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ABSTRACT

Statistical modeling of natural image sequences is of fundamental importance to both the understanding of
biological visual systems and the development of Bayesian approaches for solving a wide variety of machine
vision and image processing problems. Previous methods are based on measuring spatiotemporal power spectra
and by optimizing the best linear filters to achieve independent or sparse representations of the time-varying
image signals. Here we propose a different approach, in which we investigate the temporal variations of local
phase structures in the complex wavelet transform domain. We observe that natural image sequences exhibit
strong prior of temporal motion smoothness, by which local phases of wavelet coefficients can be well predicted
from their temporal neighbors. We study how such a statistical regularity is interfered with “unnatural” image
distortions and demonstrate the potentials of using temporal motion smoothness measures for reduced-reference
video quality assessment.

Keywords: natural image statistics, temporal motion smoothness, image sequence statistics, complex wavelet
transform, local phase correlation, image quality assessment, reduced-reference video quality assessment

1. INTRODUCTION

One approach that has recently attracted wide interests in biological vision research is to study the natural visual
environment.1,2 The general belief is that the biological visual systems are highly adapted to processing natural
images, which constitute a tiny cluster in the space of all possible images. Studying the statistics of natural
images thus provides an indirect but effective means to understand the biological visual information processing
systems. Furthermore, statistical prior knowledge about images also plays an essential role in the design of
Bayesian approaches3,4for solving many machine vision and image processing problems.

While great effort has been made to study the statistical regularities of static natural images,1,2 much less
has been done for natural image sequences. One approach is to compute the autocorrelation function of the
image sequence along both spatial and temporal directions. Assuming spatial and temporal stationality, such an
autocorrelation function can be studied more conveniently in the Fourier transform domain as a spatiotemporal
power spectrum.5 It has been found that the spatiotemporal power spectrum of natural image sequences demon-
strate interdependence between spatial and temporal frequencies, and the interdependence may be accounted for
by assuming a 1/fp static power spectrum and a rotationally invariant distribution of velocities.5 Independent
component analysis has also been applied to local 3-D blocks extracted from natural image sequences.6 It was
shown that the components obtained by optimizing independence are filters localized in space and time, spa-
tially oriented, and directionally selective. Similar shapes of linear components were also obtained by optimizing
sparseness via a matching pursuit algorithm.7 Other prior models about natural image sequences have also been
assumed, though not directly measured. For example, in the literature of optical flow estimation, it is often
assumed that image motion or optical flow is spatially smooth.8 As a result, the motion or optical flow vectors
measured locally should vary smoothly across space. Explicit prior models in favor of lower speed of motion
has also been assumed5,9, 10 and applied to Bayesian optical flow estimation.9 In a recent study,11 the shape of
the “biological” speed prior was inferred directly from psychophysical speed perception experiment under the
existence of noise. The inferred prior verifies the strong preference of slower motion and shows significantly
heavier tails than a Gaussian.

Presented at: IS&T/SPIE Annual Symposium on Electronic Imaging, San Jose, CA, Jan. 19-22, 2009Published in: Human Vision and Electronic Imaging XIV, Proc. SPIE, vol. 7240. @SPIE



(a) (b) (c)

Motion Estimation Motion Estimation

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Histogram of
vertical
motion

difference

Histogram of
horizontal

motion
difference

(d) (e)
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Figure 1. Illustration of motion smoothness of natural image sequences. The motion vector fields estimated for consecutive
video frames are slowly varying over both space and time.

Besides the preference for lower-speed and spatially-smooth motion, here we are interested in another type of
statistical regularity of natural image sequences − the smoothness of motion along temporal direction. Figure 1
gives an illustration, where (a) and (b) are motion vector fields estimated from three consecutive frames of the
“Susie” sequence. It can be observed that the motion vectors are slowly-varying not only over space, but also
over time, which is confirmed by the difference motion vector fields shown in (c). The histograms of the vertical
and horizontal components of (c) are plotted in (d) and (e), respectively, where the high peaks at 0 indicate the
statistical preference of temporal motion smoothness.

