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Abstract—Recent advances in video capturing and display
technologies, along with the exponentially increasing demand of
video services, challenge the video coding research community
to design new algorithms able to significantly improve the
compression performance of the current H.264/AVC standard.
This target is currently gaining evidence with the standardization
activities in the High Efficiency Video Coding (HEVC) project.
The distortion models used in HEVC are mean squared error
(MSE) and sum of absolute difference (SAD). However, they are
widely criticized for not correlating well with perceptual image
quality. The structural similarity (SSIM) index has been found
to be a good indicator of perceived image quality. Meanwhile,
it is computationally simple compared with other state-of-the-
art perceptual quality measures and has a number of desirable
mathematical properties for optimization tasks. We propose a
perceptual video coding method to improve upon the current
HEVC based on an SSIM-inspired divisive normalization scheme
as an attempt to transform the DCT domain frame prediction
residuals to a perceptually uniform space before encoding. Based
on the residual divisive normalization process, we define a
distortion model for mode selection and show that such a
divisive normalization strategy largely simplifies the subsequent
perceptual rate-distortion optimization procedure. We further
adjust the divisive normalization factors based on local content
of the video frame. Experiments show that the proposed scheme
can achieve significant gain in terms of rate-SSIM performance
when compared with HEVC.

Index Terms—SSIM index; HEVC; rate distortion optimiza-
tion; residual divisive normalization;

I. INTRODUCTION

Over the past years, we have observed an exponential

increase in the demand for video services. Recent advances

in video capturing and display technologies will increase

the presence of high resolution and high quality contents

in digital video coding applications. It is therefore expected

that both the storage space and bandwidth capacity involved

in visual content production, storage, and delivery will be

stressed to fulfil the new resolution and quality requirements.

This scenario demands for the need to significantly improve

the compression performance of the current state-of-the-art

H.264/AVC standard. The aforementioned need has gained

evidence with the recent activities on high-performance video

coding by ISO/IEC Moving Picture Experts Group (MPEG)

and the ITU-T Video Coding Experts Group (VCEG) which

have joined efforts through the so-called Joint Collaborative

Team on Video Coding (JCTVC) to develop a high efficiency

video coding (HEVC) standard.

The main objective of a video coding techniques is to

optimize the perceptual quality D of the reconstructed video

with the number of used bits R subjected to a constraint Rc,

which can be expressed by

min{D} subject to R ≤ Rc. (1)

The desirable distortion model, D, used in the video coding

framework should correlate with the perceived distortion of the

Human Visual System (HVS), which is the ultimate consumer

of the video content. The existing video coding techniques

typically use the sum of absolute difference (SAD) or sum

of square difference (SSD) as the model for distortion which

have been widely criticized in the literature because of their

poor correlation with perceptual image quality. Recently, a

great deal of effort has been put into the development of

advanced quality assessment methods, among which the struc-

tural similarity (SSIM) index [1]–[3] achieves a good tradeoff

between complexity and quality prediction accuracy, and has

become one of the most broadly recognized image/video qual-

ity metrics in the past 5 years by both academic researchers

and industrial implementers. In recent years, SSIM based

video coding techniques have received increasing amount of

attention. For example, it has been incorporated into motion

estimation, mode selection and rate control [2], [4]–[6].

In this work, we aim to modify the distortion model, D,

in (1) by incorporating SSIM into video coding framework

using a divisive normalization method. It has already been

shown that the main difference between SSIM and MSE is in a

locally adaptive divisive normalization process [7]. In general,

divisive normalization is recognized as a perceptually and

statistically motivated non-linear image representation model

[8]. It is shown to be a useful framework that accounts for

the masking effect in human visual system, which refers to

the reduction of the visibility of an image component in the

presence of large neighboring components. It has also been

found to be powerful in modeling the neuronal responses in

the human perceptual systems [9]. Divisive normalization has

been successfully applied in image quality assessment [10],

image coding [11], video coding [12] and image denoising

[8].

