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The human visual system (HVS) is highly space-variant in sampling, coding,
processing, and understanding of visual information. The visual sensitivity is high-
est at the point of fixation and decreases dramatically with distance from the point
of fixation. By taking advantage of this phenomenon, foveated image and video
coding systems achieve increased compression efficiency by removing considerable
high-frequency information redundancy from the regions away from the fixation
point without significant loss of the reconstructed image or video quality.

This chapter has three major purposes. The first is to introduce the back-
ground of the foveation feature of the HVS that motivates the research effort of
foveated image processing. The second is to review various foveation techniques
that have been used to construct image and video coding systems. The third is
to provide in more details a specific example of such systems, which delivers rate
scalable codestreams ordered according to foveation-based perceptual importance,
and has a wide range of potential applications such as video communications over
heterogeneous, time-varying, multi-user and interactive networks.

1.1 Foveated Human Vision and Foveated Image

Processing

Let us start by looking at the anatomy of the human eye. A simplified structure
is illustrated in Figure 1.1. The light that passes through the optics of the eye is
projected onto the retina and sampled by the photoreceptors in the retina. The
retina has two major types of photoreceptors known as cones and rods. The rods
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Figure 1.1: Structure of the human eye.

support achromatic vision in low level illuminations and the cone receptors are
responsible for daylight vision. The cones and rods are non-uniformly distributed
over the surface of the retina [1, 2]. The region of highest visual acuity is the fovea,
which contains no rods but has the highest concentration of approximately 50,000
cones [2]. Figure 1.2 shows the variation of the densities of photoreceptors with
retinal eccentricity, which is defined as the visual angle (in degree) between the
fovea and the location of the photoreceptor. The density of the cone cells is highest
at zero eccentricity (the fovea) and drops rapidly with increasing eccentricity. The
photoreceptors deliver data to the plexiform layers of the retina, which provide
both direct and inter-connections from the photoreceptors to the ganglion cells.
The distribution of ganglion cells is also highly non-uniform as shown in Figure
1.2. The density of the ganglion cells drops even faster than the density of the
cone receptors. The receptive fields of the ganglion cells also vary with eccentricity
[1, 2].

The density distributions of cone receptors and ganglion cells play important
roles in determining the ability of our eyes in resolving what we see. When a
human observer gazes at a point in a real-world image, a variable resolution image
is transmitted through the front visual channel into the information processing
units in the human brain. The region around the point of fixation (or foveation
point) is projected onto the fovea, sampled with the highest density, and perceived
by the observer with the highest contrast sensitivity. The sampling density and the
contrast sensitivity decrease dramatically with increasing eccentricity. An example
is shown in Figure 1.3, where Figure 1.3(a) is the original “Goldhill” image and
Figure 1.3(b) is a foveated version of that image. At certain viewing distance, if
attention is focussed at the man at the lower part of the image, then the foveated
and the original images are almost indistinguishable.

Despite the highly space-variant sampling and processing features of the HVS,
traditional digital image processing and computer vision systems represent images
on uniformly sampled rectangular lattices, which have the advantages of simple
acquisition, storage, indexing and computation. Nowadays, most digital images
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Figure 1.2: Photoreceptor and ganglion cell density versus retinal eccentricity.
(From [1]).

and video sequences are stored, processed, transmitted and displayed in rectangu-
lar matrix format, in which each entry represents one sampling point. In recent
years, there has been growing interest in research work on foveated image process-
ing [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46], which
is targeted at a number of application fields. Significant examples include image
quality assessment [33, 38], image segmentation [24], stereo 3D scene perception
[22], volume data visualization [9], object tracking [25], and image watermarking
[42]. Nevertheless, the majority of research has been focused on foveated image and
video coding, communication and related issues. The major motivation is that con-
siderable high frequency information redundancy exists in the peripheral regions,
thus more efficient image compression can be obtained by removing or reducing
such information redundancy. As a result, the bandwidth required to transmit the
image and video information over communication channels is significantly reduced.
Foveation techniques also supply some additional benefits in visual communica-
tions. For example, in noisy communication environments, foveation provides a
natural way for unequal error-protection of different spatial regions in the image
and video streams being transmitted. Such an error-resilient coding scheme has
shown to be more robust than protecting all the image regions equally [27, 46]. For
another example, in an interactive multi-point communication environment where
information about the foveated regions at the terminals of the communication net-
works is available, higher perceptual quality images can be achieved by applying
foveated coding techniques [40].

