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Abstract. Medical imaging devices often capture the raw data with
high precision, producing high dynamic range (HDR) images. To vi-
sualize HDR images on regular displays, there has been an increasing
number of tone mapping algorithms developed in recent years that con-
vert HDR to low dynamic range (LDR) images. To visualize HDR med-
ical images, a so-called “windowing” procedure is typically employed
by which the structural details within the intensity region of interest is
mapped to the dynamic range of regular displays. Linear mapping is the
most straightforward windowing operator, but may not be the optimal
mapping function in terms of structure preserving. Here we propose a
framework to adaptively find the optimal windowing function for differ-
ent images. Specifically, a recently developed structural fidelity measure
for tone mapped images is employed to adaptively optimize the window-
ing function, so as to achieve the best structural fidelity with respect to
the original HDR image. Experiments demonstrate the promising per-
formance of the proposed adaptive windowing method.

1 Introduction

Medical images are typically captured and stored using formats that allocate
more bits to each pixel than those assumed by standard displays. As such, they
are high dynamic range (HDR) images [5]. The HDR image format provides suffi-
cient precision for medical imaging in terms of capture, processing and rendering
in medical imaging. A number of standards have been introduced to store HDR
medical images: The Digital Imaging and Communications in Medicine (DI-
COM) is one of the most widely used standards in medical image repositories.

A problem often encountered in practice is how to visualize HDR medical
images on regular displays which are designed to display low dynamic range
(LDR) images. In order to overcome this problem, a number of tone mapping
algorithms that convert HDR to LDR images have been developed. Many of these
methods employ a straightforward windowing method which maps an intensity
interval of interest linearly to the dynamic range of the display. Such intervals of
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interest vary for different body parts. These intervals can be defined using two
parameters: (i) window width, the range of the interval, to be denoted here as
W and (ii) the window center, the center of this interval, to be denoted as C.
It follows that the tone mapping algorithm maps the range of luminance values
C − 1

2W ≤ l ≤ C + 1
2W to the LDR range [0, 255] using a linear function. The

default values for window width and window center are embedded in headers
of HDR medical image files. These parameters, however, are not optimized for
the visualization of different body parts. In practice, radiologists often adjust
the window width and window center manually so that the details for particular
body regions become more visible.

Because of the reduction in dynamic range, windowing procedures inevitably
cause information loss. Moreover, the linear mapping function may not be opti-
mal in the sense of perfectly capturing structural information. As a result, it is
of interest to find optimal tone mapping functions which can faithfully preserve
the structural details in a window region. In order to differentiate between the
performances of different tone mapping functions, it is necessary to measure the
visual qualities of the resulting 8 bit mapped images. The most straightforward
method to assess the quality of medical images is subjective evaluation [2] [4].
Although subjective evaluation may be extremely valuable in determining the
performance of tone mapping algorithms, it is time consuming and expensive,
particularly in the case of clinical images. Therefore, it is essential to employ
reliable objective quality assessment methods for medical images. PSNR and
MSE are the most common objective measures used to make judgements about
the quality of images [3]. However, it is well known that these methods, which
are based upon the L2 distance, are not necessarily good for visual quality as-
sessment [6]. What complicates matters further is that these methods cannot
be applied directly to the tone-mapping problem, since it involves images with
different dynamic ranges.

In this work, our goal is to produce tone mapping operators that are superior
to the linear mappings currently employed for the purpose of visualizing HDR
medical images. Our proposed approach employs two types of continuous, mono-
tonically increasing tone-mapping functions and tunes their parameters to map
the structural information within the window width onto the display dynamic
range in an optimal way. The optimization task is carried out by exploiting
the structural fidelity measure introduced in [8]. Our experiments confirm that
the linear mapping function is not optimal in terms of the fidelity of structural
information. In addition, they show that modifying the mapping function for
maximal structural fidelity measure produces medical images with higher con-
trast and more visible details.