II. SSIM-INSPIRED DIVISIVE NORMALIZATION SCHEME

FOR HEVC

Motion compensated inter-prediction plays an important

role in the existing hybrid video codec. In this work, we follow

this framework, where previously coded frames are used to

predict the current frame and only residuals after prediction

are coded.
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Fig. 1. Framework of the proposed scheme

A. Divisive Normalization Scheme

Assuming C(k) to be the kth DCT transform coefficient of

a residual block, then the normalized coefficient is computed

as C(k)′ = C(k)/f , where f is a positive normalization factor

which is calculated as the energy of a cluster of neighboring

coefficients.

The quantization process of the normalized residuals for a

given predefined Qs can be formulated as

Q(k) = sign{C(k)′}round{ |C(k)′|
Qs

+ p}

= sign{C(k)}round{ |C(k)|
Qs · f + p}

(2)

where p is the rounding offset in the quantization.

At the decoder, the de-quantization and reconstruction of

C(k) is performed as follows

R(k) = R(k)′ · f = Q(k) ·Qs · f
= sign{C(k)}round{ |C(k)|

Qs · f + p} ·Qs · f
(3)

The purpose of the divisive normalization process is to

convert the transform residuals into an perceptually uniform

space. Thus the factor f determines the perceptual importance

of each of the corresponding transform coefficient. The pro-

posed divisive normalization scheme can be interpreted in two

ways. An adaptive normalization factor is applied, followed by

quantization with a predefined fixed step Qs. Alternatively, an

adaptive quantization matrix is defined for each MB and thus

each coefficient is quantized with a different quantization step.

In the context of still image processing and coding, several

different approaches have been used to derive the normaliza-

tion factor, which can be defined as the sum of the squared

neighboring coefficients plus a constant [11], or derived from a

local statistical image model [13]. In this work, our objective is

to optimize the SSIM index, therefore, we employ a convenient

approach based on the DCT domain SSIM index.

The DCT domain SSIM index was first presented by Chan-

nappayya et al. [14].

SSIM(x, y) ={1− (X(0)− Y (0))2

X(0)2 + Y (0)2 +N · C1
}×

{1−
∑N−1

k=1 (X(k)−Y (k))2

N−1
∑N−1

k=1 (X(k)2+Y (k)2)

N−1 + C2

}
(5)

where X(k) and Y (k) represent the DCT coefficients for the

input signals x and y, respectively. C1 and C2 are used to

avoid instability when the means and variances are close to

zero and N denotes the block size. This equation implies

that the SSIM index is composed of the product of two

terms, which are the normalized squared errors of DC and

AC coefficientss. Moreover, the normalization is conceptually

consistent with the light adaptation (also called luminance

masking) and contrast masking effect of HVS.

The HEVC codec uses square-shaped coding tree block

(CTB) as a basic unit that may have various sizes. All process-

ing except frame-based loop filtering is performed on a CTB

basis, including intra/inter prediction, transform, quantization

and entropy coding. In HEVC, coupled with CTB, a basic

unit for the prediction mode is the prediction unit (PU), which

may be of various sizes and is not necessarily rectangular. In

addition to the CTB and PU definitions, the transform unit

(TU) for transform and quantization is defined separately in

HEVC. The size of TU may be as large as the size of the CTB.

TU is always square and is constrained to the range between

4× 4 and 64× 64.

Since the local statistics do not change significantly within

each TU, we divide each TU into l sub-TUs for DCT transform

and use Xi(k) to indicate the k − th DCT coefficient in the

i− th sub-TU. As the SSIM index differentiates between the

DC and AC coefficients, we use separate normalization factors

for AC and DC coefficients, respectively. The normalization

factors for DC and AC coefficients in each TU are defined as

fdc =
1
l

∑l
i=1

√
Xi(0)2 + Yi(0)2 +N · C1

E(
√
X(0)2 + Y (0)2 +N · C1)

(6)

fac =
1
l

∑l
i=1

√∑N−1
k=1 (Xi(k)

2+Yi(k)
2)

N−1 + C2

E(

√∑N−1
k=1 (X(k)2+Y (k)2)

N−1 + C2)

(7)

where E(·) denotes the mathematical expectation operator over

all TUs in the whole frame. The denominator determines

relative perceptual importance of each TU. A higher value

of the normalization factor, f , of a TU implies that it has

relatively lower perceptual importance and can bear more

distortion in MSE sense for the same perceptual quality.