Perfect foveation of discretely-sampled images with smoothly varying resolution
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Figure 1.3: Sample foveated image. (a) original “Goldhill” image; (b) foveated
“Glodhill” image.

turns out to be a difficult theoretical as well as implementation problem. In the
next section, we review various practical foveation techniques that approximate
perfect foveation. Section 1.3 discusses a continuously rate-scalable foveated image
and video coding system that has a number of good features in favor of network
visual communications.

1.2 Foveation Methods

The foveation approaches proposed in the literature may be roughly classified into
three categories: geometric method, filtering-based method, and multiresolution
method. These methods are closely related and the third method may be viewed
as a combination of the first two.

1.2.1 Geometric Methods

The general idea of the geometric methods is to make use of the foveated retinal
sampling geometry. We wish to associate such a highly non-uniform sampling ge-
ometry with a spatially-adaptive coordinate transform, which we call the foveation
coordinate transform. When the transform is applied to the non-uniform retinal
sampling points, uniform sampling density is obtained in the new coordinate sys-
tem. A typically used solution is the logmap transform [13] defined as

w = log(z + a) , (1.1)
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Figure 1.4: Application of foveation coordinate transform to images. (a) original
image; (b) transformed image.

where a is a constant, and z and w are complex numbers representing the positions
in the original coordinate and the transformed coordinate, respectively. While
the logmap transform is empirical, it is shown in [34] that precise mathematical
solutions of the foveation coordinate transforms may be derived directly from given
retinal sampling distributions.

The foveated retinal sampling geometry can be used in different ways. The
first method is to apply the foveation coordinate transform directly to a uniform
resolution image, thus the underlying image space is mapped onto the new coor-
dinate system as exemplified by Figure 1.4. In the transform domain, the image
is treated as a uniform resolution image, and regular uniform-resolution image
processing techniques, such as linear and non-linear filtering and compression, are
applied. Finally, the inverse coordinate transform is employed to obtain a “foveat-
edly” processed image. The difficulty with this method is that the image pixels
originally located at integer grids are moved to non-integer positions, making it dif-
ficult to index them. Interpolation and resampling procedures have to be applied
in both the transform and the inverse transform domains. These procedures not
only significantly complicate the system, but may also cause further distortions.

The second approach is the superpixel method [13, 16, 6, 15, 14], in which
local image pixel groups are averaged and mapped into superpixels, whose sizes
are determined by the retinal sampling density. Figure 1.5 shows a sophisticated
superpixel look-up table given in [13], which attempts to adhere with the logmap
structure. However, the number and variation of superpixel shapes make it incon-
venient to manipulate. In [16], a more practical superpixel method is used, where
all the superpixels have rectangular shapes. In [14], a multistage superpixel ap-
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Figure 1.5: Logmap superpixel representation. The superpixel mask is applied in
the pixel coordinates. (From [13])

proach is introduced, in which a progressive transmission scheme is implemented
by using variable sizes of superpixels in each stage. There are two drawbacks of
the superpixel methods. First, the discontinuity across superpixels is often very
perceptually annoying. Blending methods are usually used to reduce the boundary
effect, leading to additional computational cost. Second, when the foveation point
moves, the superpixel mask has to be recalculated.

In the third method, the foveated retinal geometry is employed to guide the
design of a non-uniform subsampling scheme on the uniform resolution image. An
example of foveated sampling design is shown in Figure 1.6 [13]. In [23], uniform
grid images are resampled with variable resolution that matches the human retina
sampling density. B-Spline interpolation is then used to reconstruct the foveated
images. The subsampling idea has also been used to develop foveated sensoring
schemes to improve the efficiency of image and video acquisition systems [7, 13].

1.2.2 Filtering Based Methods

The sampling theorem states that the highest frequency of a signal that can be
represented without aliasing is one-half of the sampling rate. As a result, the band-
width of perceived local image signal is limited by local retinal sampling density. In
the category of filtering-based foveation methods, foveation is implemented with a
shift-variant low-pass filtering process over the image, where the cut-off frequency
of the filter is determined by the local retinal sampling density.
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Figure 1.6: Foveated sensor distribution. (From [13])

Since retinal sampling is spatially varying (smoothly), an ideal implementation
of foveation filtering would require using a different low-pass filter at each location
in the image. Although such a method delivers very high quality foveated images,
it is extremely expensive in terms of computational cost when the local bandwidth
is low.