2 Structural Fidelity Measurement

Since the windowing function reduces the dynamic range of an image, all the
information contained in an HDR medical image cannot be preserved. Human
observers, particularly doctors/radiologists, may not be aware of this loss of
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information. A tool to measure structural fidelity may, therefore, play an im-
portant role in assessing the quality of LDR medical images. The structural
similarity index (SSIM) framework has inspired us to develop an SSIM-based
structural fidelity measure [7] [8] [9]. A modified version of the original SSIM
algorithm, which contains three comparison components − luminance, contrast
and structure − is applied locally. Since the window mapping function alters
local luminance and contrast, the direct comparison of these quantities between
HDR medical images and their LDR counterparts is inappropriate. Let x and
y be two local image patches extracted from the HDR and the LDR medical
images, respectively. We define a local structural fidelity measure as

Slocal(x, y) =
2σ′xσ

′
y + C1

σ′x
2 + σ′y

2 + C1

· σxy + C2

σxσy + C2
. (1)

The second term is the same as the structure comparison component in the usual
SSIM index, where σx, σy and σxy denote the local standard deviations and cross
correlation between the two corresponding patches in the HDR and LDR medical
images, respectively, and C1 and C2 are positive stability constants. The first
term corresponds to a modification of the local contrast comparison of SSIM
which is based on two intuitive considerations. First, the contrast differences
between HDR and LDR image patches should not be penalized as along as their
contrasts are both significant or both insignificant. Second, the measure should
penalize the cases in which contrast is significant in one of the image patches
but not in the other. A critical issue here is to quantify the significance of local
contrast. To do so, we pass the local standard deviation through a nonlinear
mapping function resulting in the σ′ value employed in (1).

The definition of the nonlinear mapping is based on the visual sensitiv-
ity of contrast. Practically, the human visual system (HVS) does not have a
fixed threshold of contrast detection, but typically follows a gradually increas-
ing probability in observing contrast variations [1]. In psychophysics, a so-called
psychometric function is employed to describe the detection probability of sig-
nal strength. A common model for psychometric functions is known as Galton’s
ogive [1], which determines the detection probability density of the amplitude of
the sinusoidal stimulus using a cumulative normal distribution function. In [8],
Galton’s psychometric function was rewritten in terms of the standard deviation
of the signal. As a result the mapping between σ and σ′ is defined as:

σ′ =
1√

2πθσ

∫ σ

−∞
exp

[
− (t− τσ)2

2θ2σ

]
dt , (2)

where τσ is the contrast threshold and θσ = τσ/3. In [8], the contrast threshold,
τσ, is calculated for natural images using a CSF model as well as a contrast
sensitivity measurement assuming a pure sinusoidal stimulus. However, since a
judgement about significant and insignificant contrast details in medical images
is crucial and the neglect of any important structural information might lead
to grave consequences, we prefer here to set the contrast thresholds to be very
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(a) (b)

Fig. 1. Medical images which are compared with the DICOM reference file. (a) Tone
mapped image using the linear mapping function S = 0.40. (b) Associated quality map.

small. As a result, the structural fidelity method penalizes mappings from non-
flat regions to flat regions and vice-versa. In our experiments, we set τσ to 1 and
0.5 for HDR and LDR medical images, respectively. In (1), σ′x and σ′y are the
mapped versions of σx and σy, respectively. They are bounded between 0 and
1, where 0 and 1 represent completely insignificant and completely significant
signal strengths, respectively.