The proposed divisive normalization scheme aims to achieve

uniform perceptual quality over the whole frame by taking the
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SSIM(x, y) = {1− (C(0)′ · fdc −R(0)′ · fdc)2
X(0)2 + Y (0)2 +N · C1

} × {1−
∑N−1

k=1 (C(k)′·fac−R(k)′·fac)
2

N−1
∑N−1

k=1 (X(k)2+Y (k)2)

N−1 + C2

}

≈ {1− (C(0)′ −R(0)′)2

E(
√
X(0)2 + Y (0)2 +N · C1)2

} × {1−
∑N−1

k=1 (C(k)′−R(k)′)2

N−1

E(

√∑N−1
k=1 (X(k)2+Y (k)2)

N−1 + C2)2
}

(4)

quality of the TU with energy equal to the expected energy

value, over the whole frame, as the reference for the target

quality. Consequently, a value of f higher than 1 results in

lower number of bits and vice versa.

As a result of the use of fdc and fac, the SSIM index in the

divisive normalization framework can be expressed as in (4),

which implies that in the divisive normalized space, the SSIM

index is independent of the reference signals and all the TUs

can be treated as perceptually identical. As the clearly visible

distortion regions will be more apparent from the human visual

point of view [15], transforming all the coefficients into the

perceptual uniform domain is also a convenient approach to

improve the perceptual quality according to the philosophy

behind distortion-based pooling [16].

In video coding, these normalization factors need to be

computed at both the encoder and the decoder. However,

before coding the current frame, the distorted TUs are not

available, which creates a chicken or egg causality dilemma.

Moreover, at the decoder side, the original TU is not accessible

either. Therefore, the normalization factors defined in (6) and

(7) cannot be directly applied in this framework. To overcome

this problem, we propose the use of predicted TU for the

calculation of the normalization factors as it is available at

both the encoder and the decoder. In this way, we do not need

to transmit any additional overhead information to the decoder.

As a result, we can approximate the normalization factor using

f ′dc =
1
l

∑l
i=1

√
2Zi(0)2 +N · C1

E(
√
2Z(0)2 +N · C1)

(8)

f ′ac =
1
l

∑l
i=1

√∑N−1
k=1 (Zi(k)

2+s·Zi(k)
2)

N−1 + C2

E(

√∑N−1
k=1 (Z(k)2+s·Z(k)2)

N−1 + C2)

(9)

where Zi(k) is the k − th DCT coefficient of the i − th
prediction sub-TU predicted pixels for each mode (all inter and

intra modes) used in the rate distortion optimization process.

In order to compensate for the loss of AC energy, we use

a factor s to bridge the difference between the energy of AC

coefficients in the prediction TU and the original TU, which

can be defined as

s =
E(

∑N−1
k=1 X(k)2)

E(
∑N−1

k=1 Z(k)2)
. (10)

In [12] it has been shown that s exhibits an approximately

linear relationship with Qs, which can be modeled empirically

as

s = 1 + 0.005 ·Qs. (11)

The divisive normalization factor is spatially adaptive and

depends on the content of the TU and determines the relative

perceptual importance of each TU. The TUs which are less

important are quantized coarsely with respect to the more

important TUs. The expected values of DC and AC energies

are used as the reference point to determine the importance

of each TU. The TUs with higher energy value than the mean

energy value, over the whole frame, have effectively higher QP

values than that of the frame and the TUs with lower energy

value, have effectively lower QP values. By doing so, we are

borrowing bits from the regions which are perceptually less

important and using them for the regions with more perceptual

relevance, as far as SSIM is concerned, such that all the regions

in the frame conceptually have the same perceptual distortion.
It is important to note that the reference point, mean AC and

DC energy values, is highly dependent on the content of the

video frame. The frames with significant texture regions have

high mean AC and DC energy values and are likely to achieve

more perceptual improvement for the same rate as compared

to the frames with less texture regions as there are many

potential candidates with high energy to take bits from and also

many areas with moderate energy to give bits to. Subsequently,

we perform adjustment of the divisive normalization factors

based on the local content of the video frame and found

that such content-based adjustment of divisive normalization

factors is helpful in improving the robustness of the perfor-

mance gain across different contents. The video content can

be characterized by a local complexity measure computed

as local contrast, local energy or local signal activities. We

characterize the local complexity by the standard deviation of

the energy values of the local 4 × 4 blocks. A histogram is

created to examine the distribution of the DC and AC energy

values. The normalization factors for the local blocks with very

large or very small energy values is limited to a maximum

or minimum value respectively which is determined based on

standard deviation of the histogram.