Figure 1 suggests a direct method to capture temporal motion smoothness, i.e., estimating the motion vector
fields of consecutive video frames and then measuring the variations of the motion vectors along temporal
direction. However, motion estimation is an computationally expensive task, which often involves a complicated
search procedure (e.g., in block-matching motion estimation algorithms12) or requires solving adaptive equations
at each spatial location (e.g., in optical flow-based motion estimation methods8).

In this paper, we propose to investigate temporal motion smoothness in the complex wavelet transform
domain, where the magnitudes of complex wavelet coefficients exhibit translation invariance properties,13 and
the relative phase patterns between the coefficients have found to be the most informative in describing local image
structures.14,15 In previous work, global (Fourier) and local (wavelet) phases have been found to carry important
information about image structures.14,16–18 The local phase structure of static natural images demonstrates clear
statistical regularities and has intriguing perceptual implications.14 In the computer vision literature, local phase
has been used in a number of applications such as estimation of image disparity19 and motion,20,21 description



of image textures,22 and recognition of persons using iris patterns.23 However, the behaviors of local phase
variations over time, whether such behaviors can be used to characterize “natural” image sequences, and how
“unnatural” image distortions interfere with such behaviors have not been deeply investigated.

In the next section, we derive the local phase relationships for the ideal cases of temporal motion smooth-
ness. Such phase relationships allow us to predict the phase structures of complex wavelet coefficients along
temporal direction. The accuracy of these ideal phase predictions for real natural images is studied empirically
in Section 3 and a probability model that can account for the predictions is proposed. In Section 4, we investi-
gate how “unnatural” image distortions disturb such temporal statistical regularities of local phase. Section 5
demonstrates the potential applications of temporal motion smoothness measurement in reduced-reference video
quality assessment. Finally, Section 6 draws conclusions and discuss potential extensions of the work.

2. TEMPORAL MOTION SMOOTHNESS BY LOCAL PHASE CORRELATIONS

Let f(x) be a given real static signal, where x is the index of spatial position. When f(x) represents an image,
x is a 2-D vector. For simplicity, in the derivations below, we assume x to be one dimensional. However, the
results can be easily generalized to two and higher dimensions. A time varying image sequence can be created
from the static image f(x) with rigid motion and constant variations of average intensity:

h(x, t) = f(x + u(t)) + b(t) . (1)

Here u(t) indicates how the image positions move spatially as a function of time. b(t) is real and accounts for
the time-varying background luminance changes. This formulation can be viewed as a generalization of the
brightness constancy assumption8,24 (in which b(t) ≡ 0), but the inclusion of the luminance change improves
flexibility and stability of the representation. For example, when the lighting condition of a fixed scene changes
over time, the brightness constancy assumption would not hold, but the situation would be better described with
this formulation.

Now consider a family of symmetric complex wavelets whose “mother wavelets” can be written as a modulation
of a low-pass filter w(x)= g(x) ejωcx, where ωc is the center frequency of the modulated band-pass filter, and
g(x) is a slowly varying and symmetric function. The family of wavelets are dilated/contracted and translated
versions of the mother wavelet:
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where s ∈ R+ is the scale factor, and p ∈ R is the translation factor. Considering the fact that g(−x) = g(x),
and using the convolution theorem and the scaling and modulation properties of the Fourier transform, we can
compute the complex wavelet transform of a given signal f(x) as
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where F (ω) and G(ω) are the Fourier transforms of f(x) and g(x), respectively. Applying such a complex wavelet
transform to both sides of Eq. (1) at a given time instance t, we have

H(s, p, t) =
1
2π

∫ ∞

−∞
F (ω)

√
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√
sG(sω − ωc)ejωpej(ω−ωc/s)u(t)dω

≈ F (s, p) ej(ωc/s)u(t) . (4)

Here b(t) is eliminated because of the bandpass nature of the wavelet filters. The approximation is valid when
the envelope window g(t) is slowly varying and the motion u(t) is small. In the extreme case, the approximation



becomes exact when g(x) ≡ 1, i.e., G(ω) = δ(ω), or when there is no motion, i.e., u(t) = 0. A more convenient
way to understand Eq. (4) is to take a logarithm on both sides, which gives

log H(s, p, t) ≈ log F (s, p) + j(ωc/s)u(t) . (5)