The local structural fidelity measure Slocal is applied to an image using a
sliding window that runs across the image, resulting in a map that reflects the
variation of structural fidelity across space. Figure 3(a) shows a CT image of an
abdomen region tone-mapped by a linear function. The quality map produced by
the proposed measure is shown in Figure 3(b). The window width and window
center parameters are extracted from the DICOM image header. It is interesting
to observe these fidelity maps and examine how they correlate with perceived
image fidelity. For example, because of the window width and window center
parameters, the structural details in the lung are missing in Figure 3(a). In
Figure 3(b), the quality map in the lung region is black, indicating that there
are some details in the original DICOM image that are not mapped into the
LDR image. On the other hand, a white region in the boundary illustrates that
there is no structural information in the original DICOM image in the corners –
therefore, nothing is lost by the linear mapping function. Finally, the components
of the quality map are averaged to provide a single score – the overall structural
fidelity-based quality measure,

S =
1

N

N∑
i=1

Slocal(xi, yi) , (3)
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where xi and yi are the i-th patches in the HDR and LDR medical images
being compared, respectively, and N is the number of patches. To implement
the proposed algorithm, we set C1 = 0.01, C2 = 10, and employ a Gaussian
sliding window of size 11×11 with standard deviation 1.5 to create the quality
map.

The main advantage of the structural fidelity measure described above is the
ability to comparing LDR and HDR medical images without creating an LDR
image as reference. This provides a useful tool for medical imaging since radi-
ologists do not have to produce an LDR reference image each time the window
width and window center are adjusted. In contrast, commonly employed quality
metrics such as PSNR and SSIM have to compare the test image with an LDR
reference image generated by a windowing process. In addition, the quality map
indicates the performance of tone mapping or image processing algorithms in
the regions of interest. In Figure 1, the quality maps reflect the quality of heart
and tissue regions regardless of the black background which is of no interest.

3 Finding the Optimal Windowing Function

Let x be the original HDR image; ll and lu be the lower and upper bounds of the
window range, respectively; f be the windowing (or intensity mapping) function
lives in the space defined by

F[ll,lu] = {f : [ll, lu]→ [0, 1] | f continuous & monotonically increasing} ; (4)

Tf (.) be the tone mapping operator that applies the function f pointwise to an
image and quantize the mapped value to the dynamic range of the LDR display;
and S(·, ·) be the structural fidelity measure defined in the previous section. Our
goal is to search for the optimal mapping function f in terms of S(x, Tf (x)):

fopt = arg max
f∈F[ll,lu]

S(x, Tf (x)) . (5)

Here we consider only two subsets of this space: (i) piecewise linear functions
and (ii) functions spanned by an appropriate family of sine functions.

3.1 Windowing function using piecewise linear basis

For simplicity, we consider piecewise linear functions defined by an equipartition
of the HDR intensity range [ll, lu] into n subintervals Ik = [lk−1, lk] for 1 ≤ k ≤ K
of length ∆l = (lu − ll)/K. The partition points are defined by lk = ll + k∆l,
0 ≤ k ≤ n, as such ll = l0 and lu = ln. The window width and window center
are, respectively,

W = ln − l0 = n∆l, C =
1

2
(l0 + ln) = l0 +

n∆l

2
. (6)
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Every such equipartition piecewise linear function can be expressed as a linear
combination of n basis functions. The first basis function is a “ramp” function
that corresponds to a direct linear mapping in the full range:

φ0(l) =

{
(l − l0)/W, l0 ≤ l ≤ ln;
0, otherwise.

(7)

The other n− 1 basis functions are defined in terms of the standard triangle or
“hat” function given by

t(l) =

{
1− |l|, − 1 ≤ l ≤ 1;
0, otherwise.

(8)

Specifically, we have

φk(l) = t

(
l − lk
∆l

)
, for k = 1, · · · , n− 1 (9)

As such, any equipartition piecewise linear function can be expressed as

f(l) =

n−1∑
k=0

ckφk(l) = φ0(l) +

n−1∑
k=1

ckφk(l) , (10)

where the value of c0 is known to be 1. In order for the function to be monoton-
ically increasing, we need 0 ≤ · · · ≤ f(lk−1) ≤ f(lk) ≤ · · · ≤ 1, which yields

0 ≤ · · · ≤ ck−1 +
k − 1

n
≤ ck +

k

n
≤ · · · ≤ 1 . (11)

For example, in the case that n = 3, we can derive c1 ≥ − 1
3 ;

c2 − c1 ≥ − 1
3 ;

c2 ≥ 1
3 .