B. Perceptual Rate Distortion Optimization for Mode Selec-
tion

The RDO process in video coding can be expressed by

minimizing the perceived distortion D with the number of used

bits R subjected to a constraint Rc, which can be converted

to an unconstrained optimization problem by

min{J} where J = D + λ ·R (12)
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where J is called the Rate Distortion (RD) cost and λ is

known as the Lagrange multiplier which controls the trade-

off between R and D.

In the conventional RDO scheme, distortion models such

as SAD and SSD are used in actual implementations, but

they are widely criticized for not exhibiting good correlation

with perceived quality. Here we use a new distortion model

that is consistent with the residual normalization process. As

illustrated in Fig. 1, for each TU, the distortion model is

defined as the SSD between the normalized DCT coefficients,

which is expressed by

D =
l∑

i=1

N−1∑
k=0

(Ci(k)
′ −Ri(k)

′)2

=
l∑

i=1

(Xi(0)− Yi(0))
2

f ′2dc
+

∑N−1
N=1(Xi(k)− Yi(k))

2

f ′2ac
(13)

Based on (12), the RDO problem is given by

min{J} where J =
l∑

i=1

N−1∑
k=0

(Ci(k)
′−Ri(k)

′)2+λHEV C ·R
(14)

where λHEV C indicates the Lagrange multiplier defined in

HEVC coding.

From the residual normalization point of view, the distortion

model calculates the SSD between the normalized original

and distorted DCT coefficients, as shown in Fig. 1. Therefore,

we can still use the Lagrange multiplier defined in HEVC,

λHEV C , in this perceptual RDO scheme.

C. Implementation Issues

It is important to note that the proposed scheme is com-

pletely compatible with any frame type supported by HEVC,

as well as any size or shape choices of CTB, PU and TU,

which create significant complications as opposed to the

macroblock (MB) structure defined in previous video coding

standards such as H.264/AVC. First, the expected values of

local divisive normalization factors (the denominator in (8) and

(9)) are obtained by first dividing the predicted current frame

into 4× 4 blocks (the greatest common divisor size for CTB,

PU and TU) and then averaged over the whole frame. This

avoids the problem of variable sizes of TU that create uneven

number of DCT coefficients, and thus reduces the difficulty in

estimating the expected values of the divisive normalization

factor. Second, the divisive normalization factor for each 4×4
block is computed in pixel domain rather than DCT transform

domain. Since DCT is a unitary transform that obeys Parseval’s

theorem, we have

μx =

∑N−1
i=0 x(i)

N
=

X(0)√
N

, (15)

σ2
x =

∑N−1
i=1 X(i)2

N − 1
, σxy =

∑N−1
i=1 X(i)Y (i)

N − 1
. (16)

As a result, although our algorithm is derived in DCT domain,

it is not necessary to perform actual DCT transform for each

block in order to perform residual normalization. It allows

us to calculate the energy values in pixel domain instead of

DCT domain. Since the pixel values used to calculate the

energy values are available at the decoder as well, (15) and

(16) can also be employed at the decoder. Third, the divisive

normalization factor is spatially adaptive but coincides with

individual TU. In other words, every TU is associated with a

single set of divisive normalization factors but different from

other TUs. The normalization matrix thus varies based on the

size of TU. However, only two divisive normalization factors

are used, one for the DC coefficient and the other for all AC

coefficients. Since each TU may contain multiple 4×4 blocks,

the divisive normalization factor for each TU is estimated by

averaging the divisive normalization factors computed for all

4× 4 blocks contained in the TU.

