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ABSTRACT
Effective and efficient objective video quality assessment (VQA)
methods are highly desirable in modern visual communication sys-
tems for performance evaluation, quality control and resource alloca-
tion purposes. Simple VQA algorithms may be developed by direct
extensions of still image quality assessment (IQA) approaches on a
frame-by-frame basis. Advanced VQA methods take into account
the temporal correlation and motion information contained in video
signals but often lead to significantly increased computational com-
plexity. Here we use a different approach to examine a video signal
by considering it as a three-dimensional (3D) volume image. Specif-
ically, we propose a 3D structural similarity (3D-SSIM) approach,
which first creates a 3D quality map by applying SSIM evaluations
within local 3D blocks, and then use local information content and
local distortion based weighting methods to pool the quality map
into a single quality measure. The resulting 3D-SSIM algorithm is
computationally efficient and demonstrates highly competitive per-
formance in comparison with state-of-the-art VQA algorithms when
tested using four publicly available video quality databases1.

Index Terms— video quality assessment, structural similarity,
3D volume image quality assessment, information content weighting

1. INTRODUCTION

With the exponential growth of visual communication applications,
the demand for effective and efficient video quality assessment
(VQA) technologies have been rapidly increasing in recent years.
These technologies not only provide useful performance evaluations
of visual communication systems, but can also be embedded into
these systems as the core components in quality control, resource
allocation, and system optimization tasks. Subjective VQA meth-
ods are reliable because the human visual systems (HVS) are the
ultimate receivers in most applications. However, given the volume
of video data being transmitted everyday, they are extremely slow
and expensive. Objective VQA approaches provide a practical solu-
tion because they can automatically predict perceived video quality
without human interactions. Here we mainly focus on full-reference
(FR) VQA, where we have full access to the perfect-quality refer-
ence video when assessing the quality of a distorted video.

The design of VQA algorithms depends on how a video signal
is interpreted. If we consider it as a stack of still images, then a
natural approach is to apply still image quality assessment (IQA) al-
gorithms on a frame-by-frame basis and then pool the frame level
quality measures into a single quality score. However, this approach
missed the temporal correlation between frames as well as the mo-
tion information contained in video signals, which are the most crit-
ical characteristics that distinguish a video sequence from a stack

1Matlab implementation of the proposed method will be made available
online at www.ece.uwaterloo.ca/˜z70wang/research/.

of independent still image frames. As a result, advanced VQA al-
gorithms take into account temporal correlation or motion informa-
tion. This can be done by combining multichannel spatiotemporal
filtering and spatiotemporal just noticeable difference (JND) models
[1, 2]. It can also be implemented by block- or optical flow-based
motion estimation followed by weighted pooling based on models
of human visual motion perception [3]. More sophisticated method
combines both spatiotemporal filtering and motion estimation, and
then incorporates both spatial and temporal distortion measures [4].

In this study, we consider a video signal as a 3D volume image
and define a “region” in the image as a localized 3D block. We can
then generate a 3D quality map by applying a block-wise quality
measure within local regions. This is followed by a pooling stage
that merge the quality map into an overall quality score. Recently,
pooling has become an active research topic in IQA/VQA research.
Most existing methods are based on the hypothesis that the regions
that are more likely to attract visual attention should be assigned
larger weights. The critical issue here is how visual attention is pre-
dicted, which may include a spectrum of approaches, ranging from
saliency-based low-level vision models [5] to motion detection and
object tracking based high-level cognitive methods [6, 4, 7, 8]. In
[5], a number of different pooling strategies were compared in the
context of IQA, and it was found that the approaches that lead to the
most significant performance gain are local information content and
local distortion weighted pooling, which are based on the assump-
tions that the image regions that contain more information (com-
puted based on statistical image models) or more severe distortions
are more likely to attract visual attention. Moreover, these methods
can be implemented with low computational cost, which is often an
important factor in real world deployment of VQA techniques. In
this research, we extend these pooling strategies to VQA and find
that they lead to consistent gain when tested using several indepen-
dent video quality databases.

2. 3D-SSIM METHOD

The diagram of the proposed method, namely three-dimensional
structural similarity (3D-SSIM) algorithm, is shown in Fig. 1. The
input reference and distorted videos are first divided into non-
overlapping 3D blocks. Within each block, a local 3D-SSIM mea-
sure and a local information content measure are computed. The
local 3D-SSIM values collected from all blocks form a 3D quality
map of the video, which are used to compute a local distortion-based
weight map. Both the local information content and local distortion
based weights are involved in the weighted pooling stage of the
3D-SSIM map, resulting in an overall 3D-SSIM score.

