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Abstract—We introduce a new measure of image similarity
called the complex wavelet structural similarity (CW-SSIM) index
and show its applicability as a general purpose image similarity
index. The key idea behind CW-SSIM is that certain image
distortions lead to consistent phase changes in the local wavelet
coefficients, and that a consistent phase shift of the coefficients
does not change the structural content of the image. By conducting
four case studies, we have demonstrated the superiority of the
CW-SSIM index against other indices (e.g., Dice, Hausdorff
distance) commonly used for assessing the similarity of a given
pair of images. In addition, we show that the CW-SSIM index
has a number of advantages. It is robust to small rotations and
translations. It provides useful comparisons even without a pre-
processing image registration step, which is essential for other
indices. Moreover, it is computationally less expensive.

Index Terms—Complex wavelet structural similarity index
(CW-SSIM), image similarity, structural similarity (SSIM) index.

I. INTRODUCTION

I MAGE similarity indices play a crucial role in the devel-
opment and evaluation of a large number of image pro-

cessing and pattern recognition algorithms. Examples include
image coding, restoration, denoising, halftoning, segmentation,
communication, target detection, image registration, and object
recognition. An image can be viewed as a 2-D function
of intensity. A similarity index for images should account for
both intensity variations and geometric distortions. Image sim-
ilarity indices can be roughly classified according to how they
handle these two properties. One class assumes that the images
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being compared are at the same scale and are perfectly regis-
tered, and, thus, their similarity is determined from a compar-
ison of the corresponding pixel intensities. We refer to such in-
dices as “intensity-based.” Alternatively, pixel correspondences
may first be established between the images based on intensity,
then similarity determined by comparing the geometric trans-
formations between corresponding pixels. Such indices will be
referred to as “geometry-based.”

The simplest intensity-based indices are designed to compare
two binary images. For example, a typical application of such
indices is to compare the segmentation of a dense object (binary
output) to a surrogate of ground truth. These indices quantify
“spatial overlap” by applying Boolean operations to the corre-
sponding pixel intensities. The Boolean operations make them
straightforward and easy to implement. Examples include the
Dice [1], Jaccard [2], Simpson [3], Ochiai [4], Braun-Blanquet
[5], and Sokal-Sneeth [6] similarity indices. As a consequence
of their design, these indices penalize images for being different
by even just one pixel. While this property is probably desir-
able for some applications, such as where the goal is to compare
segmentations of dense objects encompassing many pixels, it is
of questionable value for other applications, such as assessing
the similarity of tracings of linear structures comprised of rela-
tively few pixels. Another commonly used intensity-based index
is the mean square error (MSE), that can be applied to both
bi-valued and grayscale images [7]. The grayscale images may
be intensity images, range images, or maps of some other scene
property. While other intensity-based indices report agreement
between two images, the MSE is a measure of disagreement.
The MSE is lower-bounded at zero (when the two images are
identical) and has no upper bound. By comparison, many inten-
sity-based indices are designed to have an upper-bound of unity
and a lower-bound of zero.

All the intensity-based indices described above are point op-
erations. In other words, the similarity evaluation at one pixel
is independent of all other pixels in the image. However, neigh-
boring image pixels are highly correlated with each other. To
take advantage of such correlations, and also to take into ac-
count properties of the human visual system (HVS), a variety of
transform-domain methods have been proposed [7]–[11]. Re-
cently, a substantially different index called the structural sim-
ilarity (SSIM) index [12] was proposed that also accounts for
spatial correlations. In SSIM, the structural information of an
image is defined as those attributes that represent the structures
of the objects in the visual scene, apart from the mean intensity
and contrast. Thus, the SSIM index compares local patterns of
pixel intensities that have been normalized for mean intensity
and contrast. Compared with HVS-based methods, SSIM has
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lower computational complexity, and superior performance in
image quality assessment tasks [12].

A common drawback of existing intensity-based indices
is their high sensitivity to geometric and scale distortions.
This becomes a big problem when there are small transla-
tions, rotations, or scale differences between the images being
compared. For example, when comparing 2-D binary edge
images it is likely that outlines representing the same objects
will have the same general shape, but when generated by dif-
ferent users and/or algorithms will have displaced coordinates.
Intensity-based indices would substantially penalize such dis-
tortions, even if they are visually negligible. Similarly, in higher
dimensions, we may be interested in comparing the geometric
structure of free-form curved surfaces in space. Thin surfaces
in 3-D space computed as boundaries/edges of 3-D objects may
be displaced relative to each other.

Indeed, comparing edge images is the primary motivating
application for geometry-based similarity indices. These in-
clude the Figure of Merit (FOM) [13], Closest Distance Metric
(CDM) [14], [15], Pixel Correspondence Metric (PCM) [15],
the Partial Hausdorff Distance Metric (PHDM) [16], and a mod-
ified version of MSE called the point-to-closest-point mean
squared error [17]. All of these indices allow for
small localization errors (user-specified) between the structures
being compared. Most of these indices operate in the spatial
domain. In essence, each pixel in one image is “matched” with
a corresponding pixel in the other image. Thus, for geom-
etry-based methods, correspondences between pairs of pixels
in the two images is not assumed, but is established before
the index is computed. This process can be computationally
expensive. Some indices (e.g., FOM, PHDM, and )
allow more than one pixel in an image to correspond to the
same pixel in the other image (many-to-one mapping). This
is sometimes undesirable, and, thus, CDM and PCM were
designed so that there is a one-to-one mapping between pixels
of the two images. It was reported that PCM produces a more
accurate matching than CDM [15]. While most geometry-based
indices account only for edge distances in 2-D images, a few
indices (e.g., PCM) also account for the intensity of edges. This
has advantages for gray-scale applications.

We propose a novel complex wavelet SSIM index
(CW-SSIM, pronounced “C-W-S-Seem”) as a general index
for image similarity measurement.1 The key idea behind
CW-SSIM is that small geometric image distortions lead to
consistent phase changes in the local wavelet coefficients, and
that a consistent phase shift of the coefficients does not change
the structural content of the image. The advantages of the
CW-SSIM approach are manifold. In some sense, it addresses
the drawbacks of both intensity-based and geometry-based
methods. First, CW-SSIM does not require explicit correspon-
dences between pixels being compared. Second, CW-SSIM
is insensitive to small geometric distortions (small rotations,
translations and small differences in scale). Third, CW-SSIM

1Preliminary results were published in Wang & Simoncelli, “Translation in-
sensitive image similarity in complex wavelet domain,” IEEE Int. Conf. Acous-
tics, Speech, and Signal Processing, 2005; Sampat et al., “Measuring intra- and
interobserver agreement in identifying and localizing structures in medical im-
ages”, IEEE Int. Conf. Image Processing, 2006; and Gupta et al., “Facial range
image matching using the complex-wavelet structural similarity metric,” IEEE
Workshop on Applications of Computer Vision, 2007.

