 512
shown in Fig. 1 are selected from the CSIQ database [4] to
cover diverse natural image content, including humans, ani-
mals, plants, natural sceneries, and man-made architectures.
Independent white Gaussian noise of three levels is added to
each image with noise standard deviation ¢,, equaling 15, 30,
and 50, respectively.

Eight denoising algorithms are selected, which include
simple operators (1) linear Gaussian filter (with the standard
deviation of the Gaussian profile equaling 11 pixels) and (2)
locally adaptive Wiener filter (MATLAB Wiener2D function
with sliding window size 3), as well as state-of-the-art de-
noising algorithms (3) BLS-GSM [7], (4) SURE-LET [8],
(5) BM3D [9], (6) K-SVD [10], (7) SADCT [11], and (8)
CSR [12]. These algorithms are chosen to cover a diverse
types of denoisers in terms of methodology and behavior.
Specifically, the linear Gaussian filter tends to over-smooth
the image, resulting in blurriness; the local adaptive Wiener
filter is likely to keep structures but does not cleanly remove
the noise, especially at high noise levels; SURE-LET often
creates non-existing structural artifacts in smooth areas; and
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Fig. 1. Original reference images in the database.

BM3D and CSR demonstrate strong noise removal capability
while keeping the image contrast, but meanwhile may remove
subtle image details as noise. In all cases, default parameter
settings are adopted without any tuning for better quality.

In the end, a total of 240 denoised images are generated,
which are divided into 30 image sets of 8 images each, where
the images in the same set are created from the same origi-
nal image at the same noise level. For better visualization, a
group of cropped and enlarged sample noisy images, together
with their corresponding denoised images are shown in Fig. 2.

2.2. Subjective Experiment

The subjective experiment was conducted on a PC with In-
tel(R) Core(TM) 17-2600 dual 3.40GHz CPU. Images were
displayed on an LCD monitor at a resolution of 2560 x 1600
pixel with Truecolor (32bit) at 60Hz. The monitor was cal-
ibrated in accordance with the recommendations of ITU-T
BT.500 [13]. The test environment was setup as a normal
indoor office workspace with ordinary illumination level. A
customized Matlab figure window was used to render the im-
ages on the screen. During the test, all 8 denoised images
in the same set are shown to the subject at the same time in
random spatial order on one computer screen at actual pixel
resolution. The order of image sets is also randomized and
thus different for each subject.

The study adopted a quality ranking strategy without
showing the reference image. A total of 20 naive observers,
mostly graduate students at the University of Waterloo, in-
cluding 12 males and 8 females aged between 22 and 30, par-
ticipated in the subjective experiment. For each image set,
the subject was asked to rank the perceptual quality of the 8
images from the best to the worst with 8 levels. The subjects
have the freedom to move their positions for better observa-

tion. All subject ratings were recorded with pen and paper
during the study. To minimize the influence of fatigue effect,
the length of a session was limited to 30 minutes.

2.3. Discussion on Subjective Experiment Method

The strategy of subjective experiment is not a trivial issue and
is worth further discussion. There could be three methods to
conduct the experiment. In a paired comparison method [14],
a pair of images are shown at the same time to the subject,
who is asked to give preference in terms of quality. It is typi-
cally an easy task for the subject, and previous studies showed
that it produces reliable results [14]. However, this approach
requires a large number of paired comparisons and is very in-
efficiency. Meanwhile it may cause the transition problem (a
judgement of A > B,B > C,C > A given by the same
subject). This may not be a major issue if the purpose is to
obtain the average preference of many subjects, but becomes
a difficult problem to handel when the behavior of an individ-
ual subject needs to be analyzed and compared with the mean
subject opinions.

In a single-stimulus test method, one image is shown to
the subject at one time and the subject is asked to provide a
single score on a quality scale. This method directly collects
absolute quality scores that are meaningful for cross-content
and cross-distortion comparisons. However, the scores col-
lected in such an experiment may be sensitive to the tasks
and instructions given to the subjects. Moreover, calibrations
across subjects are necessary to align the scores given by dif-
ferent subject.

In a multi-stimulus ranking method, multiple images are
presented to the subject together and the subjects rank the im-
ages from the lowest to the highest quality. This method has
many advantages — It is highly efficient, without any transi-



Noisy

Gaussian
Filter2

Adaptive
Wiener
Filter2

SURELET

K-SVD

BLS-GSM

SADCT

BM3D

CSR

Fig. 2. Sample denoised images (cropped and enlarged for
visibility). Left: o,, = 15; Middle: o,, = 30; Right: o,, = 50.
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Fig. 3. Mean and std of SRCC and KRCC values between in-
dividual subject and average subject rankings. The rightmost
column represents the performance of an average subject.

tion problem, and the results can be directly compared across
subjects. On the other hand, this approach is often constrained
by the physical testing conditions. For example, the screen
size may not be enough to show multiple images, and the
backlight, viewing angle and viewing distance may not be
uniform across the screen.

In reality, the best subjective testing method should be de-
termined by the nature of the experiment to achieve a com-
promise between effectiveness, accuracy, robustness and ef-
ficiency. In the current study, the multi-stimulus ranking
method fits well with our target and is thus adopted.

