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Abstract
There has been a growing interest in recent years in the

development of objective image quality assessment (IQA) mod-
els, whose roles are not only to monitor image quality degrada-
tions and benchmark image processing systems, but also to opti-
mize various image and video processing algorithms and systems.
While the past achievement is worth celebrating, a number of ma-
jor challenges remain when we apply existing IQA models in real-
world applications. These include obvious ones such as the chal-
lenges to largely reduce the complexity of existing IQA algorithms
and to make them easy-to-use and easy-to-understand. There are
also challenges regarding the applicability of existing IQA mod-
els in many real-world problems where image quality needs to
be evaluated and compared across dimensionality, across view-
ing environment, and across the form of representations − specific
examples include quality assessment for image resizing, color-to-
gray image conversion, multi-exposure image fusion, image re-
targeting, and high dynamic range image tone mapping. Here
we will first elaborate these challenges, and then concentrate on
a specific one, namely the generalization challenge, which we
believe is a more fundamental issue in the development, valida-
tion and application of IQA models. Specifically, the challenge is
about the generalization capability of existing IQA models, which
achieve superior quality prediction performance in lab testing en-
vironment using a limited number of subject-rated test images, but
the performance may not extend to the real-world where we are
working with images of a much greater diversity in terms of con-
tent and complexity. We will discuss some principle ideas and
related work that might help us meet the challenges in the future.

Introduction
Over the past decades, a growing number of researchers

and engineers in the image processing community have started
to realize the importance of image/video quality assessment
(IQA/VQA) [40, 29, 4]. This is not surprising because no mat-
ter what image/video processing problems we are working on,
the same issues repeatedly come up − How should we evaluate
the images generated from our algorithms/systems? How do we
know our algorithm/system is creating an improvement between
the input and output images, and by how much? How can we
know one algorithm/system performs better than another, and by
how much? What should be the quality criterion for which the
design of our algorithms/systems should be optimized? Since the
human eyes are the ultimate receivers in most image processing
applications, human subjective visual testing would be a reliable
solution. However, with the exponential increase of the volume
of image/video data being generated daily, it becomes impossible

to address these quality issues in a timely manner by subjective
visual testing, which is slow, cumbersome and expensive. In-
stead, only trusted objective IQA models may potentially meet
these needs.

In academia, objective IQA has been a hot research topic,
especially in the past 15 years [35, 4, 29]. First, the commonly
used numerical disotrtion/quality measures in the past − the mean
squared error (MSE) and the peak signal-to-noise ratio (PSNR) −
have been shown to correlate poorly with perceived image quality
[28, 30]. Second, a large number of perceptually more mean-
ingful IQA models have been proposed, including full-reference
(where a perfect quality reference image is available when evalu-
ating a distorted image) [35, 4, 29], no-reference (where the refer-
ence image is not accessible) [34, 24, 31], and reduced-reference
(where only partial information about the reference image is avail-
able) models [39, 36, 31, 29]. Third, several design principles
have been discovered and repeatedly demonstrated to be useful in
the design and improvement of IQA models. These include psy-
chophysical and physiological visibility models [35, 4], the struc-
tural similarity (SSIM) approaches [28, 32, 33, 20, 49], the nat-
ural scene statistics (NSS) and information theoretic approaches
[36, 39, 21, 31], the visual saliency based approaches [50], and
the machine learning based approaches [6]. Fourth, a number of
subject-rated image quality databases have been created and made
publicly available [22, 7, 8, 17, 16, 47]. They provide a common
benchmark platform for the evaluation and comparison of IQA
models, among which several algorithms have achieved high cor-
relations with the subjective mean opinion scores (MOSs) of the
test images [23, 38, 33, 49]. In the video delivery industry, percep-
tual objective IQA methods such as the SSIM algorithm have been
incorporated into many practical hardware and software systems
to monitor image/video quality degradations and to test/compare
image/video encoders and transcoders [27, 25, 26]. The wide use
of SSIM has resulted in a Primetime Engineering Emmy Award
given by the Academy of Television Arts and Sciences [1].

The remarkable development and successful deployment of
modern IQA methods are definitely worth celebrating. Neverthe-
less, this does not necessarily mean that the existing IQA mod-
els have already met the real-world challenges. Otherwise, they
should have made a much stronger impact and become a game-
changing factor in the industry. Using the video delivery indus-
try as an example, even now most practitioners are still equating
bitrate with quality in the practical design of video delivery ar-
chitectures. However, using the same bitrate to encode different
video content could result in dramatically different visual qual-
ity. Clearly, the perceptual quality of the video itself, which is
presumably the ultimate evaluation criterion of the whole video
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delivery system, has not been placed at the driver’s seat. While
it is understandable that quality degradation is inevitable at many
stages in the video delivery chain due to practical constraints, the
real concern here is that there is no existing protocol to monitor
and control such quality degradation. As a result, various tricks
have been used to manipulate the video content and network re-
sources are allocated in suboptimal ways, leaving the creative in-
tent of the content producers unprotected.