TABLE I
TWO-BY-TWO CONTINGENCY TABLE: � IS THE NUMBER OF CORRESPONDING

PIXELS OF VALUE 1 IN BOTH IMAGES; � IS THE NUMBER OF PIXELS TAKING

VALUE 1 IN IMAGE # 1 ONLY; � IS THE NUMBER OF PIXELS TAKING VALUE

1 IN IMAGE # 2 ONLY; � IS THE NUMBER OF CORRESPONDING PIXELS THAT

ARE 0 IN BOTH IMAGES

compares the textural and structural properties of localized
regions of image pairs. This feature is lost in geometric-based
methods. We empirically demonstrate that CW-SSIM general-
izes well to a wide variety of image and pattern similarity tasks,
using four disparate case studies. These include (a) comparison
of 2-D binary edge images with simulated geometric distor-
tions, (b) comparison of human segmentations of arbitrary
shaped natural objects, (c) comparison of human segmentations
of linear structures in medical images, and (d) accurate recog-
nition of 3-D human facial surfaces using face range images.
We further demonstrate the performance of CW-SSIM relative
to the established indices that are currently employed for each
of these tasks.

II. EXISTING SIMILARITY INDICES

A. Intensity-Based Similarity Indices

The simplest similarity indices for binary images are based
on direct measurement of the degree of spatial overlap between
these images. Let represent the number of corresponding
pixels of value “1” in both binary images. The greater the
spatial overlap between objects in the two images, the greater
the value of . Let be the number of pixels taking value “1”
in image # 1 only and be the number of pixels taking value
“1” in image 2 only. Finally, is the number of corresponding
pixels that are “0” in both images. The terms , and form
a two-by-two contingency table as shown in Table I. Indices
designed to measure the spatial overlap between objects in
two binary images are computed by dividing the term by a
normalizing factor, so that the resulting values fall in the range
0 to 1. The normalizing factor is formed by a combination of
the terms , and .

A comprehensive review of intensity-based overlap indices
was published by Shi [18]. Competitive spatial-overlap-based
indices are summarized in Tables II and III. These can be divided
into two categories. The indices in Table II do not use the term
whereas the indices in Table III do. For evaluating similarity of
binary images, the measures in Table II are more intuitively ap-
pealing than those in Table III, since most users probably prefer
that a similarity measure for images be independent of the size
of the background. Of course, the indices in Table III may be
suitable for other applications where both agreement variables
( and ) are equally informative. The Dice similarity coeffi-
cient [1] is commonly used (e.g., in medical imaging studies)
to quantify the degree of overlap between objects in two binary
images (e.g., two segmentations, [19], [20]). Dice is defined as

(1)
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TABLE II
SIMILARITY INDICES FOR BINARY DATA: THESE USE THE TERMS

�� �� AND � ONLY (FROM TABLE I)

TABLE III
INDICES FOR BINARY DATA: THESE USE THE TERMS

�� �� �� AND � (FROM TABLE I)

If objects in the two binary images overlap perfectly then
, and if there is no overlap then . Although

it has been argued that a Dice value should be taken to
indicate “excellent” agreement [20], it is difficult to analyze the
absolute value of Dice since “similarity” is application depen-
dent and can be interpreted differently in different contexts.

Another index commonly used is the Jaccard index [2]. The
Jaccard and Dice indices are closely related:

. Thus, the Jaccard index does not pro-
vide independent information relative to Dice, so we do not
compute both indices in this study. Since all the indices listed in
Table II are related, some are equivalent under certain circum-
stances. For example, if then the Dice, Kulczynski2,
Braun-Blanquet, Simpson, and Ochiai indices are equivalent
and simplify to the formula . This corresponds to the
case where the total number of pixels labeled as “1” in each of
the two binary images is equal.

1) Mean Squared Error: The Mean Squared Error (MSE)
is another commonly used intensity-based index [7] that can
be applied to both binary and grayscale images. The MSE is
a popular index as it is intuitive, and computationally and an-
alytically tractable. For two images and , of size

. For binary
images, the MSE is a linear function of the Simple Matching
index [24] (Table III).

2Dice = (��Jaccard)/(Jaccard ��).
3Also called Otuska or Fager index.

B. Geometry-Based Similarity Indices

Geometry-based similarity indices compare the overall
shapes of objects regardless of the presence of small geometric
distortions between them. They can be employed, e.g., to com-
pare the shapes of the outlines/edges of objects in 2-D images,
or to compare the shapes of surfaces in three dimensions. Ge-
ometry-based indices include the Figure of Merit (FOM, [13]),
Closest Distance Metric (CDM, [14]), Pixel Correspondence
Metric (PCM, [15]), the Partial Hausdorff Distance Metric
(PHDM, [16]), and a modified version of the MSE called the
point-to-closest-point mean squared error ( , [17]).

1) Pixel Correspondence Metric (PCM): The PCM was pro-
posed by Prieto et al. [15]. Let and represent two images
that are to be compared. Let represent a particular pixel
in and represent the corresponding pixel in . For every
pixel , PCM tries to find its match within a neighborhood
of radius of the corresponding pixel . The PCM index
is computed as

(2)

where is the cost of optimal matching between
the images, denotes the localization error allowed between
the pixels and is the number of nonzero pixels in or

. (Note that in in terms of the quantities described in Table I,
). The search for the optimal match is solved

by modeling the task as a weighted matching task in bipartite
graphs [15]. In this work, the search radius was .

2) Closest Distance Metric (CDM): The CDM was proposed
by Bowyer et al. [14]. The goal is to find a possible match in
(within a certain neighborhood), for every pixel in image

. If multiple matches exist, then the edge pixel that is
closest to is selected. Finally, the number of matched and
unmatched pixels are counted. The index is computed as

(3)

where is the cost of the matching obtained using
the closest-distance condition, is the neighborhood radius used
in the matching.

3) Point-to-Closest-Point Mean Squared Error :
The is a modified version of the MSE which has
been employed for applications such as free-form object
matching and registration [17]. In order to calculate this
index, the edge points in each image are represented as
a cloud of points. For example, edge pixels in 2-D im-
ages are represented a collection of 2-D locations
and a 3-D surface is represented as a cloud of 3-D
points. For two point clouds and

, containing and -dimensional
points, respectively, first compute the directed from set

to set as: where
is the square of the Euclidean distance between point

and the point closest to it . The directed
is similarly computed and the undirected between the
two surfaces is defined as

(4)
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4) Partial Hausdorff Distance Metric (PHDM): The partial
Hausdorff distance metric is a measure of similarity between
two point sets [16]. The procedure to calculate PHDM is sim-
ilar to that of the index. For calculating the PHDM from
point set to , the distances of all points to their closest
points in are sorted in ascending order, and the distance in
the ordered set quantifies the directed partial Hausdorff distance
metric, i.e., . We can similarly cal-
culate the directed partial Hausdorff distance metric
from point set to point set . The undirected partial Hausdorff
distance between the two point sets is then defined as

(5)

The partial Hausdorff distance has the advantage of being robust
to outliers produced by noise and occlusions of objects. How-
ever, its performance depends on the selection of optimal values
for the heuristic parameters and that quantify the extent of
overlap between the two point sets.