The filter bank method provides a flexible trade-off between the accuracy and
the cost of the foveation filtering process. As illustrated in Figure 1.7 [34], a bank
(finite number) of filters with varying frequency responses are first uniformly ap-
plied to the input image, resulting in a set of filtered images. The foveated image is
then obtained by merging these filtered images into one image, where the merging
process is space-variant according to the foveated retinal sampling density. There
are a number of issues associated with the design of such filter banks and merging
processes. First, the bank of filters can be either low-pass or band-pass, and thus
the merging process should be adjusted accordingly. Second, there are a number of
filter design problems. For instance, the filters can be designed either in the spatial
or in the frequency domain. For another example, in the design of finite impulse
response filters, it is important to consider the trade-offs between transition band
size, ripple size, and implementation complexity (e.g., filter length). Usually, small
ripple size is desired to avoid significant ringing effect. Third, since both foveation
filtering and transform-based (e.g., discrete cosine transform (DCT) or wavelet-
based) image compression require transforming the image signal into frequency
subbands, they may be combined to reduce implementation and computational
complexity. For example, only one-time DCT is used and then both foveation fil-
tering and compression can be implemented by manipulating the DCT coefficients.

In [27, 30, 38], the filter bank method was employed as a preprocessing step
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Figure 1.7: Filter bank foveation method.

before the standard video compression algorithms such as MPEG and H.26x were
applied. Significant compression improvement over uniform resolution coding was
obtained because a large amount of visually redundant high frequency information
is removed during the foveation filtering processes. Another important advantage
of this system is that it is completely compatible with the video coding standards,
because no modification on the encoder/decoder of the existing video coding sys-
tems is needed, except for adding a foveation filtering unit in front of the video
encoder. A demonstration of this system is available at [28].

The filter bank method was also used to build an eye tracker-driven foveated
imaging system at the Laboratory for Image and Video Engineering (LIVE) at the
University of Texas at Austin [35]. The system detects the fixation point of the
subject in real-time using an eye-tracker. The detected fixation point is then used
to promptly foveate the image or video being displayed on a computer monitor
or projected on a large screen mounted on the wall. Since all the processes are
implemented in real time, the subject feels as if he/she were watching the original
image sequence instead of the foveated one, provided the calibration process has
been well-performed.

In [40, 43], foveation filtering was implemented in the DCT domain and com-
bined with the quantization processes in standard H.26x and MPEG compression.
In [39], such a DCT-domain foveation method is merged into a video transcoding
system, which takes compressed video streams as the input and re-encoders them
into lower bit rates. Implementing these systems is indeed very challenging be-
cause the coding blocks in the current frame need to be predicted from the regions
in the previous frame that may cover multiple DCT blocks and have different and
varying resolution levels. It needs to point out that although the existing standard
video encoders need to be modified to support foveated coding, these systems are
still standard compatible in the sense that no change is necessary in order for any
standard decoders to correctly decompress the received video streams.
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1.2.3 Multiresolution Methods

The multiresolution method can be considered as a combination of the geometric
and the filtering-based methods, in which the original uniform resolution image is
transformed into different scales (where certain geometric operations such as down-
sampling are involved), and the image processing algorithms are applied separately
at each scale (where certain filtering processes are applied).

The multiresolution method has advantages over both geometric and filtering-
based methods. First, no sophisticated designs for the geometric transforms or
superpixels are necessary since scaling can be implemented by simple uniform
downsampling. This saves computation as well as storage space, and makes pixel
indexing easy. Second, after downsampling, the number of transformed coefficients
in each scale is greatly reduced. As a result, the computational cost of the filtering
process decreases.

In [5], a multiresolution pyramid method [47] is applied to an uniform resolu-
tion image and a coarse-to-fine spatially adaptive scheme is then applied to select
the useful information for the construction of the foveated image. In [21], a very
efficient pyramid structure shown in Figure 1.8 is used to foveate images and video.
In order to avoid severe discontinuities occurring across stage boundaries in the
reconstructed image and video, strong blending postprocessing algorithms were
employed. This system can be used for real-time foveated video coding and trans-
mission. In [36], the system was further improved to create high quality foveated
images and video that can be used to study the roles of central and peripheral
vision in visual tasks such as search, navigation and reading. A demonstration of
these systems and their software implementation is available at [37].

As a powerful multiresolution analysis tool, the wavelet transform has been
extensively used for various image processing tasks in recent years [48]. A well-
designed wavelet transform not only delivers a convenient, spatially localized rep-
resentation of both frequency and orientation information of the image signal, but
also allows for perfect reconstruction. These features are important for efficient
image compression. In [19, 26], a non-uniform foveated weighting model in the
wavelet transform domain is employed for wavelet foveation. A progressive trans-
mission method was also suggested for foveated image communication, where the
ordering of the transmitted information was determined by the foveated weighting
model.