(12)

3.2 Windowing function using family of sine basis

The windowing function may also be expressed using a linear combination of a
family of sine basis functions defined by

φk(l) = sin

(
kπ(l − ll)

W

)
for ll ≤ l ≤ lu and k = 1, 2, · · · (13)

We then obtain an n-th order approximation of any f in F[ll,lu] using the same
expression as (10), where the only difference is that the triangle basis functions
are replaced by the sine basis functions.

As a special case, when n = 3, we have

f(l) =
l − ll
W

+ c1 sin

(
π(l − ll)
W

)
+ c2 sin

(
2π(l − ll)

W

)
, (14)
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To ensure f(l) to be monotonically increasing, its derivative needs to be no less
than 0:

f ′(l) =
1

W
+
πc1
W

cos

(
π(l − ll)
W

)
+

2πc2
W

cos

(
2π(l − ll)

W

)
≥ 0 . (15)

To find the extrema l∗ of f ′(l), we set its derivative to 0, which yields

f ′′(l∗) = −π
2c1
W 2

sin

(
π(l∗ − ll)

W

)
− 4π2c2

W 2
sin

(
2π(l∗ − ll)

W

)
= 0 . (16)

Expanding the second term, we obtain

sin

(
π(l∗ − ll)

W

)[
c1 + 8c2 cos

(
π(l∗ − ll)

W

)]
= 0 , (17)

for which we have three possible solutions:

l∗ = ll , (18)

l∗ = lu , (19)

cos

(
π(l∗ − ll)

W

)
=
−c1
8c2

. (20)

From (20), we have

cos

(
2π(l∗ − ll)

W

)
= 2

(
−c1
8c2

)2

− 1 =
c21

32c22
− 1 . (21)

Substituting (18), (19) and the pair (20) and (21) into (15), we obtain the three
constraints on the solutions of c1 and c2:

c1 + 2c2 ≥ − 1
π

−c1 + 2c2 ≥ − 1
π

c21
16c2

+ 2c2 ≤ 1
π .

(22)

3.3 Finding optimal windowing functions

With the two types of windowing functions defined in previous subsections, the
problem of finding fopt in (5) is converted to finding the best set of coefficients
ck’s for the basis functions. This can be done by substituting (10) into (5) and
solving it using numerical optimization tools (e.g., Matlab fmincon function)
under appropriate constraints, e.g., in the case n = 3, the constraints are given
by (11) and (22) for piecewise linear and sine basis functions, respectively.

To demonstrate the proposed optimization methods, Figure 2 (a) shows the
result of linear mapping (S = 0.8853), where the window width and window
center parameters are preset values embedded in the DICOM header. Our op-
timization algorithm does not change these parameters, but attempts to find
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(a) (b)

(c)
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Fig. 2. Results of the optimization method. (a) with S = 0.8853 is the tone mapped
image using linear mapping function where the window width and window center are
read from DICOM file header. (b) with S = 0.9292 and (c) with S = 0.9446 are the
enhanced images employing functions in (10) and (14), respectively. Image courtesy of
AGFA Healthcare Inc.

the optimal values for c1 and c2. Figure 2 (b) illustrates the result of optimal
piecewise linear mapping, where the best coefficients are given by c1 = −0.15
and c2 = −0.01and S = 0.9294 is obtained. Enhanced contrast in the image
is observed, where the details in the spine and the lung are more discernable.
Using the family of sine bases, Figure 2 (c) is obtained for optimal coefficients
c1 = −0.0001 and c2 = −0.16 with even higher structural fidelity measure
S = 0.9446, producing an image with higher contrast and more visible details.
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(a) (b)

(c)
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Fig. 3. Results of the optimization method for the bone. (a) with S = 0.7746 is the
linearly mapped image using predefined windowing parameters for bone (window width
= 2000, window center = 500).(b) with S = 0.99 and (c) with S = 0.9852 are the
enhanced images using functions in (10) and (14), respectively. Image courtesy of AGFA
Healthcare Inc.

