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ABSTRACT

There has been an increasing number of image super-resolution (SR)
algorithms proposed recently to create images with higher spatial
resolution from low-resolution (LR) images. Nevertheless, how to
evaluate the performance of such SR and interpolation algorithms
remains an open problem. Subjective assessment methods are useful
and reliable, but are expensive, time-consuming, and difficult to be
embedded into the design and optimization procedures of SR and in-
terpolation algorithms. Here we make one of the first attempts to de-
velop an objective quality assessment method of a given resolution-
enhanced image using the available LR image as a reference. Our
algorithm follows the philosophy behind the natural scene statistics
(NSS) approach. Specifically, we build statistical models of fre-
quency energy falloff and spatial continuity based on high quality
natural images and use the departures from such models to quan-
tify image quality degradations. Subjective experiments have been
carried out that verify the effectiveness of the proposed approach.

Index Terms— image quality assessment, image super-resolution,
image interpolation, natural scene statistics

1. INTRODUCTION

Image super-resolution (SR) techniques improve the spatial resolu-
tion of images beyond the limitations of the imaging acquisition de-
vices. These techniques play important roles in a variety of appli-
cations such as web browsing, medical imaging, and high-definition
television (HDTV) [1]. Here we are interested in SR algorithms that
use a single low-resolution (LR) image as the input and generates a
high-resolution (HR) image. In this case, image interpolation meth-
ods may be applied, where the LR image is assumed to be a directly
downsampled version of the HR image where the pixel intensities
remain unchanged at the sampling points. However, generally SR
approaches may not strictly follow this assumption, and may alter
the intensity values of the sampling pixels.

Although an increasing number of SR and interpolation algo-
rithms have been proposed in recent years, how to evaluate their
performance remains an open problem [2, 3]. A straightforward ap-
proach is subjective evaluation [3, 4], where multiple subjects are
asked to rate the quality of resolution-enhanced images and the mean
opinion scores (MOS) of the subjects is used as an indicator of image
quality. These tests provide reliable data in comparing different SR
algorithms because human eyes are the ultimate receivers of the im-
ages. However, they are expensive and extremely time-consuming.
More importantly, they are difficult to be incorporated into the de-
sign and optimization processes of SR and interpolation algorithms.

Automatic or objective image quality assessment (IQA) ap-
proaches for image SR is highly desirable but there has been very

little progress so far. The difficulty lies in the fact that a perfect-
quality HR image is unavailable to compare with. As a result,
common IQA approaches such as peak signal-to-noise-ratio (PSNR)
and the structural similarity (SSIM) index [5] are not directly appli-
cable.

The purpose of this work is to develop an objective IQA method
for a given HR image using the available LR image as a reference.
In particular, we take a natural scene statistics (NSS) approach [6],
which is based on the hypothesis that the human visual system is
highly adapted to the statistics of the natural visual environment
and the departure from such statistics characterizes image unnatu-
ralness. In the literature of IQA, such unnaturalness-based measures
have been successfully used to evaluate perceived image degrada-
tions [6]. In this study, we build statistical models in both spatial
and frequency domains and then combine them to produce an overall
distortion measure of the HR image. Experimental validation using
subjective evaluations demonstrates the effectiveness and usefulness
of the proposed algorithm.

2. PROPOSED METHOD

2.1. Frequency Energy Falloff Statistics

It has long been discovered that the amplitude spectrum of natural
images falls with the spatial frequency approximately proportional
to 1/fp [7], where f is the spatial frequency and p is an image de-
pendent constant. This helps us build a statistical model based on
frequency energy falloff. Specifically, we decompose both the HR
and LR images into dyadic scales using a steerable pyramid trans-
form [8] (which constitutes a tight frame and thus the energy in the
spatial domain is preserved in the transform domain). We then com-
pute the energy (sum of squared transform coefficients) in each scale
and observe how the energy falls from coarse to fine scales. An ex-
ample is shown in Fig. 1, which is computed using an HR “Barbara”
image together with an LR version of half size. There are two im-
portant observations from this example. First, the falloffs are ap-
proximately (but not exactly) straight lines in log-log scale, which is
consistent with the 1/fp relationship. Second, the falloffs of the HR
and LR images are approximately parallel. These strong structural
regularities in the energy falloff curves imply high predictability. In
particular, given an LR image, we can compute its frequency energy
falloff curve and then use it to predict the full falloff curve of its cor-
responding HR image, even beyond the finest scale in the LR image.