In the next section, we will mainly discuss a wavelet-based foveated scalable
coding method proposed in [31, 34], where the foveated weighting model was devel-
oped by joint consideration of multiple HVS factors, including the spatial variance
of the contrast sensitivity function, the spatial variance of the local visual cutoff
frequency, and the variance of the human visual sensitivity in different wavelet sub-
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Figure 1.8: Foveated multiresolution pyramid. (Adapted from [21])

bands. The ordering of the encoded information not only depends on the foveated
weighting model, but also on the magnitudes of the wavelet coefficients. This
method was extended for the design of a prototype for scalable foveated video cod-
ing [44, 34]. The prototype was implemented in a specific application environment,
where foveated scalable coding was combined with an automated foveation point
selection scheme and an adaptive frame prediction algorithm.

1.3 Scalable Foveated Image and Video Coding

An important recent trend in visual communications is to develop continuously
rate scalable coding algorithms (e.g., [49, 50, 51, 52, 53, 54, 31, 44]), which al-
low the extraction of coded visual information at continuously varying bit rates
from a single compressed bitstream. An example is shown in Figure 1.9, where
the original video sequence is encoded with a rate scalable coder and the encoded
bitstream is stored frame by frame. During the transmission of the coded data on
the network, we can scale, or truncate, the bitstream at any place and send the
most important bits of the bitstream. Such a scalable bitstream can provide nu-
merous versions of the compressed video at various data rates and levels of quality.
This feature is especially suited for video transmission over heterogeneous, multi-
user, time-varying and interactive networks such as the Internet, where variable
bandwidth video streams need to be created to meet different user requirements.
The traditional solutions, such as layered video (e.g., [55]), video transcoding (e.g.,
[56]), and simply repeated encoding, require more resources in terms of compu-
tation, storage space and/or data management. More importantly, they lack the
flexibility to adapt to time-varying network conditions and user requirements, be-
cause once the compressed video stream is generated, it becomes inconvenient to
change it to an arbitrary data rate. By contrast, with a continuously rate scalable
codec, the data rate of the video being delivered can exactly match the available
bandwidth on the network.
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Figure 1.9: Bitstream scaling in rate scalable video communications. Each bar
represents the bitstream for one frame in the video sequence. The bits in each
frame are ordered according to their importance. (Adapted from [44])

The central idea of foveated scalable image and video coding is to organize the
encoded bitstream to provide best decoded visual information at an arbitrary bit
rate in terms of foveated perceptual quality measurement. Foveation-based HVS
models play important roles in these systems. In this section, we first describe a
wavelet-domain foveated perceptual weighting model, and then explain how this
model is used for scalable image and video coding.

1.3.1 Foveated Perceptual Weighting Model

Psychological experiments have been conducted to measure the contrast sensitivity
as a function of retinal eccentricity (e.g., [21, 57, 58]). In [21], a model that fits
the experimental data was given by

CT (f, e) = CT0 exp

(
αf

e + e2

e2

)
, (1.2)

where

f : Spatial frequency (cycles/degree);
e: Retinal eccentricity (degrees);
CT0: Minimal contrast threshold;
α: Spatial frequency decay constant;
e2: Half-resolution eccentricity constant;
CT : Visible contrast threshold.

The best fitting parameters given in [21] are α = 0.106, e2 = 2.3, and CT0 =
1/64, respectively. The contrast sensitivity is defined as the reciprocal of the
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Figure 1.10: A typical viewing geometry. Here, v is the distance to the image
measured in image width, and θ is eccentricity measured in degrees. (Adapted
from [31])

contrast threshold: CS(f, e) = 1/CT (f, e).

For a given eccentricity e, equation (1.2) can be used to find its critical frequency
or so called cutoff frequency fc in the sense that any higher frequency component
beyond it is imperceivable. fc can be obtained by setting CT to 1.0 (the maximum
possible contrast) and solving for f :

fc(e) =
e2 ln

(
1

CT0

)

α(e + e2)

(
cycles

degree

)
. (1.3)

To apply these models to digital images, we need to calculate the eccentricity
for any given point x = (x1, x2)

T (pixels) in the image. Figure 1.10 illustrates
a typical viewing geometry. For simplicity, we assume the observed image is N -
pixel wide and the line from the fovea to the point of fixation in the image is
perpendicular to the image plane. Also assume that the position of the foveation
point xf = (xf

1 , x
f
2)

T (pixels) and the viewing distance v (measured in image width)
from the eye to the image plane are known. The distance from x to xf is given
by d(x) = ‖x − xf‖2 = [(x1 − xf

1)
2 + (x2 − xf

2)
2]1/2 (measured in pixels). The

eccentricity is then calculated as

e(v,x) = tan−1

(
d(x)

Nv

)
. (1.4)

With (1.4), we can convert the foveated contrast sensitivity and cutoff frequency
models into the image pixel domain. In Figure 1.11, we show the normalized
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Figure 1.11: Normalized contrast sensitivity for N = 512 and v = 3. Brightness
indicates the strength of contrast sensitivity and the white curves show the cutoff
frequency. (Adapted from [44])

contrast sensitivity as a function of pixel position for N = 512 and v = 3. The cut-
off frequency as a function of pixel position is also given. The contrast sensitivity
is normalized so that the highest value is always 1.0 at 0 eccentricity. It can be
observed that the cut-off frequency drops quickly with increasing eccentricity and
the contrast sensitivity decreases even faster.