III. STRUCTURAL SIMILARITY INDEX (SSIM)

The SSIM index was originally proposed to predict human
preferences in evaluating image quality [12], [27]. The funda-
mental principle of the structural approach is that the HVS is
highly adapted to extract structural information (the structures
of the objects) from the visual scene, and, therefore, a mea-
surement of structural similarity (or distortion) should provide a
good approximation of perceptual image quality. In particular,
SSIM attempts to discount those distortions that do not affect
the structures (local intensity patterns) of the image. The SSIM
algorithm provides surprisingly good image quality prediction
performance for a wide variety of image distortions [12], [27]. In
the spatial domain, the SSIM index between two image patches

and is defined
as

(6)

where and are two small positive constants, and

. The maximum
SSIM index value 1 is achieved if and only if and are
identical [12], [27].

IV. COMPLEX WAVELET STRUCTURAL SIMILARITY INDEX

The CW-SSIM index is an extension of the SSIM method to
the complex wavelet domain. The major drawback of the spatial
domain SSIM algorithm is that it is highly sensitive to transla-
tion, scaling, and rotation of images. This was our original mo-
tivation to extend the SSIM idea. The goal is to design a mea-
surement that is insensitive to “nonstructured” geometric image
distortions that are typically caused by nuisance factors, such
as, relative movement of the image acquisition device, rather
than actual change in the structure of the objects. The CW-SSIM
index is also inspired by the impressive pattern recognition ca-
pabilities of the HVS. In the last three decades, scientists have
found that neurons in the primary visual cortex are well-mod-
eled localized multiscale bandpass oriented filters (loosely re-

ferred to as “wavelets”) that decompose images into multiple vi-
sual channels [28]–[30]. Interestingly, some psychophysical ev-
idence suggests that the same set of visual channels may also be
used in image pattern recognition tasks [31]. Furthermore, phase
contains more structural information than magnitude in typical
natural images [32], and rigid translation of image structures
leads to consistent phase shift. In previous work, consistency
of global (Fourier) and local (wavelet) phase across scale and
space has been used to characterize image features [33]–[35].
Wavelet phase has also been employed in a number of machine
vision and image processing applications [36]–[38]. Based on
these observations, we attempt to design a complex wavelet do-
main index that 1) separates the measurement of magnitude and
phase distortions; 2) is more sensitive to phase than magnitude
distortions; and 3) is insensitive to consistent relative phase dis-
tortions.

We consider symmetric complex wavelets whose “mother
wavelets” can be written as a modulation of a low-pass filter

, where is the center frequency of the
modulated band-pass filter, and is a slowly varying and
symmetric function. The family of wavelets are dilated/con-
tracted and translated versions of the mother wavelet

(7)

where is the scale factor, and is the translation
factor. The continuous wavelet transform of a real signal
is

(8)

where and are the Fourier transforms of
and , respectively. The discrete wavelet coefficients
are sampled versions of the continuous wavelet trans-
form. In the complex wavelet transform domain, suppose

and are
two sets of coefficients extracted at the same spatial location in
the same wavelet subbands of the two images being compared,
respectively. The CW-SSIM index is defined as

(9)

Here denotes the complex conjugate of and is a small
positive constant. The purpose of the small constant K is mainly
to improve the robustness of the CW-SSIM measure when the
local signal to noise ratios are low.

To better understand the CW-SSIM index, rewrite it as a
product of two components

(10)

The first component is completely determined by the magni-
tudes of the coefficients and the maximum value 1 is achieved
if and only if for all . It is equivalent to the SSIM
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index (6) applied to the magnitudes of the coefficients (notice
that the coefficients are zero mean, due to the bandpass nature
of the wavelet filters). The second component, is fully deter-
mined by the consistency of phase changes between and .
It achieves the maximum value 1 when the phase difference be-
tween and is a constant for all . We consider this com-
ponent as a useful measure of image structural similarity based
on the beliefs that 1) the structural information of local image
features is mainly contained in the relative phase patterns of
the wavelet coefficients and 2) constant phase shift of all co-
efficients does not change the structure of the local image fea-
ture. In previous work, a similar phase correlation idea had been
employed for feature localization [33], [34], texture description
[37], and blur detection [35], but, to the best of our knowledge,
has not been used for image similarity measurement. We now
analyze the sensitivity of CW-SSIM with respect to different
types of image distortions. In all the analysis below, we assume
that corresponds to a reference image and is an altered ver-
sion of the image whose similarity to the reference image is
being evaluated.

Luminance and contrast changes can be roughly described
as a point-wise linear transform of local pixel intensities:

for all . Due to the linear and bandpass nature of the
wavelet transform, the effect in the wavelet domain is a constant
scaling of all the coefficients, i.e., for all . Substi-
tuting into (10), value 1 is obtained for the second component
and the first component is

(11)

The inequality follows since and
. This is an insensitive measure

(compared with many spatial domain methods such as the
MSE)-scaling the magnitude by a factor of 10%
only causes reduction of the CW-SSIM value from 1 to
a value . The effect is more manifest at weaker
image features (which create small coefficient magnitudes)
than stronger image features (large coefficient magnitudes).
Translation in the 2-D spatial domain can be written as:

where and represent

the horizontal and vertical shifts, respectively. For easy
analysis, first consider the 1-D case .
This corresponds to a linear phase shift in the Fourier domain

. Substituting this into (8) yields

(12)

Here the approximation is valid when the translation is
small (compared with the size of the wavelet filter) and the en-

velope of the wavelet filter is slowly varying. (The approx-
imation becomes exact when , i.e., .)
Similar result are obtained for the 2-D case. Consequently, the
discrete wavelet coefficients and (discrete samples
of and ) at the same location in the same wavelet
subband are approximately phase shifted versions of each other.
Therefore, we can write for all , and thus

(13)

Here, the accuracy of the approximation depends on the magni-
tudes of the translation as well as the shape of the envelope of
the wavelet filter.
Scaling and rotation in the 2-D spatial domain can be written as

(14)

where and are the scaling and rotation
factors, respectively. When is small, we have
and , and therefore

(15)

where and
, respectively. From (15), we see that when

is not far away from the origin, a small amount of
scaling and rotation can be locally approximated by a small
translation . Based on the same analysis as in the
small translation case described above, .