While it is certain that the industry needs to be better in-
formed about the great potentials of making the best use of
IQA/VQA models, we believe that an equally important aspect
that slows down the process is that the existing IQA/VQA mod-
els still do not meet many real-world challenges. In the following
sections, we will elaborate some of these challenges and then fo-
cus on a specific one, namely the generalization challenge. We
wish our discussions on some fundamental ideas could provide
some useful insights for the future development of IQA models
that may meet these real-world challenges.

The Real-World Challenges
Here we make a list of real-world challenges, many of which

are described in more details through examples of practical sce-
narios.

1. It is highly desirable to reduce the complexity of the
IQA/VQA algorithms so that they can be computed in real-
time or in an even faster speed. This is especially use-
ful in time-sensitive applications such as live broadcasting
and videoconferencing. Many existing models are far from
meeting this challenge.

2. It is essential to make the IQA/VQA scores easy-to-use and
easy-to-understand. For example, the raw SSIM score does
not have an explicit perceptual meaning, making it diffi-
cult to determine what level of SSIM index can warrant an
excellent video quality and how much improvement in the
SSIM index is sufficient to create visible quality improve-
ment. Mapping the raw scores into a perceptually linear do-
main that is easily linked to human expressions about image
quality is desirable.

3. The same video stream shown on different display devices
could result in very different perceptual quality. For exam-
ple, a strongly compressed video that exhibits very annoy-
ing artifacts on a large TV could appear to have fine quality
when viewed on the screen of a smartphone. The quality
may also change significantly when the video is watched on
the same TV but at two different viewing distances, one at
the default distance and the other at a very close distance.
However, existing IQA/VQA models give the same score
based on the video stream only, completely ignorant of the
viewing device and viewing condition.

4. In a video-on-demand application, a high-quality high-
resolution (e.g., 4K) source video may be encoded into
multiple video streams of different resolutions (e.g., 1080p,
720p, 360p, 240p, etc.) and different bit rates, aiming for
satisfying a variety of user needs. In order to measure the
quality of the encoded videos, most existing VQA models
cannot be computed because the source (reference) and test
videos have different spatial resolutions.

5. An image or video may need to be displayed on a screen that

has a spatial resolution higher than that of the image resolu-
tion. As a result, spatial interpolation is performed. Again,
most existing VQA models are not applicable because the
reference and test images have different spatial resolutions.

6. An image or video of imperfect quality (e.g., being com-
pressed at an earlier stage) is received and then transcoded
to multiple images or videos with different bitrates and res-
olutions. Most existing IQA/VQA models are not applica-
ble not only because they do not allow for cross-resolution
quality assessment, but also because they assume the origi-
nal reference image/video to have perfect quality, which is
not the case here. How to carry out “degraded reference”
IQA/VQA is a major challenge.

7. A high dynamic range (HDR) image (e.g., the pixels are in
10 or more bit depths) is tone mapped to a standard dynamic
range (SDR) image (8 bits per pixel) in order to be visu-
alized on an SDR display. There is certainly information
loss that we would like to capture. However, most exist-
ing IQA models do not apply because they cannot compare
images/videos with different dynamic ranges.

8. A high frame rate (HFR) video (e.g., 60fps, 120fps, or
higher) is downsampled along temporal direction to a low
frame rate (LFR) video (30fps, 24fps, 15fps, etc.). One
would like to know what is the impact of the downsampling
process on visual quality, or what is the quality gain/loss
when switching between HFR and LFR videos, especially
for the video content that contains significant amount of mo-
tion. Most VQA models do not apply because they cannot
compare videos with different temporal resolutions.

9. A video with lower frame rate (LFR) needs to be played
on a viewing device that allows for HFR video. Temporal
interpolation methods may be applied beforehand to create
HFR video content from the LFR videos. It is desirable to
know whether the perceptual quality is improved through
the process, but most existing VQA models are not useful
because they cannot compare videos with different temporal
resolutions.

10. A camera is used to capture a real natural scene multiple
times, each with a different exposure level, so as to faith-
fully record all structural details in the scene, which includes
both extremely dark and extremely bright regions. In order
to visualize all details in a single image, multiple exposure
fusion algorithms may be applied to combine a sequence of
multi-exposure images into one image. Most existing IQA
models cannot be used to evaluate the quality of the fused
image, because the reference and test images are in different
formats, one being a sequence of images and the other being
a single image.