In real-world digital images, the maximum perceived resolution is also limited
by the display resolution, which is approximately:

r ≈ πNv

180

(
pixels

degree

)
. (1.5)

According to the sampling theorem, the highest frequency that can be represented
without aliasing by the display, or the display Nyquist frequency, is half of the
display resolution: fd(v) = r/2. Combining this with (1.3), we obtain the cutoff
frequency for a given location x by:

fm(v,x) = min(fc(e(v,x)), fd(v)) . (1.6)

Finally, we define the foveation-based error sensitivity for given viewing distance
v, frequency f and location x as:

Sf (v, f,x) =

{
CS(f,e(v,x))

CS(f,0)
if f ≤ fm(v,x)

0 otherwise
. (1.7)
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Figure 1.12: Wavelet domain importance weighting mask of a signal foveation
point. Brightness (logarithmically enhanced for display purpose) indicates the
importance of the wavelet coefficient. (Adapted from [44])

Sf is normalized so that the highest value is always 1.0 at 0 eccentricity.

The wavelet coefficients at different subbands and locations supply information
of variable perceptual importance to the HVS. In [59], psychovisual experiments
were conducted to measure the visual sensitivity in wavelet decompositions. Noise
was added to the wavelet coefficients of a blank image with uniform mid-gray level.
After the inverse wavelet transform, the noise threshold in the spatial domain was
tested. A model that provided a reasonable fit to the experimental data is [59]:

log Y = log a + k(log f − log gθf0)
2 (1.8)

where

Y : Visually detectable noise threshold;
θ: Orientation index, representing LL, LH,

HH, and HL subbands, respectively;
f : Spatial frequency (cycles/degree);
k, f0, gθ: Constant parameters.

f is determined by the display resolution r and the wavelet decomposition level
λ: f = r2−λ. The constant parameters in (1.8) are tuned to fit the experimental
data. For gray scale models, a is 0.495, k is 0.466, f0 is 0.401, and gθ is 1.501, 1,
and 0.534 for the LL, LH/HL, and HH subbands, respectively. The error detection
thresholds for the wavelet coefficients can be calculated by:

Tλ,θ =
Yλ,θ

Aλ,θ

=
a10k(log(2λf0gθ/r))2

Aλ,θ

, (1.9)



1.3. Scalable Foveated Image and Video Coding 15

where Aλ,θ is the basis function amplitude given in [59]. We define the error
sensitivity in subband (λ, θ) as Sw(λ, θ) = 1/Tλ,θ.

For a given wavelet coefficient at position x ∈ Bλ,θ, where Bλ,θ denotes the set
of wavelet coefficient positions residing in subband (λ, θ), its equivalent distance
from the foveation point in the spatial domain is given by

dλ,θ(x) = 2λ
∥∥∥x− xf

λ,θ

∥∥∥
2

for x ∈ Bλ,θ , (1.10)

where xf
λ,θ is the corresponding foveation point in subband (λ, θ). With the equiv-

alent distance, and also considering (1.7), we have

Sf (v, f,x) = Sf (v, r2−λ, dλ,θ(x)) for x ∈ Bλ,θ . (1.11)

Considering both Sw(λ, θ) and Sf (v, f,x), a wavelet domain foveation-based visual
sensitivity model is achieved:

S(v,x) = [Sw(λ, θ)]β1 · [Sf (v, r2−λ, dλ,θ(x))
]β2

x ∈ Bλ,θ , (1.12)

where β1 and β2 are parameters used to control the magnitudes of Sw and Sf ,
respectively.

For a given wavelet coefficient at location x, the final weighting model is ob-
tained by integrating S(v,x) over v:

Ww(x) =

∫ ∞

0+

p(v)S(v,x) dv , (1.13)

where p(v) is the probability density distribution of the viewing distance v [31].
Figure 1.12 shows the importance weighting mask in the DWT domain. This
model can be easily generated for the case of multiple foveation points:

Ww(x) = W j
w(x), j ∈ arg min

i∈{1,··· ,K}

{∥∥∥x− xf
i,λ,θ

∥∥∥
2

}
, (1.14)

where K is the number of foveation points, xf
i,λ,θ is the position of the i-th foveation

point in the subband (λ, θ), and W i
w(x) is the wavelet-domain foveated weighting

model obtained with the i-th foveation point.