Note that the first term of the right-hand-side does not change over time. The key property of Eq. (5) is that at a
given scale s and a given spatial position p, the imaginary part of the logarithm of the complex wavelet coefficient
changes linearly with u(t). In other words, the local phase structures over time can be fully characterized by the
movement function u(t). Taylor series expansion of u(t) at a specific time instance t0 yields

u(t) = u(t0) + u′(t0)(t− t0) +
u′′(t0)

2
(t− t0)2 + · · ·+ u(n)(t0)

n!
(t− t0)n + · · · . (6)

We call u(t) N -th order smooth if its (N+1)-th and higher order derivatives with respect to t are all zeros.
For instance, zero-order smooth motion implies no motion [u(t) is a constant over time], first-order smooth
motion corresponds to constant speed [u′(t) is a constant], and second-order smooth motion leads to constant
acceleration [u′′(t) is a constant], and so on. Notice that here the definition of motion smoothness is different
from the notion of motion smoothness typically used in optical flow estimation,8 where motion smoothness refers
to the slow variations of motion vectors over space. We believe that temporal motion smoothness is a better term
to describe the concept we are discussing here.

In order to relate temporal motion smoothness with the time-varying complex wavelet transform relationship
of Eq. (5), we must examine the complex wavelet coefficients at multiple time instances. A convenient choice is
to start from a time instance t0 and sample the sequence at consecutive time steps t0 + n∆t for n = 0, 1, ..., N .
The N -th order derivatives of u(t) at t0 can be approximated by the following N -th order differentiator:

u(N)(t0) =
1

(∆t)N

N∑
n=0

(−1)n+N

(
N

n

)
u(t0 + n∆t) . (7)

Now we define the N -th order temporal correlation function as follows:
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By Eq. (5), we have
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where we have used Eq. (7) and the fact that
∑N

n=0(−1)n
(
N
n

)
= 0. Now suppose that the motion is (N -1)-th

order smooth, then u(N)(t0) = 0, and therefore

LN (s, p) ≈ 0 . (10)

It needs to be kept in mind that this approximation is achieved based on the ideal formulation of Eq. (1) and the
ideal assumption of (N -1)-th order temporal motion smoothness. Real natural image sequences are expected to
deviate from these assumptions. However, by looking at the statistics of LN (s, p) (especially its imaginary part,
which is a measure of temporal local phase correlation), one may be able to quantify such deviation and use it
as an indication of the strength of temporal motion smoothness.



In addition, we define the following temporal weighted averaging function in the log-complex wavelet domain:

MN (s, p) =
N∑

n=0

(
N

n

)
log H(s, p, t0 + n∆t) . (11)

We find it also helpful in characterizing the statistical properties of natural image sequences and will demonstrate
its usefulness in the next section.

3. IMAGE SEQUENCE STATISTICS

For a given image sequence, we decompose each frame using the complex version22 of the steerable pyramid,25 a
multi-scale wavelet decomposition whose basis functions are spatially localized, oriented, and roughly one octave
in bandwidth. Specifically, a 3-scale 2-orientation pyramid is computed, resulting in six oriented subbands, a
highpass residual band, and a lowpass residual band. By aligning the oriented subbands at the same orientation
and scale but across different frames, we obtain a discrete (in both space and time) version the function H(s, p, t)
for a particular scale and orientation. We then compute LN (s, p) and MN (s, p) for N = 1, 2, 3, 4 for all the
coefficients within the subband.
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Figure 2. Marginal statistics of the imaginary parts of the first-order (a), second-order (b), third-order (c), and fourth-order
(d) temporal correlation functions LN (s, p). The image sequence demonstrates strong temporal motion smoothness.