As was mentioned before, the window width and the window center parame-
ters in HDR file header do not necessarily provide a desirable contrast for specific
body parts such as the lung, the bone, the soft tissue and the brain. In prac-
tice, radiologists often change them manually for different body parts in order
to visualize the desired region with appropriate contrast. Figure 3 (a) is the
tone mapped image using DICOM standard windowing procedure with prede-
fined values for bone where S = 0.7746. The result of our optimization method
using piecewise linear windowing is shown in Figure 3(b), where c1 = 0.56,
c2 = 0.28 and S = 0.99. Figure 3 (c) shows the image produced by optimal sine
basis windowing with coefficients c1 = 0.37 and c2 = 0.04 and quality measure
S = 0.9852. It can be observed that the performance of the optimization task
using either approaches provides images with strong contrast enhancement. The
optimal windowing curve in Fig. 3 (d) reveals that the intensity of CT bone
images is concentrated in the middle of the window width. Since piecewise lin-
ear functions can model drastically increasing functions, it works slightly better
than the sine bases.
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4 Conclusion and Future Work

In order to overcome the problem of displaying HDR medical images on standard
LDR displays, a number of tone mapping algorithms that convert HDR to LDR
images have been developed. Many of these methods employ a straightforward
linear mapping from the window of interest to the low dynamic range. We have
shown that such commonly used linear functions are unable to map structural
information accurately and have proposed an optimization framework to con-
struct superior windowing functions that enhance contrast. The optimization
task seeks to maximize the structural fidelity measure in the tone-mapped LDR
image using the HDR medical image as reference. Our experiments have demon-
strated very promising results. In the future, there are some areas to be further
explored. Specifically, other families of continuous and monotonically increasing
functions should be examined. Clinically reliable subjective tests by radiologists
should be carried out to evaluate and calibrate the structural fidelity measure.

References

1. Peter G. J. Barten. Contrast sensitivity of the human eye and its effects on image
quality. SPIE Optical Engineering Press, Washington, 1999.

2. C. Cavaro-Menard, L. Zhang, and P. Le Callet. Diagnostic quality assessment of
medical images: Challenges and trends. In 2010 2nd European Workshop on Visual
Information Processing, EUVIP2010, pages 277–284, 2010.

3. Pamela C. Cosman, Robert M. Gray, and Richard A. Olshen. Evaluating quality
of compressed medical images: SNR, subjective rating, and diagnostic accuracy.
Proceedings of the IEEE, 82(6):919–932, 1994.

4. D. Koff, P. Bak, P. Brownrigg, D. Hosseinzadeh, A. Khademi, A. Kiss, L. Lepanto,
T. Michalak, H. Shulman, and A. Volkening. Pan-canadian evaluation of irreversible
compression ratios (”lossy” compression) for development of national guidelines.
Journal of Digital Imaging, 22(6):569–578, 2009.

5. E. Reinhard, G. Ward, S. Pattanaik, P. Debevec, W. Heidrich, and K. Myszkowski.
High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting.
Morgan Kaufmann Publishers Inc., 2010.

6. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment:
From error visibility to structural similarity. IEEE Trans. Image Proc., 13:35–44,
2004.

7. H. Yeganeh and Z. Wang. Objective assessment of tone mapping algorithms. In
Proc. IEEE Int. Conf. Image Proc., 2010.

8. H. Yeganeh and Z. Wang. Objective quality assessment of tone mapped images.
Submitted to IEEE Trans. Image Proc., 2011.

9. H. Yeganeh and Z. Wang. Structural fidelity vs. naturalness - Objective assessment
of tone mapped images, volume 6753 LNCS of Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). 2011.