1.3.2 Embedded Foveation Image Coding

The embedded foveation image coding (EFIC) system [31] is shown in Figure 1.13.
Firstly, the wavelet transform is applied to the original image. The foveated per-
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ceptual weighting mask calculated from given foveation points or regions is then
used to weight the wavelet coefficients. Next, we encode the weighted wavelet co-
efficients using a modified set partitioning in hierarchical trees (SPIHT) encoder,
which is adapted from the SPIHT coder proposed in [51]. Finally, the output bit-
stream of the modified SPIHT encoder, together with the foveation parameters,
is transmitted to the communication network. At the receiver side, the weighted
wavelet coefficients are obtained by applying the modified SPIHT decoding algo-
rithm. The foveated weighting mask is then calculated in exactly the same way as
at the encoder side. Finally, the inverse weighting and inverse wavelet transform
are applied to obtain the reconstructed image. Between the sender, the commu-
nication network and the receiver, it is possible to exchange information about
network conditions and user requirements. Such feedback information can be used
to control the encoding bit-rate and foveation points. The decoder can also trun-
cate (scale) the received bitstream to obtain any bit rate image below the encoder
bit rate.

The modified SPIHT algorithm employed by the EFIC system uses an embed-
ded bit-plane coding scheme. The major purpose is to progressively select and
encoder the most important remaining bit in the wavelet representation of the im-
age. An important statistical feature of natural images that has been successfully
used by the embedded zero tree wavelet (EZW) [49] and SPIHT [51] algorithms
is that the wavelet coefficients which are less significant have structural similarity
across the wavelet subbands in the same spatial orientation. The zerotree structure
in EZW and the spatial orientation tree structure in SPIHT capture this structural
similarity very effectively. During encoding, the wavelet coefficients are scanned
multiple times. Each time consists of a sorting pass and a refinement pass. The
sorting pass selects the significant coefficients and encodes the spatial orientation
tree structure. A coefficient is significant if its magnitude is larger than a thresh-
old value, which decreases by a factor of 2 for each successive sorting pass. The
refinement pass outputs one bit for each selected coefficient. An entropy coder
can be employed to further compress the output bitstream. In EFIC, the wavelet
coefficients being encoded are weighted, which leads to increased dynamic range
of the coefficients. This not only increases the number of scans, but also increases
the number of bits to encode the large coefficients. The modified SPIHT algo-
rithm employed by EFIC limits the maximum number of bits for each coefficient
and scans only the strongly weighted coefficients in the first several scans. Both
of these modifications reduce computational complexity and increase the overall
coding efficiency.

Figure 1.14 shows the 8 bits/pixel gray scale “Zelda” image encoded with
SPIHT and EFIC, where the foveated region is at the center of the image. At
a low bit-rate of 0.015625 bits/pixel with compression ratio (CR) equaling 512:1,
the mouth, nose, and eye regions are hardly recognizable in the SPIHT coded
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Figure 1.13: EFIC encoding system. (Adapted from [31])

image, whereas those regions in the EFIC coded image exhibit some useful in-
formation. At a medium bit-rate of 0.0625 bits/pixe (CR = 128:1), SPIHT still
decodes a quite blurry image, while EFIC gives much more detailed information
over the face region. Increasing the bit-rate to as high as 0.25 bits/pixel (CR =
25), the EFIC coded image approaches uniform resolution. The decoded SPIHT
and EFIC images both have high quality and are almost indistinguishable. More
demonstration images for EFIC can be found at [32].

The EFIC decoding procedure can also be viewed as a progressive foveation
filtering process with gradually decreasing foveation depth. The reason may be
explained as follows: Note that the spectra of natural image signals statistically
follow the power law 1/fp (see [60] for a review). As a result, the low-frequency
wavelet coefficients are usually larger than the high-frequency ones, thus generally
have better chances to be reached earlier in the embedded bit-plane coding process.
Also notice that the foveated weighting process shifts down the bit-plane levels of
all the coefficients in the peripheral regions. Therefore, at the same frequency level,
the coefficients at the peripheral regions generally occupy lower bit-planes than the
coefficients at the region of fixation. If the available bit-rate is limited, then the
embedded bit-plane decoding process corresponds to applying a higher-bandwidth
low-pass filter to the region of fixation and a lower-bandwidth low-pass filter to
the peripheral regions, thereby foveates the image. With the increase of bit-rate,
more bits for the high-frequency coefficients in the peripheral regions are received,
thus the decoded image becomes less foveated. This is well demonstrated by the
EFIC coded images shown in Figure 1.14.