To summarize the sensitivity analysis given above, we con-
clude that the CW-SSIM index is simultaneously insensitive
to luminance change, contrast change, and geometric transla-
tion, scaling and rotation. In other words, the CW-SSIM index
is resilient to small distortions only and provides smaller sim-
ilarity index value for large distortions. From the viewpoint of
the structural similarity philosophy explained earlier, all of these
distortions belong to the category of nonstructural distortions,
e.g., caused by localization errors or by changes of lighting con-
ditions or by the movement of the image acquisition systems.
These are not due to changes in the structures of the objects in
the scene. On the other hand, CW-SSIM is sensitive to structural
distortions (e.g., JPEG compression) because they lead to signif-
icant variations of the local relative phase patterns. It is impor-
tant to note that the insensitive, rather than invariant, property
to nonstructural distortions is exactly what we want, because
it is often desirable to penalize these distortions when they are
extreme.

The CW-SSIM index has some interesting connections with
computational models that have been used to account for visual
behavior. These models include: 1) the involvement of bandpass
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visual channels in image pattern recognition tasks [31]; 2) rep-
resentation of phase information in primary visual cortex using
quadrature pairs of localized bandpass filters [39]; 3) the com-
putation of complex-valued products in visual cortex [40]; 4) the
computation of local energy (using sums of squared responses
of quadrature-pair filters) by complex cells in visual cortex [41];
and 5) divisive normalization of filter responses (using summed
energy of neighboring filter responses) in both visual and audi-
tory neurons [42], [43]. All of these suggest that the computation
involved in the CW-SSIM measure is biologically plausible.

To implement the CW-SSIM index for the comparison of
images, we first decompose the images using a complex ver-
sion [37] of a 6-scale, 16-orientation steerable pyramid decom-
position [44], which is a type of redundant wavelet transform
that avoids aliasing in subbands. The CW-SSIM indices are
then computed locally using a sliding 7 7 window that moves
across each wavelet subband. For parameter (9), in our ex-
periments we found that small perturbations do not result in no-
ticeable performance degradations and use for all the
results reported in this paper. More careful tuning of this pa-
rameter is needed in future studies especially in the presence of
noise. Finally, the resulting CW-SSIM index map is combined
into a scalar similarity measure using a weighted summation.
The weighting function is obtained using a Gaussian profile with
a standard deviation equaling a quarter of the image size at finest
level of pyramid decomposition.

V. CASE STUDY I: SIMULATED IMAGES

A. Introduction

The goal of this case study was to study the effect of simple
transformations on similarity indices. For this task, a simulated
image was created [Fig. 1(a), solid lines] and variants of this
image were created by rotation, translation, and adjusting the
edge thickness. The simulated image was compared to each of
the rotated and translated images and similarity indices were
computed. In this case study, the CW-SSIM index was com-
pared against an intensity-based index (Dice) and a geometry-
based index (PCM). We only selected one intensity-based index,
since the intensity-based indices (Table II) are all closely re-
lated, and several are identical in the simulations for this case
study since .

B. Methods

Three tests were conducted in this study. In the first test, the
test image was rotated from 0 to 4 degrees in increments of 0.4
degrees and was compared to each of the rotated images. Trans-
lation was not applied to these images and the edge width was
fixed at one pixel. In the second test, the simulated image was
translated by shifting in the horizontal or vertical directions by a
few pixels. Let and denote the amount of spatial trans-
lation applied in the horizontal and vertical directions. The Eu-

clidean distance is . Ten spatial translations
of 1 to 7 units (Euclidean distance) were applied to the simulated
image and for each translation, it was compared to the translated
image using all of the three indices described in Section V-A.
Rotation was not applied to these images and the edge width
was fixed at one pixel. In the third test, we analyzed the effect

of the width of edges in combination with rotations and trans-
lations. For this, the line segments in the simulated image were
dilated once and twice with a 3-by-3 square window. The two
dilated images are shown (with solid lines) in Fig. 1(b) and (c),
respectively. The dilated images were also rotated and translated
as described previously and each pair of images were compared
using the three indices described in Section V-A.

C. Results

1) Effect of Rotation: Fig. 1(d) shows the effect of rotation
on the Dice, PCM and CW-SSIM indices. The values of the
Dice index decrease drastically as the amount of rotation is in-
creased (this is true for other intensity-based indices as well). In
this simulation, the value of the Dice index is zero for any ro-
tation greater than 1.6 degrees. For example, the reported simi-
larity between the original image and a copy rotated 2 degrees
[Fig. 1(d)] is the same as that between the original image and a
copy that is rotated 4 degrees [Fig. 1(d)]. In comparison, PCM
has a greater robustness than Dice does to rotational distortions.
PCM is 0.67 for 2 degrees of rotation and 0.13 for 4 degrees of
rotation [Fig. 1(d)]. Similarly, note that the CW-SSIM is more
robust to rotational distortions than PCM. The CW-SSIM value
is the same for 2 or 4 degrees of rotations [Fig. 1(d)]. That is,
the response of the CW-SSIM index is invariant for all rotations
while this is not case for the Dice and PCM indices.

2) Effect of Translation: Fig. 1(j) shows the effect of transla-
tion on the Dice, PCM and CW-SSIM indices. The Dice index
decreases significantly as the amount of translation is increased
[Fig. 1(j)]. In this simulation, the value of both indices is zero
for any translation greater than 3 units (Euclidean distance). For
example, the reported similarity between the original image and
a copy translated by approximately 5 units [Fig. 1(j)] is the same
as that between the original image and a copy that is trans-
lated by approximately 7 units [Fig. 1(j)]. Intensity-based in-
dices cannot quantify such a difference in similarity. As was
the case for rotational distortions, PCM has a greater robust-
ness than the Dice index to translational distortions. For ex-
ample, PCM is 0.43 for the first case and 0.22 for the second
case [Fig. 1(j)]. The CW-SSIM is more robust to translational
distortions than PCM [Fig. 1(j)]. Finally note that the response
of the CW-SSIM index is invariant for all translations while this
is not case for the Dice and PCM indices.

3) Effect of Width of Edges: The performance of the indices
for three different edge widths and various rotations are de-
picted in Fig. 1(d), (e), and (f). Similarly, the performance of
the indices for three different edge widths and various transla-
tions are depicted in Fig. 1(j), (k), and (l). The behavior of the
Dice and PCM indices as a function of rotation or translation
depends on the width used to represent the segmentations. For
smaller values of the edge-width, the responses of both Dice
and PCM are nonlinear. By comparison, for larger values of the
edge-width, the responses of both Dice and PCM appear linear.
In contrast, the response of the CW-SSIM index is the same for
all widths and it is invariant to the rotations and translations for
all widths.