Let x = {xi|i = 1, · · · , N} and y = {yi|i = 1, · · · , N}
be two sets of pixel values collected from corresponding 3D blocks
from the reference and distorted videos, respectively. As in the spa-
tial domain SSIM method [9], the local 3D-SSIM between the 3D
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Fig. 1. Framework of 3D-SSIM algorithm.

blocks is computed as
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, (1)

where where µx, σ2
x and σxy represent the mean, variance and co-

variance of the image blocks, respectively, and C1 and C2 are small
positive constants to avoid instability when the means and variances
are close to zero.

Effective estimation of perceptual information content relies on
good statistical models of both natural images and perceptual distor-
tion channels [5]. While sophisticated models such as the Gaussian
scale mixtures [5] are available for still images, they often lead to
substantially increased complexity, which becomes a major barrier
to overcome when applied to large volume video data. To achieve a
good comprise between accuracy and simplicity, here we assume
a simple model, where Gaussian distributed image source passes
through an additive Gaussian channel and the mutual information
between the source and received signals is employed to quantify the
perceived information content. When this model is applied to local
3D image blocks of both the reference and distorted video signals,
a simple computational model of the overall perceptual information
content is given by [10]
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where, as in [11], σ2
0 is a constant that accounts for the noise power

of the additive Gaussian channel. This measure is computationally
efficient because the values of σ2

x and σ2
y are readily available in the

local 3D-SSIM computation.
Previous studies had shown that assigning larger weights to

higher distortion regions generally has positive effect on the per-
formance of IQA/VQA algorithms [10, 5, 8]. In Fig. 2, the local
3D-SSIM measures computed from different regions are sorted in
ascending order for three different distorted video sequences. It can
be observed that the shapes of the ascending curves vary for different
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Fig. 2. Samples of sorted local 3D-SSIM curves and local distortion
based weighting functions.

video sequences, which may depend on the nature of the videos as
well as the type and level of the distortions. It was demonstrated
in [8] the usefulness of adapting the weight assignment strategy
based on the shape. In this paper, we propose to use a width-adapted
exponential weighting function applied upon sorted block index.
Assume that there are totally K 3D blocks extracted from the video,
and let yk be the block with the k-th lowest local 3D-SSIM value.
The local distortion-based weighting function is defined upon the
normalized index αk = k/K by

wd(yk) = e
− |αk|

α0 , (3)

where α0 is a width parameter that controls the speed of falloff of the
exponential function. As shown in Fig. 2, the ascending speeds of
the sorted local 3D-SSIM curves vary for different video sequences.
This motivates us to adapt the weighting function accordingly which
can be readily implemented by adjusting α0. Specifically, we preset
an S∗ parameter on the normalized 3D-SSIM value and find the cor-
responding block index α∗ value on the sorted 3D-SSIM curve. We
then compute the α0 parameter by

α0 = βα∗ , (4)

where β is a scaling parameter to control the relative widths of the
sorted 3D-SSIM curve and the weighting function. Examples of the
weighting functions computed based on the sorted 3D-SSIM curves
are shown in Fig. 2.

Finally, the local 3D-SSIM map is pooled based on both local in-
formation content and local distortion based weighting and the over-
all 3D-SSIM measure of the entire video sequence is given by

3D-SSIM =

∑K
k=1[wic(xk,yk)]

µ[wd(yk)]
νS(xk,yk)∑K

k=1[wic(xk,yk)]
µ[wd(yk)]ν

. (5)

where µ and ν are two parameters used to control the relative impor-
tance of the two weighting functions.

3. IMPLEMENTATION AND EXPERIMENT

The implementation details of the proposed 3D-SSIM algorithm are
as follows. As in the default SSIM implementation [12], the in-



Table 1. Test VQA databases. SRC denotes the number of source
reference videos and HRC denotes the number of distorted videos
created from each source video.

Database # of video SRC HRC Resolution
VQEG FR-TV I 320 20 16 480i, 576i
IRCCyN/IVC 192 24 7 720×576
EPFL-PoliMI 156 16 9 CIF, 4CIF

LIVE 150 10 15 768×432p

Table 2. PLCC performance comparison of VQA algorithms

Database VQEG IRCCyN EPFL-PoliMI LIVE
PSNR 0.7683 0.4160 0.7351 0.5621

SSIM [9] 0.8215 0.5012 0.6781 0.5444
SSIM [12] 0.8113 0.6139 0.6770 0.7177(auto-scale)
VQM [13] 0.8170 0.4850 0.8434 0.7236
MOVIE [4] 0.8210 0.4850 0.9210 0.8116
Yu et al. [7] 0.8170 0.7680 0.9470 0.8450
3D-SSIM 0.8079 0.6212 0.7591 0.7026(no weighting)
3D-SSIM 0.8203 0.7357 0.8136 0.7497(wic only)
3D-SSIM 0.8295 0.7209 0.9091 0.7832(wd only)
3D-SSIM 0.8403 0.8194 0.9621 0.8353

put reference and distorted video signals first go through an auto-
matic downsampling (or auto-scale) process on a frame-by-frame
basis. This is followed by dividing the 3D volume image into non-
overlapping 7×7×7 blocks, within which the local 3D-SSIM mea-
sure (1), the local information content weighting function (2), and
the local distortion weighting function (3) are calculated. The pa-
rameters C1, C2 and σ2