1.3.3 Foveation Scalable Video Coding

The foveated scalable video coding (FSVC) system [44] follows the general method
of motion estimation/motion compensation-based video coding. It first divides the
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(c) (d)
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Figure 1.14: “Zelda” image compressed with SPIHT and EFIC algorithms. (a)
SPIHT compressed image, compression ratio (CR) = 512:1; (b) EFIC compressed
image, CR = 512:1; (c) SPIHT compressed image, CR = 128:1; (b) EFIC com-
pressed image, CR = 128:1; (e) SPIHT compressed image, CR = 32:1; (f) EFIC
compressed image, CR = 32:1. (Adapted from [31])
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input video sequence into groups of pictures (GOPs). Each GOP has one intra-
coding frame (I frame) at the beginning and the rest are predictive coding frames
(P frames). The diagram of the encoding system is shown in Figure 1.15. The I
frames are encoded using the same way as in the EFIC algorithm described above.
The encoding of P frames is more complicated and is different from other video
coding algorithms in that it uses two instead of one version of the previous frames.
One is the original previous frame and the other is a feedback decoded version
of the previous frame. The final prediction frame is the weighted combination of
the two motion compensated prediction frames. The combination is based on the
foveated weighting model.

The prototype FSVC system allows to select multiple foveation points, mainly
to facilitate the requirements of large foveation regions and multiple foveated re-
gions of interest. It also reduces the search space of the foveation points by dividing
the image space into blocks and limiting the candidate foveation points to the cen-
ters of blocks. This strategy not only decreases implementation and computational
complexity, but also reduces the number of bits needed to encode the positions of
the foveation points. In practice, the best way of foveation point(s) selection is
application dependant. The FSVC prototype is very flexible such that different
foveation point selection schemes can be applied to a single framework.

We implemented the FSVC prototype in a specific application environment
for video sequences with human faces. A face-foveated video coding algorithm is
useful to effectively enhance the visual quality in specific video communication
environments such as videoconferencing.

The methods to choose foveation points for I frames and P frames are different.
In the I frames, a face detection algorithm similar to that in [61] is used, which
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detects possible face regions by the skin color information [62] and uses a binary
template matching method to detect human faces in the skin-color regions. A
different strategy is used for P frames, where we concentrate on the regions in the
current P frame that provide us with new information from its previous frame, in
which the prediction errors are usually larger than other regions. The potential
problem of this method is that the face regions may lose fixation. To solve this
problem, an unequal error thresholding method is used to determine foveation
regions in P frames, where a much smaller prediction error threshold value is used
to capture the changes occurring in the face regions. In Figure 1.16, we show
five consecutive frames in the “Silence” sequence and the corresponding selected
foveation points, in which the first frame is an I frame and the rest are P frames.

In fixed-rate motion compensation-based video coding algorithms, a common
choice is to use the feedback decoded previous frame as the reference frame for the
prediction of the current frame. This choice is infeasible for continuously scalable
coding because the decoding bit rate may be different from the encoding bit rate
and is unavailable to the encoder. In [52], a low base rate is defined and the decoded
and motion compensated frame at the base rate is used as the prediction. This
solution avoids the significant error propagation problems, but when the decoding
bit rate is much higher than the base rate, large prediction errors may occur and the
overall coding efficiency may be seriously affected. A new solution to this problem
is used in the FSVC system, where the original motion compensated frame and
the base rate decoded and motion compensated frame are adaptively combined
using the foveated weighting model. The idea is to assign more weight to the base
rate motion compensated frame for difficult prediction regions, and more weight
to the original motion compensated frame for easy prediction regions. By using
this method, error propagation becomes a small problem, while at the same time,
better frame prediction is achieved, which leads to smaller prediction errors and
better compression performance.

Figure 1.16 shows the FSVC compression results of the “Silence” sequence. It
can be observed that the spatial quality variance in the decoded image sequences
is well adapted to the time-varying foveation point selection scheme. Figure 1.17
demonstrates the scalable feature of the FSVC system, which shows the recon-
structed 32nd frame of the “Salesman” video sequence decoded at 200, 400 and
800 Kbits/sec, respectively. The reconstructed video sequences are created from
the same FSVC-encoded bitstream by truncating the bitstream at different places.
Similar to Figure 1.14, the decoded images exhibit decreased foveation depth with
increasing bit rate.
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Figure 1.16: Consecutive frames of the “Silence” sequence (left); the FSVC com-
pression results at 200 Kbits/sec (middle); and the selected foveation points (right).
(Adapted from [44])
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(a) (b)

(c) (d)

Figure 1.17: Frame 32 of the “Salesman” sequence (a) compressed using FSVC at
200 Kbits/sec (b), 400 Kbits/sec (c), and 800 Kbits/sec (d), respectively. (Adapted
from [44])
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1.4 Discussions

This chapter first introduces the background and motivations of foveated image
processing, and then reviews the various foveation techniques that are used for
the development of image and video coding systems. To give examples on spe-
cific implementations of such systems, we described in more details the EFIC and
the FSVC systems, which supply continuously rate-scalable codestrems ordered
according to foveation-based perceptual importance. Such systems have a number
of potential applications.