4) Combined Effect Rotations, Translations and Width of
Edges on CW-SSIM Index: The combined effect of various
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Fig. 1. Effects of rotation and edge width on the similarity indices: The original image was rotated from 0 to 4 degrees in increments of 0.4 degrees. The locations
of the lines of the image that was obtained after applying a rotation are shown with dotted lines [for example, in (a), the original image is rotated by 4 degrees].
The original image was compared to each rotated image, and for each pair of images the similarity indices were computed. To study the effect of edge width,
the image was dilated and the indices were recalculated; (b) and (c) show the simulated images after dilation by factors of 1 and 2, respectively, and (e) and (f)
show the similarity indices as a function of rotation. Effects of translation and edge width on the similarity indices: The original image was translated in the x
and y directions by different amounts. The locations of the lines of the image that was obtained after applying spatial translations are shown with dotted lines [for
example, in (g), a translation of 7 pixels to the right and 2 pixels to the bottom is applied]. The original image was compared to each translated image and for each
pair of images the similarity indices were computed. To study the effect of edge width on the indices, the image was dilated and the indices recalculated; (h) and
(i) show the simulated images after dilation by factors of 1 and 2, respectively, and (k) and (l) show the similarity indices as a function of translation.

rotations and translations on the CW-SSIM index were also
analyzed. For this purpose, rotations in the range 0 to 20
degrees and translations in the range 0 to 21 units (Euclidean
distance) were simultaneously applied to create a transformed
image. The original image was compared to each transformed
image, and for each pair of images the CW-SSIM index was
computed. To study the effect of edge width, the image was
dilated by factors of 1 and 2 and the CW-SSIM indices were
recalculated. The results are shown in Fig. 2(d), (e), and (f) in

which each bar represents the CW-SSIM value for a particular
pair of rotation and translation factors. Note that for all edge
widths the CW-SSIM index is robust to the combined effects
of rotation and translation.

5) Effect of Parameters of the Steerable Pyramid on the
CW-SSIM Index: The two main adjustable parameters of the
steerable pyramid used in the computation of the CW-SSIM
index are: (a) the number of levels of decomposition (level)
and (b) the number of orientations (ori). The effect of dif-
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Fig. 2. Combined effects of rotation, translation on the CW-SSIM index: Rotations in the range 0 to 20 degrees and translations in the range 0 to 21 units (Euclidean
distance) were simultaneously applied to create a transformed image. The original image was compared to each transformed image, and for each pair of images the
CW-SSIM index was computed. To study the effect of edge width, the image was dilated by factors of 1 and 2 and the CW-SSIM indices were recalculated. The
results are shown in (d), (e), and (f) in which each bar represents the CW-SSIM value for a particular pair of rotation and translation factors. Note that for all edge
widths the CW-SSIM index is robust to the combined effects of rotation and translation. The effect of parameters of the steerable pyramid on the CW-SSIM index:
The steerable pyramid used in the computation of the CW-SSIM index has two main parameters: (a) the number of levels of decomposition (level) and (b) the
number of orientations (ori). The effect of different values for the level and ori parameters was analyzed. In (d), (e), and (f), the parameters are: ����� � �� ��� � 	�.
In (g), (h), and (i), the parameters are: ����� � 
� ��� � 	�. In (j), (k), and (l), the parameters are: ����� � �� ��� � 	�. The CW-SSIM index obtained with
����� � �� ��� � 	� is the most sensitive to translations and rotations. The CW-SSIM index computed with multiple levels of decomposition shows the most
robustness to translations and rotations. (d) ����� � �� ��� � 	����
�� � 	 (e) ����� � �� ��� � 	����
�� � �, (f) ����� � �� ��� � 	����
�� � �,
(g) ����� � 
� ��� � 	����
�� � 	, (h) ����� � 
� ��� � 	����
�� � �, (i) ����� � 
� ��� � 	����
�� � �, (j) ����� � �� ��� � 	����
�� � 	,
(k)����� � �� ��� � 	����
�� � �, (l)����� � �� ��� � 	����
�� � �.

ferent values for the level and ori parameters was analyzed.
In Fig. 2(d)–(f), the parameters are: .
In Fig. 2(g)–(i), the parameters are: . In
Fig. 2(j)–(l), the parameters are: . The
CW-SSIM index obtained with is the most

sensitive to translations and rotations. Note that, as expected the
CW-SSIM index computed with multiple levels of decompo-
sition shows the most robustness to translations and rotations.
Note that the and are used to
compute the CW-SSIM index for all experiments.
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VI. CASE STUDY II: INTEROBSERVER SIMILARITY OF

SEGMENTED OBJECTS, CONTEXT BASED

A. Introduction

In this case study, we quantify the similarity of multiple seg-
mentations (generated by different human observers), of a given
image. The segmentations are obtained from the publicly avail-
able Berkeley Segmentation Data-set and Benchmark (BSDB)
[45]. The segmentations are “context-based” and the guidelines
provided to the observers were as follows: “Divide each image
into pieces, where each piece represents a distinguished thing
in the image. It is important that all of the pieces have approxi-
mately equal importance. The number of things in each image is
up to you. Something between 2 and 20 should be reasonable for
any of our images” [45]. This database was created as a ground
truth for fair comparisons of boundary detection and image seg-
mentation algorithms and is an ideal test set for comparing the
performance of image similarity indices.

B. Methods

The BSDB contains segmentations made on 300 grayscale
and color images. These images are divided into a training set
of 200 images and a test set of 100 images. In this study, we used
all segmentations of the 100 grayscale images from the test set.
Fig. 3 shows a few of the images and the segmentations made
by the observers. Various experiments were carried out with the
MSE, , PHDM, and CW-SSIM indices. First, all seg-
mentations of a given image were compared to each other and
an average similarity measure was calculated. This procedure
was repeated for all 100 images and histograms for each sim-
ilarity index were computed. Second, each segmentation of an
image was compared to every segmentation of another image
and the average similarity was analyzed for each pair of dif-
ferent images. A total of 3179 pairs of images were compared
and the histograms of the similarity indices were computed. To
quantify the discriminability of the similarity indices, the fol-
lowing procedure was adopted. For each pair of distributions, a
Receiver Operating Characteristic (ROC) curve was produced
and the area under the curve (AUC) was used to measure the
overlap between the two distributions of similarity values.

Finally, the BSDB also provides a measure of how much the
various human observers agreed with each other. Each ground
truth human segmentation was compared to the segmentations
of the other observers in terms of precision, recall, and F-mea-
sure for each image [46]. Larger values of the F-measure de-
note greater agreement among the human observers [46]. The
relationship between the F-measure and the various indices was
studied with linear regression analysis.

C. Results

Fig. 3(b), (c), and (g) shows the segmentations made by three
observers, on the image shown in Fig. 3(a). Notice the remark-
able similarity between the segmentations in Fig. 3(b) and (c).
This is reflected by a CW-SSIM index of 0.99 for this pair of
images [Fig. 3(d)]. By comparison, one can see a number of
differences between the segmentations Fig. 3(b) and (g) and the
CW-SSIM index for this pair is 0.69. The and PHDM

indices also capture this observation; however, the MSE index
does not reflect this finding [Fig. 3(d) and (h)].