11. A color image is converted into a grayscale image for pur-
poses in the subsequent processes (e.g., display, printing,
etc.). In order to assess the quality of the resulting grayscale
image (which inevitably loses information from the color
image), we would need to use the original color image as
the reference. However, most existing IQA model is not
useful because the reference and test images are in differ-
ent formats, one containing multiple color channels and the
other being monotone.

12. An image or video of large size needs to be shown on a
screen of a smaller size. Certain image retargeting algorithm



may be applied to reduce the total number of pixels in the
picture without sacrificing too much of the detailed content
in the original picture. Again, existing IQA/VQA models do
not apply because the reference and test images/videos have
different spatial resolutions.

The list may be easily extended further, especially when we con-
sider the variations of image/video content type in certain real-
world application environments. For example, specific challenges
may arise when we apply IQA/VQA methods in specific applica-
tions such as online gaming, videoconferencing and sports broad-
casting.

It is worth mentioning that new methods have started to
emerge in recent years to address some of these challenges. For
example, the recently proposed SSIMplus algorithm is able to
evaluate the quality of a test image/video in real-time using a
reference image/video that has a different resolution, and mean-
while provide perceptually linear quality scores dependent on the
viewing device and viewing condition [18]. The tone mapped im-
age quality index (TMQI) is able to evaluate image quality across
dynamic ranges [5]. The multi-exposure fusion SSIM algorithm
(MEF-SSIM) is capable of assessing the quality of fused image
created from a sequence of images captured at different exposure
levels [10]. The C2G-SSIM algorithm is designed to assess the
quality of a gray scale image that is converted from a color im-
age [11]. The WIND algorithm can evaluate the quality of an
interpolated high-resolution natural image using a low-resolution
image (which was used to create the high-resolution image based
on an interpolation algorithm) as the reference image [46]. There
has been a clear trend that more effort will be dedicated to these
research directions in the future.

The Generalization Challenge
As mentioned earlier, a large number of IQA models have

been proposed in recent years. To validate and compare these
models, the standard approach is to first build databases of im-
ages with various content and distortions, and then carry out sub-
jective experiments to score all images for their quality. So far,
several image databases with subjective ratings have been widely
recognized and used by the research community. These include
the LIVE [22], CSIQ [7], IVC [8], TID2008 [17], TID2013 [16],
and VCL@FER [47] databases. Given these databases, several
correlation metrics between subjective MOS scores and objective
model predictions can then be calculated, and the models that ob-
tain higher correlation numbers are believed to have better model
performance. In fact, many existing IQA models have been re-
ported to achieve very high correlations (mostly in the upper 80%
to upper 90% range) with subjective scores when tested using
these databases. The question is whether such high performance
can generalize to real-world images outside these databases.

To validate the generalization capability of these IQA mod-
els is not an easy task. This is due to the conflict between the ex-
tremely large size of the space of images and the small scale of the
affordable subjective experiment. It needs to be aware that sub-
jective testing is time-consuming and expensive. A typical “large-
scale” subjective experiment only allows for several hundreds (or
at most a few thousands) test images to be rated by multiple hu-
man viewers. As a result, all of the widely known image quality
databases can only accommodate at most a few dozens of source

reference images, because in addition to these source images, a
much larger number of distorted images need to be added based
on the combination of distortion types and distortion levels. An
additional problem is that many of the current well-known image
quality databases employ similar or sometimes the same source
images, which further limit the diversity of image content.

In the real-world, however, digital images live in a high di-
mensional space. Note that the dimension equals the number of
total pixels in the image. For example, an image that contains
one million pixels lives in a one million dimensional space. By
contrast, a manageable subjective experiment can only evaluate
several hundreds or at most a few thousands images. This cor-
responds to sampling the one million dimensional space with a
few thousands samples, which is deemed to be extremely sparsely
distributed in the space. Furthermore, in terms of the diversity of
image content, no matter how the source images are selected, it
is difficult to justify how a few dozens of source images can suf-
ficiently represent the diversity of the content types in the real-
world. Considering all the facts above, it is thus natural to ques-
tion if the reported highly competitive performance of some of the
existing IQA models can be generalized to the real-world, where
images have much richer content types and are undergoing a much
wider variety of distortions. Indeed, recently there has been direct
evidence showing that the performance of existing IQA models
degrade largely in a relatively larger database composed of real-
world Internet images [2].

In the future development and validation of novel IQA mod-
els, in order to properly address the generalization challenge, we
would need to first of all work with a much larger image database,
which is ideally in the scale of at least thousands of source images
and hundreds of thousands of distorted images. Of course, carry-
ing out a complete subjective test that could allow us to collect
the MOS scores for all the images in such a database becomes
impossible. Therefore, innovative ways on how to explore such
an image database with limited resource for subjective testing is
the key to success. Such innovations may need us to change the
fundamental principles in model selection and subjective testing.