0 are the same as in the default SSIM [12]
and VIF [11] implementations. The other parameters are obtained
empirically to optimize the performance on the EPFL-PoliMI VQA
database and are given by S∗ = 0.95, β = 0.4, µ = 4.5 and ν = 1,
respectively. The information content weights go through another
normalization step so that its value is between 0 and 1 before being
plugged into the final computation of the overall 3D-SSIM measure.

The proposed approach was tested on four publicly available
VQA databases, as described in Table 1, where the main distortion
types include standard video compression (MPEG and H.264) at dif-
ferent bit rates and simulated transmission errors. Pearson linear
correlation coefficient (PLCC) and Spearman’s rank correlation co-
efficient (SRCC) between objective and subjective quality scores are
adopted as the evaluation criteria, where the subjective scores are in
the form of either mean opinion score (MOS) or difference of mean
opinion score (DMOS) (difference between the MOS values of the
reference and distorted videos). To compute PLCC, a nonlinear re-
gression is carried out between subjective and objective scores using
the modified logistic regression model introduced in [11].

The PLCC and SRCC evaluation results are given in Tables 2
and 3, respectively. First, the proposed 3D-SSIM approach in (5)

Table 3. SRCC performance comparison of VQA algorithms

Database VQEG IRCCyN EPFL-PoliMI LIVE
PSNR 0.7714 0.4510 0.7440 0.5398

SSIM [9] 0.7880 0.5126 0.6770 0.5257
SSIM [12] 0.7919 0.6058 0.6949 0.6947(auto-scale)
VQM [13] 0.7760 0.4820 0.8383 0.7026
MOVIE [4] 0.8330 0.5930 0.9200 0.7890
Yu et al. [7] 0.8030 0.7910 0.9450 0.8180
3D-SSIM 0.7804 0.6147 0.7483 0.6810(no weighting)
3D-SSIM 0.8147 0.7143 0.8003 0.7397(wic only)
3D-SSIM 0.8208 0.7012 0.9016 0.7712(wd only)
3D-SSIM 0.8396 0.7916 0.9608 0.8244

is compared with other pooling options (that are based on the same
local 3D-SSIM map), where no weighting or only one of the weight-
ing approaches (wic in (2) or wd in (3) only) is applied. Apparently,
either information content or distortion based weighting scheme sig-
nificantly improves upon the no-weighting case and the best results
are obtained when both of them are applied. The proposed 3D-SSIM
algorithm is also compared with six other VQA approaches, includ-
ing peak signal-to-noise-ratio (PSNR), direct SSIM [9], SSIM with
auto-scaling [12], video quality model (VQM) [13], MOtion-based
Video Integrity Evaluation index (MOVIE) [4], and a most recent
method proposed by Yu et. al [7]. The best results obtained for each
database are highlighted in bold. It can be observed that 3D-SSIM
appears to be the most reliable measure across all four databases and
achieves the best performance in most cases. The scatter plots of 3D-
SSIM values versus subjective quality scores over the four databases,
together with the nonlinear fitting functions, are shown in Fig. 3.

It is worth emphasizing that the highly competitive performance
of 3D-SSIM is obtained with vastly reduced computational complex-
ity. Our Matlab implementation of the 3D-SSIM algorithm takes
around 4.64 seconds (excluding data loading time) to evaluate a
video sequence of 768 × 432 in spatial resolution and 217 frames
in length on a computer with Intel Core2 Duo CPU E8600 processor
at 3.33GHz. This is estimated to be only less than 1% and 0.1% of
the well known VQM [13] and MOVIE [4] algorithms, respectively.
This could be a critical advantage in many real world applications.

4. CONCLUSION

We propose a novel VQA algorithm namely 3D-SSIM, which re-
gards a video signal as a 3D volume image and combines local SSIM
based quality measure with local information content and distortion
based pooling methods. The resulting 3D-SSIM measure is com-
putationally efficient and achieves highly competitive performance
when compared with state-of-the-art VQA approaches. One poten-
tial drawback of the proposed approach is the memory requirement
to store 3D volume data. This problem may be alleviated by dividing
the video sequence into segments based on the size of the 3D block
involved in the computation. In the future, the proposed method may
be improved by incorporating more accurate statistical models in the
estimation of local information content and investigating more ad-
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Fig. 3. Scatter plots of 3D-SSIM versus subjective score for four VQA databases.

vanced adaptive strategies for local distortion based pooling.
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