One direct application is network image browsing. There are two significant
examples. In the first example, prior to using the encoding algorithm, the foveation
point(s) are predetermined. The coding system then encodes the image with high
bit-rate and high quality. One copy of the encoded bitstream is stored at the server
side. When the image is required by a client, the server sends the bitstream to
the client progressively. The client can stop the transmission at any time once the
reconstructed image quality is satisfactory. In the second example, the foveation
point(s) are unknown to the server before transmission. Instead of a fully encoded
bitstream, a uniform resolution coarse quality version of the image is precomputed
and stored at the server side. The client first sees the coarse version of the image
and clicks on the point of interest in that image. The selected point of interest is
sent back to the server and activates the scalable foveated encoding algorithm. The
encoded bitstream that has a foveation emphasis on the selected point of interest
is then transmitted progressively to the client.

Another application is network videoconferencing. Compared with traditional
videoconferencing systems, a foveated system can deliver lower data rate video
streams since much of the high frequency information redundancy can be removed
in the foveated encoding process. Interactive information such as the locations
of the mouse, touch screen and eye-tracker can be sent as feedback information
to the other side of the network and used to define the foveation points. Face
detection and tracking algorithm may also help to find and adjust the foveation
points. Furthermore, in a highly heterogeneous network, the available bandwidth
can change dramatically between two end users. A fixed bit-rate video stream
would either be terminated suddenly (when the available bandwidth drops below
the fixed encoding bit-rate) or suffer from the inefficient use of the bandwidth
(when the fixed bit-rate is lower than the available bandwidth). By contrast, a
rate scalable foveated videoconferencing system can deal with these problems more
smoothly and efficiently.

The most commonly used methods for robust visual communications on noisy
channels are error resilience coding at the source or channel coders and error con-
cealment processing at the decoders [63]. Scalable foveated image and video stream
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provides us with the opportunity to do a better job by taking advantage of its opti-
mized ordering of visual information in terms of perceptual importance. It has been
shown that significant improvement can be achieved by unequal error protection
for scalable foveated image coding and communications [41].

Active networks are a hot research topic in recent years [64]. It allows the
customers to send not only static data but also programs that are executable at the
routers or switches within the network. An active network becomes more useful and
effective for visual communications if an intelligent scheme is employed to modify
the visual contents being delivered in a smart and efficient way. The properties
of scalable foveated image/video streams provide a good match to the features of
active networks because the bit rate of the video stream can be adjusted according
to the network conditions monitored at certain routers/switches inside the network
(instead of at the sender side), and the feedback foveation information (points and
depth) at the receiver side may also be dealt with at the routers/switches. This
may result in quicker responses that benefit real-time communications.

Finally, a common critical issue in all foveated image processing applications is
how the foveation points or regions should be determined. Depending on the ap-
plication, this may be done either interactively or automatically. In the interactive
method, an eye tracker is usually used to track the eye movement and send the
information back to the foveated imaging system in real time. In most application
environments, however, the eye tracker is not available or is inconvenient. A more
practical way is to ask the users to indicate fixation points using a mouse or touch
screen. Another possibility is to ask the users to indicate the object of interest,
and an automatic algorithm is then used to track the user-selected object as the
foveated region in the image sequence that follows. Automatical determination
of foveation points is itself a difficult but interesting research topic, and is closely
related to psychological visual search research (see [65] for a review). In the image
processing literature, there also has been previous research towards understanding
high level and low level processes in deciding human fixation points automatically
(e.g., [22, 66, 44, 67]). High level processes are usually context dependent and
involve a cognitive understanding of the image and video being observed. For
example, once a human face is recognized in an image, the face area is likely to
become a heavily fixated region. In a multimedia environment, audio signals may
also be linked to image objects in the scene and help to determine foveation points
[34]. Low level processes determine the points of interest using simple local fea-
tures of the image [66, 67]. In [22], three-dimensional depth information is also
employed to help find foveation points in an active stereo vision system. Although
it is argued that it is always difficult to decide foveation points automatically, we
believe that it is feasible to establish a statistical model that predicts them in a
measurably effective way.
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