To study temporal motion smoothness, we first examine the marginal distribution of the imaginary part of
the temporal correlation coefficient imag{LN (s, p)}. The histograms of imag{LN (s, p)} for N = 1, 2, 3, 4 of the
“Susie” sequence are shown in Fig. 2. It can be observed that all the histograms peak near zero, and the peaks
move toward zero with the increasing order of the temporal correlation function. Although Fig. 2 only shows the
statistical results from a single image sequence, similar results were obtained for most of the other sequences we
tested∗. This demonstrates strong prior of temporal motion smoothness of natural image sequences. Another
important observation is that the histograms are quite peaky, much more than the von Mises distribution widely
used in describing statistics of circular data.26 We empirically found that a four-parameter function that can

∗Exceptions were observed for the image frames across scene changes and for the image frames with very large motion
(where the distances of moving objects between frames are beyond the coverage of the wavelet filter envelops).



almost always well describe the data is given by

pm(θ) =
1
Z

{
exp

[
−

( | sin[(θ − θ0)/2]|
α

)β
]

+ C

}
(12)

where θ is the phase variable, Z is a normalization constant, and the four parameters θ0, α, β and C controls
the center position, width, peakedness and the baseline of the function, respectively. We numerically fit the
histograms with the model by minimizing the Kullback-Leibler distance27 (KLD) between the observed and the
model distributions. Some fitting results are demonstrated in Figure 2. We have used this fitting model for
reduced-reference image quality assessment, which will be detailed in Section 5.

We have also studied the relationship between temporal motion smoothness and the strength of the underlying
local signal. In particular, we generate the conditional histogram of the imaginary part of LN (s, p) versus the
real part of MN (s, p), which provides a useful measure of local signal strength. The result is demonstrated in
Figure 3(b), where each column in the 2-D histogram is normalized to one. Again, the histogram shows strong
temporal motion smoothness, and such a statistical regularity becomes stronger with the increase of local signal
strength. This is not surprising because small magnitude coefficients typically come from the smooth background
regions in an image and are easily disturbed by background noise.
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Figure 3. Three consecutive frames of the image sequence “Susie” and statistics of the second-order temporal correla-
tion function L2(s, p). (a) Marginal histogram of the imaginary part; (b) Histogram of the imaginary part of L2(s, p)
conditioned on the real part of M2(s, p).

4. INTERFERENCE WITH “UNNATURAL” DISTORTIONS

The merit of natural image prior models should be evaluated by their capabilities of distinguishing natural
and unnatural images. Here we simulate a set of “unnatural” image distortions that often occur in real-world
applications and examine how these distortions interfere with the temporal motion smoothness prior.

The distortions being tested are divided into two categories. The first category of distortions do not change
individual pixel values but directly disturb temporal motion smoothness by shifting the positions of pixels.
Specifically, we investigated the effects of line jittering, frame jittering and frame dropping distortions, each
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Figure 4. Three consecutive frames of the image sequence “Susie” distorted with line jittering and statistics of the second-
order temporal correlation function L2(s, p). (a) Marginal histogram of the imaginary part; (b) Histogram of the imaginary
part of L2(s, p) conditioned on the real part of M2(s, p); (c) Objective RRVQA score D as a function of line jittering level.

of which is associated with certain real-world scenario. In particular, line jittering occurs when two fields of
interlaced video signals are not synchronized, frame jittering is often caused by irregular camera movement such
as hand shaking, and frame dropping usually happens when the bandwidth of a real-time communication channel
drops and some video frames have to be discarded to reduce the bit rate of the video signal being transmitted. To
simulate line jittering, we shift each line in a video frame horizontally by a random amount uniformly distributed
between a range of [−S, S], where S defines the level of jittering distortion. Figure 4 shows the results of liner
jittering. Comparing the marginal and conditional histograms (Fig. 4(a) and (b)) with those in Fig. 3, we observe
that the distributions of temporal phase correlation coefficients become almost flat, which implies that the prior
structure of temporal motion smoothness shown in Fig. 3 is severely disturbed. Frame jittering is simulated in
a similar way, only that the entire frame (rather than each line in the frame) is shifted together. Again, the
statistical regularity of temporal motion smoothness has been destroyed, as demonstrated in Fig. 5. To simulate
frame dropping, we discard N out of every N + 1 frames and use N to define the level of frame dropping.
The dropped frames will then be filled by repeating their previous frames. Figure 6 shows the effect of frame
dropping. It can be seen that the sharpness of the marginal and conditional histograms is significantly reduced
and the centers of the peaks in the distributions are shifted away from 0, demonstrating a clear disruption of
temporal motion smoothness.