To test the theory motivated from the above discussion, we apply
the computation described above to pairs of high-quality LR and HR
natural images, and then study how accurately the falloff curves of
LR images can predict those of the HR images. We index the scales
from coarse to fine so that the finest scales of the HR and LR images
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Fig. 1. Frequency energy falloffs of the original LR and HR “Bar-
bara” images as well as interpolated images using bilinear, nearest
neighbor, and sparse SR [9] methods.

are Scale 6 and Scale 5, respectively (as exemplified in Fig. 1). Let
sHi and sLi denote the slopes of the falloffs between the i-th and the
(i+1)-th scales in the HR and LR images, respectively. To predict sHi
from sLi , we find direct prediction is precise for the first two slopes,
i.e., ŝH1 = sL1 and ŝH2 = sL2 . The third and fourth slopes can be well
predicted using the following linear models:

ŝH3 = a0 + a1s
L
3 (1)

ŝH4 = b0 + b1s
L
4 , (2)

where the prediction coefficients a0, a1, b0 and b1 are obtained by a
simple least square regression using real high-quality natural images.
Once ŝH3 and ŝH4 for the HR image are obtained, we can then use
them to predict the slope between the finest scales by

ŝH5 = c0 + c1ŝ
H
3 + c2ŝ

H
4 . (3)

Again, the coefficients c0, c1 and c2 here can be obtained using least
square regression using high-quality natural images. The predic-
tion coefficients obtained in our regression are given by a0 = 0.07,
a1 = 1.00, b0 = 0.89, b1 = 1.06, c0 = −3.38, c1 = −0.10, and
c2 = 0.89, respectively. Once all the slopes are predicted, we can
then reconstruct a predicted frequency energy falloff curve of the HR
image.

When working with the SR quality evaluation problem, the orig-
inal HR image is unaccessible. The falloffs of the HR images created
using SR or interpolation algorithms may be significant different,
depending on both the image and the SR/interpolation algorithm.
Several examples are shown in Fig. 1, where the largest differences
between different methods are observed in the finest scale. This is
expected because different SR/interpolation methods have different
ways to extend the LR image to finer scales. In particular, the bi-
linear interpolation method blur the image and thus reduce the high
frequency energy, while the nearest neighbors and the sparsity-based
SR method [9] add high frequency details to the images, and thus
the slopes are raising at the finest scale. Consequently, it is useful
to quantify the normalized error in frequency energy falloff between
the prediction and the true slope of the HR image at the finest scale:

ef =
ŝH5 − sH5
ŝH5

. (4)

Ideally, ef should be close to zero when the HR image is a high-
quality original image. We tested this using 1400 high-quality nat-
ural images and the histogram of ef is shown in Fig. 2, which we
find can be well fitted using a generalized Gaussian density (GGD)
function

pef (ef ) =
1

Zf
exp

[
−
(
|ef − µf |

αf

)βf]
, (5)

whereZf =
βf

2αfΓ(1/βf )
is a normalization factor, µf is the center of

the distribution, and αf and βf are the width and shape parameters,
respectively. This density function becomes peakier at the center
with the decrease of βf . As special cases, βf = 2 corresponds to a
Gaussian distribution and βf = 1 leads to a Laplacian distribution.
Our maximum likelihood based fitting result gives µ = 0.029, α =
0.0608, and β = 0.6124, which indicates that the distribution is
even peakier than Laplacian. The fitted curve is shown in Fig. 2.
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Fig. 2. Histogram and GGD fitting of prediction error ef of fre-
quency energy falloff for original HR natural images.

2.2. Spatial Continuity Statistics

The above statistical model is fully built in the transform domain. In
the spatial domain, interpolation algorithms often create unnatural
discontinuities. This motivates us to study continuity based statisti-
cal models in the spatial domain and relate them to the naturalness
of images. In addition, our method is also inspired by the success of
the image blockiness measure proposed in [10].

Let f(i) for i = 0, · · · , N − 1 be one row (or column) of pixels
extracted from the image, where N is the number of pixels in the
row (or column). A straightforward method to examine the signal
continuity is to compute an absolute differencing signal

g(i) = |f(i+ 1)− f(i)| for 0 ≤ i ≤ N − 2 . (6)

In the case of interpolation by a factor of 2, the even and odd samples
in f(i) may exhibit different levels of continuities, which will be
reflected in the amplitude patterns in g(i). By contrast, such patterns
should not be observed in g(i) computed from high-quality natural
images. To quantify this, we compute

es =
1

M

M−1∑
i=0

[g(2i)− g(2i+ 1)] , (7)



where M = bN/2c. This spatial continuity measure is computed
for every row and every column in the image and then averaged over
all rows and columns, resulting in a single overall spatial continuity
measure es of the whole image. The histogram of the es measure
of 1400 high-quality natural images is shown in Fig. 3. As in the
case of ef , the histogram can also be well fitted using a GGD model
(shown in Fig. 3) given by

pes(es) =
1

Zs
exp

[
−
(
|es − µs|

αs

)βs]
, (8)

where Zs is a normalization factor, and the maximum likelihood
estimation of the parameters are given by µs = 0.007, αs = 0.0751
and βs = 0.8679, respectively.
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Fig. 3. Histogram and GGD fitting of spatial discontinuity es for
original HR natural images.