Fig. 3(j), (k), and (o) are the segmentations made by three
observers, on the image shown in Fig. 3(i). The correspondence
between the segmentations in Fig. 3(j) and (k) is more than that
between the segmentations in Fig. 3(j) and (o) and this is also
seen with the CW-SSIM, and PHDM indices. In addi-
tion, the segmentations in Fig. 3(b) and (c) show more similarity
to each other than the pair of segmentations in Fig. 3(j) and (k).
The CW-SSIM index for the former case is 0.99 [Fig. 3(d)],
whereas it is 0.90 [Fig. 3(l)] for the latter.

Finally, note that the agreement between the segmentations
in Fig. 3(j) and (k) is similar to that for
the segmentations in Fig. 3(r) and (s) .
However, the and the PHDM values are quite different
for the two cases [see Fig. 3(l) and (t)]. This would make it dif-
ficult to assign a “label” (e.g., high or medium similarity) to
particular values of the and PHDM indices since the
range of these indices is dependent on the contents of the im-
ages being compared. By comparison, by conducting human
observer studies, it could be more feasible to create an “inter-
pretation guideline” for the CW-SSIM index.

Similarity between segmentations of same and different im-
ages were reported and the maximum, median, and minimum
values of the various indices are reported in Table IV. Fig. 4
shows the two histograms (for each index), when the simi-
larity between segmentations of the same and different images
are evaluated. One can see that the two histograms for the
CW-SSIM index have the smallest overlap [Fig. 4(a)] whereas
the two histograms for the MSE index [Fig. 4(g)] seem to have
the largest overlap. This observation is confirmed by using the
area under the ROC curve to quantify the overlap. The AUC
value for the CW-SSIM, , PHDM and MSE indices are
0.999, 0.978, 0.975, and 0.808, respectively. The results of the
regression analysis are presented in Fig. 4(b), (d), (f), and (h).
We observer a linear relationship between the F-measure and
the CW-SSIM and PHDM indices.

VII. CASE STUDY III: SIMILARITY OF SEGMENTATIONS OF

LINEAR STRUCTURES; SPICULES ON MAMMOGRAPHY

A. Introduction

Accurate image segmentation is critical for the detection and
classification of objects-of-interest in medical images. Image
segmentations may be generated by human observers or by
computer algorithms. A segmentation is represented as a binary
image where all pixels on and inside the indicated boundary
are assigned a value of one, and zero otherwise. For dense ob-
jects, e.g., tumors, the segmentation may contain many pixels.
By comparison, for linear structures, e.g., blood-vessels, the
segmentation can be sparse. Similarly, small dense objects are
represented by a few pixels (sparse segmentations). In medical
imaging the segmentation of dense objects is encountered more
frequently and so many indices have been developed for the
comparison of segmentations of dense objects. However, few
indices have been proposed for or tested on segmentations of
linear structures in medical images.
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Fig. 3. Segmentations created by observers for a given gray-scale image [45]. The first column shows the original grayscale images and a pair of segmentations
corresponding to that images are displayed in columns two and three. Column four shows the CW-SSIM, MSE, ��� and PHDM indices for each pair of
segmentations.

B. Methods

Similarity indices were compared on tracings of linear objects
on mammograms made by two experienced radiologists. The
images for this study were obtained from the Digital Database
for Screening Mammography (DDSM) [47], the largest pub-
licly available data-set of digitized mammograms. Two radiolo-
gists (reader1 and reader2) traced all linear structures of interest
(spiculations) on a set of 12 spiculated mass images. To compute
an estimate of the intraobserver agreement, reader1 repeated the

process. The analysis was conducted on regions-of-interest con-
taining the spiculated masses using the ROI Manager plugin of
NIH ImageJ.

C. Results

Quantitative measures of both the intra- and interobserver
agreement were computed using the Dice, PCM, and CW-SSIM
indices. Fig. 5 shows the outlines of spicules created by two ra-
diologists (reader1 and reader2) on four spiculated masses. The
first column shows the original images and the first and second
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Fig. 4. (a), (c), (e), (g) Two histograms when segmentations of same and different images are compared. The overlap between each pair of histograms is mea-
sured by the area under the ROC curve (AUC). The CW-SSIM index shows the largest AUC value, and, thus, the greatest discrimination between these groups.
(b), (d), (f), (h) Results of the regression analysis. We observer a linear relationship between the F-measure (of human observations) and the CW-SSIM and PHDM
indices. (a) CW-SSIM,��� � �����, (b) CW-SSIM versus F-measure, (c)��	 ���� � ���
� (d)��	 versus F-measure, (e) PHDM,��� � ���
�,
(f) PHDM versus F-measure, (g) MSE, ��� � �����, (h) MSE versus F-measure.

sets of outlines made by reader1 are displayed in columns two
and three. The outlines made by reader2 are shown in the fourth
column. The values of the Dice, PCM, and CW-SSIM indices,
for the intra- and interobserver measurements are shown in
the fifth column. By visual inspection, it is apparent that there
is substantial intraobserver agreement in the segmentations
of some images [e.g., Fig. 5(a)].However, low values of the
Dice index are obtained [e.g., for Fig. 5(a)]; note

that a Dice value of is considered to denote “excellent”
agreement [20]. In contrast, the PCM and CW-SSIM values
are much higher for these images [e.g., and

, for Fig. 5(a)]. On the other hand, the
relative values of all three indices are generally consistent with
subjective assessments. For example, by visual inspection, we
note that the intraobserver agreement in the segmentations of
the spiculated mass shown in Fig. 5(a) is more than that for the
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TABLE IV
CW-SSIM, MSE, ��� , AND PHDM INDICES WERE USED TO COMPARE

THE SEGMENTATIONS OF THE SAME IMAGES AND SEGMENTATIONS OF

DIFFERENT IMAGES

spiculated mass in Fig. 5(p). This difference is reflected by all
indices: versus 0.09, versus 0.20,
and vs 0.62.

Similar trends are observed for the measurements of the inter-
observer agreement. For example, the interobserver agreement
for the spiculated mass shown in Fig. 5(k) is only 0.10 by Dice.
In comparison, PCM (0.26) and CW-SSIM (0.66) indicate more
substantial agreement. As was the case for intraobserver agree-
ment, all indices generally captured the trends in the interob-
server agreement expected from visual inspection. For example,
we can see that the interobserver agreement in the segmentations
of the spiculated mass shown in Fig. 5(a) is more than that for the
spiculated mass in Fig. 5(f). All three indices reflect this obser-
vation: versus 0.07, versus 0.16, and

versus 0.58. Finally, one would expect that
the intraobserver agreement should be higher than the interob-
server agreement. All of the indices exhibit this trend for most
of the segmentation pairs. The PCM values are greater for in-
traobserver agreement than for the corresponding interobserver
agreement for 8 out of the 12 mammography cases, and the Dice
and CW-SSIM values are greater for intraobserver agreement
for 9 out of the 12 of spiculated masses.