The second category of distortions directly alter the values of individual image pixels. In particular, we
studied the effects of additive white Gaussian noise contamination and Gaussian blur distortion. Although they
do not directly change the motion information contained in the video, they reduce the sharpness of local image
structures, and thus affect the local phase correlations across frames. In Fig. 7, white Gaussian noise is added
to each frame of the video sequence, where the noise level is defined as the standard deviation of the Gaussian
distribution. In Figure 8, each video frames is blurred spatially by convolving with a linear filter of Gaussian
shape, where the standard deviation of the Gaussian filter defines the blur level. It can be observed that in both
cases, the strong prior of temporal motion smoothness is significantly reduced.
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Figure 5. Three consecutive frames of the image sequence “Susie” distorted with frame jittering and statistics of the
second-order temporal correlation function L2(s, p). (a) Marginal histogram of the imaginary part; (b) Histogram of the
imaginary part of L2(s, p) conditioned on the real part of M2(s, p); (c) Objective RRVQA score D as a function of frame
jittering level.

5. APPLICATION TO REDUCED-REFERENCE VIDEO QUALITY ASSESSMENT

From the study in previous sections, we observe that temporal motion smoothness is a common feature of natural
image sequences but disrupted by various types of “unnatural” image distortions. One direct application of such
a feature is to use it for reduced-reference video quality assessment (RRVQA), which aims to estimate video
quality degradations with only partial information about the “perfect-quality” reference video (This is different
from full-reference video quality measures such as peak signal-to-noise ratio and the structural similarity index28

that require full access to the original video). The idea is to use temporal motion smoothness measures extracted
from the reference video signal as the RR features and then quantify video quality degradations based on the
variations of these RR features in the distorted video signal.

For a given image sequence, we first divide it into groups of pictures (GOPs), each containing 3 consecutive
frames. For each GOP, we apply a complex steerable pyramid decomposition to all 3 frames and compute the
second order temporal correlation function L2(s, p) for each oriented subband. The observations of the marginal
histograms shown in Figs. 4 to 8 suggest that the variations in the marginal distributions of imag{L2(s, p)}
between the original and distorted image sequences can be used as a measure of image distortions. A convenient
way to quantify such variations is to compute the KLD27 between them:

d(p‖q) =
∫

p(θ) log
p(θ)
q(θ)

dθ , (13)

where p(θ) and q(θ) are the probability density functions of imag{L2(s, p)} of the original and distorted signals,
respectively. To accomplish this, the histograms of both the original and distorted signals must be available. The
latter can be easily computed from the distorted signal, which is always available. The difficulty is in obtaining
the histogram of the reference signal. Using all the histogram bins as RR features would result in either a heavy
RR data rate (when the bin size is fine) or a poor approximation accuracy (when the bin size is coarse). To
overcome this problem, we make use of the fitting model of Eq. (12), such that only four parameter (θ0, α, β and
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Figure 6. Three consecutive frames of the image sequence “Susie” with frame dropping distortion and statistics of the
second-order temporal correlation function L2(s, p). (a) Marginal histogram of the imaginary part; (b) Histogram of the
imaginary part of L2(s, p) conditioned on the real part of M2(s, p); (c) Objective RRVQA score D as a function of frame
dropping level.

C) are needed to describe it (as opposed to all the histogram bins). Furthermore, to account for the variations
between the model and the true distribution, we compute the KLD between pm(θ) and p(θ) as

d(pm‖p) =
∫

pm(θ) log
pm(θ)
p(θ)

dθ (14)

In summary, a total of 5 RR features (4 features to describe pm(θ) together with d(pm‖p)) are extracted from
each subband of the original signal.