2.3. Quality Assessment Model

The natural image probability models pef and pes introduced in the
previous subsections provide useful measures of the naturalness of
images. Based on the statistics we have shown, a high-quality HR
natural image should achieve nearly the maximum values in both
quantities with high probabilities. An interpolated HR image may
depart from such statistics and thus results in lower values. As-
sume independence of the two probability models, a normalized joint
probability measure of naturalness is given by

pn =
1

K
pef (ef )pes(es) , (9)

where a normalization factor K = max{pef pes} is added such that
the maximum naturalness measure of pn is up-bounded by 1. It is
straightforward to find that

K =
1

ZfZs
. (10)

A commonly used method in information theory to convert this
probability-based measure to a “surprisal” based distortion measure
is given by

Dn = − log pn . (11)
Plug (5), (8) and (9) into (11), we have

Dn =

(
|ef − µf |

αf

)βf
+

(
|es − µs|

αs

)βs
≡ Df +Ds , (12)

where we have defined the first term to be the frequency energy
falloff feature denoted by Df and the second the spatial continuity
feature by Ds.
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Fig. 4. Scatter plot of natural and interpolated images over frequency
energy falloff and spatial continuity features.

Figure 4 shows a scatter plot of 2000 images over theDf andDs
features, where each point corresponds to one image. These images
include both high-quality original HR natural images and HR images
created using different SR/interpolation methods. It can be observed
that the original natural image cluster is located near the origin. Dif-
ferent SR/interplation methods create different levels of Df and Dw
distortions and are clustered in different locations. For example,
the bilinear interpolation method does not have significant spatial
discontinuity distortions, but creates severe unnatural frequency en-
ergy falloffs (because of its blurring effect). By contrast, the near-
est neighbor interpolation algorithm generates blocking artifacts that
significantly affect spatial continuity.

Although Dn provides a simple and elegant measure that does
not require a training process using any distorted images (all parame-
ters are obtained using high-quality natural images only), it does not
take into account the variations in perceptual annoyance to different
types of distortions. A natural extension of this approach is to give
different weights to difference features. This results in a weighted
distortion measure given by

Dw = (1 + w)Df + (1− w)Ds , (13)

where w determines the relative importance of Df and Ds, and the
special case of w = 0 corresponds to the Dn measure. Empirically,
we find w = 0.82 produces reasonable results in the subjective test
discussed in the next section.

3. VALIDATION

A subjective experiment was conducted to validate the proposed al-
gorithm. Twenty subjects were asked to rank 8 image sets, each of
which includes 5 HR images generated from the same LR image
by 5 different interpolation/SR methods including bilinear, bicubic,
nearest neighbor, new edge-directed interpolations [11] and spare
representation based super-resolution [9].

To evaluate the proposed measure, we compute the Spearman’s
rank-order correlation coefficient (SRCC) for each image set be-
tween the average subjective rankings and the proposed Dn and Dw
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Fig. 5. LR image (a) and the SR/interpolated HR images by (b) bilinear interpolation (Df = 3.43, Ds = 20.79, Dn = 24.22, Dw = 9.9),
(c) nearest neighbor interpolation (Df = 1.35, Ds = 105.5, Dn = 106.85, Dw = 21.44), and (d) Sparse SR [9] (Df = 2.75, Ds = 54.04,
Dn = 56.79, Dw = 14.73), along with (e) the original HR image (Df = 1.01, Ds = 0.8, Dn = 1.81, Dw = 1.9).

measures. The evaluation results are shown in Table 1. Unfortu-
nately, to the best of our knowledge, no other existing IQA algo-
rithm is applicable to the same scenario and can be included in the
comparison. To provide an anchor, we compute the SRCC between
the ranks given by each individual subject and the average ranks of
all subjects. The mean and standard deviation (std) of SRCC values
across all subjects are given in Table 1. This gives an idea about how
an average subject behaves in such a test and provides a basis for the
comparison of objective methods. In particular, the high std value
between subjective opinions reveals that the judgement of the quality
of SR/interplation methods is quite difficult even for humans. The
proposed Df and Ds features and the combined Dn measure are
positively correlated with the average subjective evaluations while
the Dw measure performs significantly better and achieves the same
level (or even better) SRCC performance in comparison with an av-
erage subject.

Table 1. SRCC evaluation against mean subjective rankings

Average Subject (std) Df Ds Dn Dw

0.6515 (0.2868) 0.3125 0.4000 0.4000 0.7125

4. CONCLUSION

We made one of the first attempts to design an NSS-based ob-
jective method to assess the quality of HR images created using
SR/interpolation methods. Statistical models to capture the natu-
ralness in frequency energy falloff and spatial continuity are con-
structed and employed in image distortion analysis. Experiments
show that the proposed measure agrees well with subjective rank-
ings of overall image quality. The current algorithm is applicable
to the case of interpolation/SR by a factor of 2 only. Future work
includes extending the current approach for general interpolation
factor and investigating other features that could be used to char-
acterize the naturalness of images and to capture the distortions in
SR/interpolated images.
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