VIII. CASE STUDY IV: 3-D FACE RECOGNITION

A. Introduction

A number of applications including access control, surveil-
lance, criminal justice, and human computer interaction require
automatic human identification. One of the most widely ana-
lyzed biometric methods for human identification is face recog-
nition. However, it is difficult to develop robust, fully auto-
mated face recognition systems. For example, despite consid-
erable progress in 2-D face recognition systems they are inade-
quate for robust face recognition. Their performance is reported
to decrease significantly with varying facial pose, illumination
and expression [48]. 3-D face recognition systems are less sen-
sitive to changes in ambient illumination conditions than 2-D
systems [49] and the pose of 3-D face models can also be easily
corrected. Hence, considerable effort is now being directed to-
ward 3-D face recognition.

In the computer vision literature, a 3-D object that cannot be
recognized as either planar or naturally quadric is referred to

as a “free form” object, e.g., the surface of the human face.
One class of existing techniques for 3-D face recognition is
based on the direct comparison of facial surfaces. The surface
of a human face is represented as a point cloud and two fa-
cial surfaces are compared using the geometry-based indices of

[49]–[51], [52] or PDHM [53]–[56]. These indices re-
quire that correspondences between pairs points on the two sur-
faces be established before the indices are computed. An alter-
native existing approach to facial surface matching is to compare
range images generated from 3-D facial models using the inten-
sity-based MSE [57]–[59]. A range image, also referred to as a
2.5D surface or depth map, consists of points on a regular
rectangular grid. Each point is associated with a value or
depth of the point on the surface of the face, which is closest to
an 3-D acquisition device. 3-D face recognition techniques that
employ the MSE, however, are very sensitive to misalignment
errors between facial range images. For such 3-D face recog-
nition systems, the similarity/dissimilarity score between an in-
coming “probe” face and each face in a “gallery,” is employed
to index the gallery face closest in appearance to the probe face.
Hence, the performance of 3-D face recognition systems that
employ 3-D facial surface matching depends on the accuracy
and robustness of the index employed. In this case study, we
summarize our recent work on the use of the CW-SSIM index
for facial surface matching [60].

B. Methods

Three-dimensional face models for the study were acquired
by an MU-2 stereo imaging system manufactured by 3Q Tech-
nologies, Ltd. (Atlanta, GA). The data contained 360 models of
12 subjects. It was partitioned into a gallery set containing one
image each of the 12 subjects in a neutral expression. The probe
set contained 348 images of the gallery subjects in a neutral or
an arbitrary expression. The probe set contained 29 range im-
ages of each subject. All 3-D face models were transformed to a
frontal pose by iteratively aligning them to a reference model
in a canonical frontal upright pose. Range images were con-
structed by orthographic projection of the 3-D models onto a
regularly spaced rectangular grid. The range images were of size
751 501 pixels with a resolution of 0.32 mm in the , and
directions. Range images were median filtered to remove spike
noise, and interpolated to remove large holes. Fig. 6 presents
example range images after applying these preprocessing steps.

We implemented four 3-D face recognition algorithms
based on facial surface matching. The first one employed the
CW-SSIM index to obtain similarity scores between pairs
of facial range images. These similarity scores were then
converted into distance values. For the second algorithm,
distances between pairs of range images were obtained using
the MSE index. For the third and the fourth algorithm, 3-D
faces were regarded as point clouds and distances between
them were quantified by means of the and PHDM with

, respectively. Verification performance of the
four 3-D face recognition algorithms was evaluated using the re-
ceiver operating characteristic (ROC) methodology. The equal
error rates (EER) and the areas under the ROC curves (AUC)
of all algorithms were reported. Identification performance was
evaluated by means of a cumulative match characteristic (CMC)
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Fig. 5. Intra- and interobserver agreement: This figure shows the outlines of spicules created by two radiologists (reader1 and reader2) for four spiculated masses.
The first column shows the original images and the first and second sets of outlines made by reader1 are displayed in columns two and three. The outlines made by
reader2 are shown in the fourth column. The values of the Dice, PCM, and CW-SSIM indices, for the intra- and interobserver measurements are shown in the fifth
column. (a), (b) reader1—(1st), (c) reader1—(2nd), (d) reader2—(1st), (e), (f), (g) reader1—(1st), (h) reader1—(2nd), (i) reader2—(1st), (j), (k), (l) reader1—(1st),
(m) reader1—(2nd), (n) reader2—(1st), (o), (p), (q) reader1—(1st), (r) reader1—(2nd), (s) reader2—(1st), (t).

curve and the rank 1 recognition rates (RR) were observed.
The 95% confidence intervals for each observed quantity was
obtained by applying bootstrap sampling. The performance of
each algorithm was evaluated separately for the entire probe
set, for neutral probes only and for expressive probes only.

C. Results

The equal error rates, AUC values and rank 1 recognition
rates of the four 3-D face recognition algorithms are presented
in Table V. The CMC curves are presented in Fig. 7(a) and the
ROC curves of the four 3-D face recognition algorithms are
presented in Fig. 7(b). The proposed algorithm that employed
CW-SSIM for matching 3-D facial range images, performed
significantly better at identifying human subjects than the al-
gorithms based on the other indices. It had a rank 1

% for all probe images. Among the

other 3-D facial surface matching techniques that were imple-
mented, the overall identification performance of the algorithm
that used MSE was slightly better than the one that used the
PHDM [Fig. 7(a)]. The algorithm that employed the
index for surface matching performed the worst (rank 1

% for all probes).
Analogous to the identification performance, the verification

performance of the algorithm based on the CW-SSIM index
was superior to all the other algorithms with %

for all probes [Fig. 7(b)]. AUC values of
the CW-SSIM algorithm for both neutral and expressive probes
was significantly lower than the AUC values for the other al-
gorithms. The performances of algorithms that employed MSE
and PHDM, respectively were not statistically significantly
different, with % and %, respectively,
for all probes. Their AUC values for all probes were also not
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Fig. 6. Examples of the facial range images that were employed in case study
IV. The images were preprocessed to remove noise and holes. The two images
in the top row are of the same subject.

Fig. 7. (a) CMC curves for the identification performance of 3-D face recog-
nition algorithms that matched pairs of facial surfaces using CW-SSIM, MSE,
��� , and PHDM. (b) ROC curves depicting the verification performance
of these algorithms.

statistically significantly different (Table V). The highest EER
of 19.5% for all probe images was observed for the algorithm
that employed . The CW-SSIM-based-algorithm for
matching 3-D facial range images performed significantly
better than existing algorithms based on the MSE, ,
and PHDM.