3. ANALYSIS AND DISCUSSION

3.1. Analysis of Subjective Data

After the subjective test, 3 outlier subjects are removed based
on the outlier removal scheme in [13], resulting in 17 valid
subjects. The final rank-order within each image set is com-
puted as the average ranking from all valid subjects. Con-
sidering these average rank-orders for all image sets as the
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Fig. 4. Mean and std of subjective rankings of individual de-
noiser across all image sets.

“ground truth”, we can observe the performance of each
individual subject by comparing their rank-order with the
“ground truth” for image set, and then average the perfor-
mance over all 30 image sets. The comparison is based on
Spearman’s rank-order correlation coefficient (SRCC) and
Kendall’s rank-order correlation coefficient (KRCC). The
mean and standard deviation of SRCC and KRCC values for
each individual subject are depicted in Fig. 3. It can be seen
that there is a quite considerable agreement between different
subjects on ranking the quality of denoised images. The aver-
age performance across all individual subjects is also given in
the rightmost column in Fig. 3. This provides a general idea
about the performance of an average subject.

The average SRCC and KRCC results of all 8 denois-
ing algorithms over all 30 image sets are summarized in
Fig. 4. It can be observed that state-of-the-art denoisers such
as BM3D [9] and CSR [12] perform significantly better than
more traditional methods. On the other hand, from the sizes
of the error bars, we observe significant variations between
subject preference of the best denoisers. It is worth mention-
ing that this only provides a rough comparison of the relative
performance of the denoising algorithms, where default pa-
rameters are used without fine tuning. Besides, computational
complexity is not a factor under consideration.

3.2. Testing Objective IQA Algorithms

Using the database, we test 12 full-reference (FR), 2 reduced-
reference (RR), and 4 no-reference (NR) objective IQA mod-
els, and the mean (i) and standard deviation (o) of SRCC
and KRCC values across all 30 image sets are given in Ta-
ble 1. Larger p values of SRCC and KRCC indicate better
consistency with subjective opinions, while smaller o values
suggest more stable performance across image sets.

Table 1. Performance of objective IQA models

QA model SRCC KRCC

m o n o
PSNR FR | 0.872 | 0.089 | 0.759 | 0.132
VSNR[16] FR | 0.817 | 0.167 | 0.723 | 0.179
WSNR[17] FR | 0.888 | 0.076 | 0.797 | 0.113
IW-PSNR[18] | FR | 0.745 | 0.210 | 0.644 | 0.216
NQM[19] FR | 0.806 | 0.138 | 0.690 | 0.167
IFC[20] FR | 0.805 | 0.167 | 0.673 | 0.174
VIF[21] FR | 0.579 | 0.306 | 0.467 | 0.261
VIFP[21] FR | 0.857 | 0.107 | 0.737 | 0.146
SSIM[1] FR | 0.847 | 0.113 | 0.721 | 0.150
MS-SSIM[22] | FR | 0.853 | 0.108 | 0.728 | 0.141
IW-SSIM[ 18] FR | 0.838 | 0.155 | 0.721 | 0.160
RFSIM[23] FR | 0.862 | 0.125 | 0.747 | 0.151
RREDI[24] RR | 0.651 | 0.211 | 0.537 | 0.198
RRIQA[25] RR | 0.029 | 0.323 | 0.000 | 0.258
AniNRIQA[26] | NR | 0.390 | 0.362 | 0.329 | 0.314
BRISQUE[27] | NR | 0.188 | 0.430 | 0.134 | 0.366
BIQI[28] NR | 0.083 | 0.351 | 0.033 | 0.295
NIQE[29] NR | 0.513 | 0.338 | 0.410 | 0.295

It can be observed that state-of-the-art RR and NR ap-
proaches do not provide adequate predictions of denoised im-
age quality. Several FR models (PSNR, WSNR, VIFP, SSIM,
MS-SSIM, IW-SSIM, RFSIM) are moderately correlated with
subjective scores, but somewhat surprisingly, these models in-
clude PSNR, which was widely criticized for its poor predic-
tion of perceptual image quality in general [15].

The above test results imply that there is significant space
for future improvement of objective models. One useful ob-
servation we have is that state-of-the-art structural fidelity
measures such as SSIM and MS-SSIM can very well predict
the loss or distortion of local structural details, but fail to cap-
ture the degradation in naturalness in the denoised images.
This suggests that more accurate objective IQA models can
be built by combining structural fidelity and naturalness mea-
sures. Our preliminary results show that by combining SSIM
with naturalness models built on statistical image models, sig-
nificantly improved performance can be achieved. These re-
sults will be refined and published in our future publications.

4. CONCLUSION

We make one of the first attempts dedicated to quality as-
sessment of denoised images. A database of denoised im-
ages was created, followed by subjective experiment and data
analysis. Our results are somewhat surprising, suggesting that
well-known objective IQA methods are quite limited in pre-
dicting the quality of denoised images. This motivates us to
develop advanced objective models, which, based on our cur-



rent understanding, should incorporate both structural fidelity
and naturalness assessment. Optimal design of future image
denoising algorithms based on novel quality assessment mea-
sures is another promising topic worth further investigation.
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