III. VALIDATIONS

To validate the accuracy and efficiency of the proposed

divisive normalization representation based perceptual video

coding scheme, we integrated our scheme into the HEVC

reference software HM3.0. All test video sequences are in

YCbCr 4:2:0 format. We use the standard configuration file for

low-delay conditions with IPPP GOP structure and compare

our scheme with the HEVC coding schemes in various aspects,

including the R-D performance, the coding and decoding

complexities and the visual performance. The SSIM index for

the whole video sequence are obtained by simply averaging

the respective values of individual frames. We employ the

method proposed in [17] to calculate the differences between

two RD curves which is also used by JCTVC to compare the

performance of various algorithms.1. The QP values used to

obtain the RD curves are 22, 27, 32 and 37, respectively.

Sequence Resolution Δ R Δ SSIM
BasketBallPass WQVGA -10.9% 0.008
RaceHorses WQVGA -3.0% 0.003
BlowingBubbles WQVGA -1.3% 0.001
BQ Square WQVGA -30.1% 0.018
PartyScene WVGA -2.4% 0.002
BasketBallDrill WVGA -16.6% 0.011
Vidyo1 720p -3.08% 0.002
BQTerrace 1080p -2.2% 0.002
Average -8.7% 0.006

TABLE I
PERFORMANCE COMPARISON OF THE PROPOSED SCHEME WITH HEVC

Table I shows the rate savings achieved using proposed

scheme for various standard test sequences. It can be observed

that over a wide range of test sequences with resolutions from

WQVGA to 1080p, our proposed scheme achieves average rate

reduction of 8.7% for the same SSIM value and the maximum

coding gain is 30.1%. Therefore, the divisive normalization

mechanism on average can substantially improve the rate-

distortion performance of HEVC. However, the performance

1Since R-SSIM curve exhibits a similar shape as R-PSNR curve, we use
the same tool proposed in [17] to calculate the average of SSIM differences.
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(a) BasketBallDrill (b) BQSuare

Fig. 2. Rate-SSIM performance comparison between HEVC and the proposed video coding scheme

improvement varies quite significantly, depending on the con-

tent of the video frame being encoded. In general, the video

frames that have large variations in terms of the texture content

often result in more performance gain. Table I also shows the

average improvement in terms of SSIM index for the same

rate.

The R-D performance for sequences with various reso-

lutions are shown in Fig. 2. In general, the performance

gap between the proposed method and the HEVC codec

is maximum at the mid-range of QP values. Following are

the possible reasons for such a trend. At high bit rate, the

quantization step is relatively smaller and thus the differences

of quantization steps among the TUs are not significant. At

low bit rate, since the AC coefficients are severely distorted,

the normalization factors derived from the prediction frame do

not precisely represent the properties of the original frame.

When evaluating the coding complexity overhead, we cal-

culate ΔT with

ΔT =
Tpro − THEV C

THEV C
× 100% (17)

where THEV C and Tpro indicate the total coding time for the

sequence with the HEVC and the proposed coding schemes,

respectively. The average encoding overhead is 7.5% and 9%

is the average decoding overhead.

Figure 3 visually compares the proposed scheme with

HEVC. For a fair comparison, the bit rate for the proposed

scheme is lower than that of HEVC. However, since our

proposed divisive normalization scheme is based on SSIM

index optimization, higher SSIM and lower PSNR values are

achieved. It can be observed by visual comparison of the

reconstructed frame with the original frame, the proposed

method achieves significantly better visual quality for the

same rate. Furthermore, the quality improvement of the re-

constructed frame by the proposed scheme is evident from

the SSIM maps. The proposed method does a better job

in preserving the texture present in the original frame as

depicted by the overall brighter SSIM map of the reconstructed

frame. It can also be observed that the distortion distribution

of the proposed scheme is more uniform across space and

more information and details have been preserved. The visual

quality improvement is due to the fact that we perform coding

algorithms in a perceptual uniform space which can result in

a better R-D performance from perceptual point of view.

IV. CONCLUSION

We proposed an SSIM-inspired novel residual divisive nor-

malization scheme for perceptual video coding. The novelty

of the scheme lies in divisively normalizing the transform

coefficients based on the DCT domain SSIM index and defin-

ing a new distortion model for the subsequent rate distortion

optimization. The proposed scheme demonstrates superior per-

formance as compared to the HEVC video codec by offering

significant rate reduction, while keeping the same level of

SSIM values.
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