IX. DISCUSSION

We have compared indices for assessing the similarity of
a given pair of images. The indices include intensity-based
measures such as Dice and geometry-based approaches such
as the Hausdorff distance. We have introduced the use of the
CW-SSIM index to quantify image similarity and we have
shown its applicability as a general purpose image similarity
index for various image processing tasks. Towards this goal,
the CW-SSIM index and the other indices were tested in four
case studies. In the first case study, we applied the indices
to simulated data and simulations were conducted to study
the effect of small geometric distortions such as rotation and
translation. This case study showed that the CW-SSIM index
is robust to rotations, translations and to various combinations
of these transformations.

In the second case study, the indices were applied to quantify
the similarity of manual segmentations obtained from a pub-
licly available database. The performance of the similarity in-
dices was quantified with ROC analysis and it was shown that
CW-SSIM provided the greatest discriminability. It is clear that
when human observers provide ground truth segmentations, the
consensus between their segmentations can vary and the F-mea-
sure has been used to quantify this agreement. It was encour-
aging to see a strong linear relationship between the CW-SSIM
index and this measure of concordance.

The similarity indices were also compared for the task of
quantifying intra- and interobserver agreement of segmenta-
tions of linear structures on mammograms. The Dice, PCM,
and CW-SSIM indices were applied to mammography images
in which observers traced spicules on spiculated masses. Both
the intra- and interobserver agreement was quantified. One
would expect that the intraobserver agreement should be higher
than the interobserver agreement. All of the indices exhibit this
trend for most of the segmentation pairs. However, as with the
simulated data, the values of the Dice index for the intra- and
interobserver agreement are low relative to the reported cutoff
of 0.7 for “excellent” agreement.

In the final case study, we summarized a novel 3-D face
recognition algorithm based on range image matching using the
CW-SSIM index. We demonstrated that the proposed algorithm
is more accurate and robust than some existing face recognition
algorithms. In this work CW-SSIM was applied for quantifying
similarity between 3-D facial surface but the techniques are
not limited to face recognition. The study points towards the
potential applicability of the CW-SSIM index to other 3-D
pattern matching tasks as well. One limitation of the technique
is that in its current form, the index can only be applied to range
images. For matching 3-D objects, range images of coarsely
registered objects would have to be created.

The success of the CW-SSIM index in these case studies can
be attributed in part to the fact that CW-SSIM is robust to small
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TABLE V
OBSERVED RANK 1 RR, EER, AND AUC VALUES AND THEIR 0.025 AND 0.975 QUANTILES FOR THE VERIFICATION AND IDENTIFICATION PERFORMANCE OF

THE VARIOUS 3-D FACE RECOGNITION ALGORITHMS THAT COMPUTE SIMILARITY BETWEEN PAIRS OF 3-D FACIAL SURFACES USING CW-SSIM, MSE,
��� , AND PDHM

geometric distortions including small translations and rotations.
Furthermore, the index is tailored to capture the local struc-
ture about a pixel irrespective of the local contrast or luminance
values. Second, since CW-SSIM is robust to small image trans-
lations and rotations, it does not require registration as a pre-
processing step. For example, some existing 3-D facial surface
matching techniques [51], [56], require that every time a probe
is presented to the gallery, it be finely registered to every model
in the gallery before a measure of similarity can be reliably
computed. For both 2-D and 3-D applications the CW-SSIM
index has computational advantages. For example, computing
CW-SSIM between a pair of range images/3-D models is less
expensive than computing either the or the PHDM be-
tween a pair 3-D models. Similarly, for 2-D applications the
computational requirements of the PCM index are significantly
higher and a search neighborhood has to be specified upfront.

Another complex wavelet domain image similarity method is
the index proposed by Lee et al. [61], which employs the Dual-
Tree Wavelet transform. We believe that the steerable pyramid
used in our approach has useful rotation-invariance property
and is more flexible in adjusting the number of orientations.
Gabor wavelets could also be used as an alternative. However,
the Gabor wavelets are computationally more expensive and less
convenient than the steerable pyramid.

In this paper, we propose the use of CW-SSIM as a general
purpose similarity index. The generalizability is the key feature
and, to us, the most interesting merit of our approach. We have
demonstrated that the proposed CW-SSIM index, which does
not use any knowledge about these specific types of distortions
(by using low level image features, i.e., complex wavelet coeffi-
cient patterns), can work in a variety of applications. There are
many other applications where CW-SSIM can be conveniently
applied, such as: (a) evaluation of image compression and de-
noising algorithms; (b) comparing image segmentation results;
(c) image registration; and (d) detecting and tracking objects in
video.

Another application where image similarity plays an essen-
tial role is content-based image retrieval (CBIR). In CBIR,
given a query image one is interested in finding an image
from an existing database that most closely matches the query

image. In most of the modern work in CBIR, feature vectors
are extracted from the images and the “image similarity” is
quantified by evaluating the similarity of the feature vectors.
Typically features invariant to rotation, translation are designed
[62]. While CW-SSIM could be used to directly compare the
query image to database images, such comparisons would
require much higher computational power than comparisons in
low-dimensional feature vector spaces. Thus, we do not suggest
that the current CW-SSIM method should be applied for CBIR
without significant modifications. But for evaluating various
image processing techniques (e.g., image segmentations, image
denoising) CW-SSIM is an ideal image similarity index.

Assessing the similarity of a given pair of images is a
challenging problem. While it is easy to define a multitude of
potential indices, it is difficult to evaluate their performance
since there is not a “ground truth” for the concept of similarity.
Through careful simulations and demonstrations with real data,
such as we have presented in this study, one can provide some
insight into the relative strengths and weakness of different
similarity indices. However, how to best interpret the values
computed for a given similarity index remains elusive. In
contrast, evaluation scales have been developed for indices for
assessing similarity or agreement in other tasks. For example,
there are established scales for interpreting the intraclass cor-
relation coefficient (ICC), which is used to assess observer
agreement in measurement studies (e.g., compare observers’
measurements of tumor size), and the Kappa statistic, which is
used to assess observer agreement in rating studies (e.g., com-
pare observers’ descriptions of mass margin). This work shows
that it could be feasible to construct an evaluation scale for the
CW-SSIM index. For example, such a scale could categorize
a pair of images as different if the CW-SSIM index is below
0.6, and highly similar if it is greater than 0.9. Such criteria
would tremendously increase the utility of the index and future
work is needed to develop an “interpretability guideline” for
the CW-SSIM index.

In conclusion, we have demonstrated the superiority of the
CW-SSIM index against the other indices commonly used
for assessing the similarity of a given pair of images. The
CW-SSIM index has a number of advantages. It is robust to
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small rotations and translations and it provides useful compar-
isons even without a preprocessing image registration step at
the front end, which is essential for other indices.
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