One of such novel design principles is the MAximum Dif-
ferentiation (MAD) competition methodology [37] and its exten-
sions [9]. The most fundamental idea is to switch our goal from
attempting to “prove” a model to “disapprove” a model. Note
that the application domain of an IQA model is the space of all
possible images. To prove a model in such a domain, as in the
traditional approach to validating IQA models, we would need to
use samples that provide sufficient coverage or representation of
all images live in the domain. Given the complexity of the IQA
problem and the size of the domain, this requires an extremely
large number of samples, which is a task impossible to achieve
with the current capacity of subjective testing. By contrast, to
disapprove a model is much “easier”, because ideally even one
“counter-example” is sufficient to achieve the goal. Apparently, a
significant advantage of the new principle is the great potential to
reduce the total number of necessary samples subject to subjective
testing. These test samples need to be carefully selected, which is
the focus of the second essential component of the MAD method-
ology, where rather than hand designing or manually searching
for the best counter-examples, we use an efficient and automatic
way to find potential “counter-examples” that are most efficient
in falsifying one model using another. We refer the model we at-
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Figure 1: IQA models ordered based on Resistance and Aggressiveness in MAD competition.

tempt to disapprove as the “defender” model, and the one used to
disapprove the defender model as the “attacker” model. Specifi-
cally, in MAD competition, for any given quality level defined by
the defender model, we automatically search in the space of all
images (or practically an image database that is as large as possi-
ble) to find a pair of images with the maximum/minimum quality
in terms of the defender model. This pair of images are subject to
a subjective discriminative test, where human subjects are asked
to choose the image that has better quality than the other. If one
image is clearly better than the other (with a significantly higher
number of subject votes), than the attack is successful and the de-
fender model is disapproved. Otherwise, the attack “fails” and
the defender model “survives” in this attack, which provides use-
ful evidence on the robustness or reliability of the model, and in
turn reveals certain drawbacks of the attacker model.

In [9], 16 classic and state-of-the-art IQA models are in-
cluded in a group MAD competition experiment. These include
These include full-reference models PSNR, SSIM [32], MS-
SSIM [38] and FSIM [49], and no-reference models BIQI [14],
BLINDS II [19], BRISQUE [12], CORNIA [45], DIIVINE [15],
IL-NIQE [48], LPSI [42], M3 [43], NFERM [3], NIQE [13],
QAC [44] and TCLT [41]. The experiment exploits a database
that contains more than 4,000 source natural images together with
more than 90,000 distorted images generated from them. This
database is much larger than all exiting image quality databases
combined. The MAD competition is performed for all possible
combinations of attacker-defender roles of the competing IQA
models on 6 quality levels. This results in 1440 pairs of images se-
lected. Note that the number of the selected image pairs depends
on the number of competing models and the number of test qual-
ity levels, but does not depend on the size of the image database.
As a result, exploiting an even larger image database does not
lead to increased cost of the subjective testing. These selected
image pairs are employed in a subjective discriminative test with
31 participating subjects. Statistical analysis is performed after
the subjective testing, and two evaluation criteria are used to sum-
marize the overall behavior of each IQA model − a “resistance”
index that measures how robust of an IQA model as a defender
under the attacks of all other models, and a “aggressive” index
that evaluates how successful of an IQA model as an attacker that
fails all other models as the defender. Figure 1 shows the compe-

tition results of the IQA models ordered based on their resistance
and aggressiveness. The test results as well as the pairs of im-
ages selected through the competition not only provide a novel
measure about the relative performance and reliability of an IQA
model, but also reveals the relative strength and weakness of the
models, which further provide useful insights on potential ways
to improve the models.

Conclusion
Remarkable progress has been made in the past decades in

the field of IQA/VQA, evidenced by a number of state-of-the-
art IQA/VQA models achieving high correlations with subjec-
tive quality opinions on images/videos when tested using publicly
available image/video quality databases. Nevertheless, we show
that these achievements are still not enough to facilitate the wide
usage of IQA/VQA models due to a number of real-world chal-
lenges. It is very important to be aware of such challenges so
as to develop future IQA/VQA models or improve existing ones
such that they can be converted to industrial products that are fast,
accurate, easy-to-use, easy-to-understand, and applicable across
dimensionality, viewing environment, and the form of represen-
tations. We have also discussed in more detail on the general-
ization challenge, which is believed to be a more fundamental is-
sue related to the way how IQA models should be developed and
validated. We discussed the idea behind the MAD competition
methodology, which has shown some promising characteristics
that may lead to significant changes in the future development,
validation and application of IQA models.
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