To evaluate the quality of the distorted image sequence, we first estimate the KLD between the probability
density function q(θ) of the imag{L2(s, p)} coefficients computed from the distorted signal and the model pm(θ)
estimated from the original signal:

d(pm||q) =
∫

pm(θ) log
pm(θ)
q(θ)

dθ . (15)

Combining this with the available RR feature d(pm||p), we obtain an estimate of the KLD between p(θ) and
q(θ):

d̂(p||q) = d(pm||q)− d(pm||p) =
∫

pm(θ) log
p(θ)
q(θ)

dθ . (16)

With the additional cost of adding one more RR parameter d(pm||p), Eq. (16) not only delivers a more accurate
estimate of d(p‖q) than Eq. (15), but also provides a useful feature that when there is no distortion between the
original and distorted signals (which implies that p(θ) = q(θ) for all θ), both the targeted distortion measure
d(p‖q) and estimated distortion measure d̂(p‖q) are exactly zero. Finally, the overall quality degradation of the
distorted image sequence is computed as

D =
1
K

∑

GOPs

∑

subbands

d̂(p‖q) , (17)
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Figure 7. Three consecutive frames of the image sequence “Susie” contaminated with different levels of white Gaussian
noise and statistics of the second-order temporal correlation function L2(s, p). (a) Marginal histogram of the imaginary
part; (b) Histogram of the imaginary part of L2(s, p) conditioned on the real part of M2(s, p); (c) Objective RRVQA score
D as a function of noise level.

where K is the number of GOPs in the image sequence.

We test the proposed algorithm using five types of distortions, including line jittering, frame jittering, frame
dropping, additive white Gausssian noise contamination and Gaussian blur, as described in Section 4. The results
for the “Susie” image sequence of the five distortion types are shown in Figs. 4 to 8 (c), respectively, where the
horizontal axes indicate the distortion levels and the vertical axes show the distortion measure computed using
Eq. (17). It can be observed that the same objective distortion measure D is consistently increasing with the
strength of each individual type of distortion. Similar results were obtained for other image sequences we tested.
This demonstrates the potential of the proposed method for general-purpose RRVQA, which is different from most
VQA approaches in the literature where ad-hoc features tuned to specific distortion types (such as blocking29

and ringing30 artifacts) are often used, and thus limit their application scope. Another interesting observation is
regarding the frame jittering and frame dropping distortions. Notice that with these two types of distortions, the
quality of each individual frame remains high quality, and thus frame-by-frame quality assessment approaches
would give high quality scores to the image sequences undergoing these distortions, but the proposed method
can capture them quite effectively without any specific change of the algorithm.

6. CONCLUSION AND DISCUSSION

We propose a new method to capture the statistical regularities of natural image sequences. In particular,
we investigated the local phase structures of images along the temporal direction. We developed a temporal
correlation function, which is a useful tool to measure the temporal motion smoothness of image sequences. We
observed that natural image sequences exhibit strong prior of temporal motion smoothness. A probability model
is proposed to describe the marginal statistics of temporal phase correlation coefficients. We demonstrated how
typical “unnatural” image distortions interfere with the temporal motion smoothness prior. The distortions
between the marginal distributions of the temporal motion smoothness of the original and distorted image
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Figure 8. Three consecutive frames of the image sequence “Susie” distorted with different levels of Gaussian blur and
statistics of the second-order temporal correlation function L2(s, p). (a) Marginal histogram of the imaginary part; (b)
Histogram of the imaginary part of L2(s, p) conditioned on the real part of M2(s, p); (c) Objective RRVQA score D as a
function of blur level.

sequences are used to predict video quality degradations. The advantage of the proposed local phase correlation-
based approach is that temporal motion smoothness is measured without an explicit motion estimation process,
which is often computationally expensive. In addition, different orders of temporal motion smoothness can be
modelled under a unified framework (Specifically, zero-, first- and second-order temporal motion smoothness
correspond to no motion, constant speed, and constant acceleration, respectively).

The temporal motion smoothness prior has useful implications for biological vision. One of the major tasks
of biological visual systems is to track moving objects, where the observer must be able to efficiently distinguish
self-motion and the motion created by the moving objects in the visual world. Prior knowledge about the motions
in the natural visual environment would be useful information for this purpose.

The temporal motion smoothness prior may also be used for solving a number of computer vision and image
processing problems. Besides RRVQA being studied in this paper, the prior model has the potential to be
employed for no-reference video quality assessment (where no information about the reference video is available).
It can also be applied to video compression, which aims to remove the statistical redundancies within image
sequences, and prior knowledge about natural image sequences will certainly be helpful. Furthermore, the prior
may also be used for other applications such as motion estimation, target tracking, and video filtering, denoising
and restoration.
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