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ABSTRACT

We propose a method to detect visual saliency from video
signals by combing both spatial and temporal information
and statistical uncertainty measures. The main novelty of
the proposed method is twofold. First, separate spatial and
temporal saliency maps are generated, where the computa-
tion of temporal saliency incorporates a recent psychological
study of human visual speed perception, where the perceptual
prior probability distribution of the speed of motion is mea-
sured through a series of psychovisual experiments. Second,
the spatial and temporal saliency maps are merged into one
using a spatiotemporally adaptive entropy-based uncertainty
weighting approach. Experimental results show that the pro-
posed method significantly outperforms state-of-the-art video
saliency detection models.

Index Terms— visual attention, video saliency, spa-
tiotemporal saliency detection, uncertainty weighting

1. INTRODUCTION

Selective visual attention or visual saliency has been an ac-
tive research topic in the past decades in the fields of biology,
psychology and computer vision. It has also attracted a great
deal of attention recently in the multimedia field because of
its potential applications in the evaluation and improvement
of quality-of-experience (QoE) in multimedia communication
systems. According to the Feature Integration Theory (FIT)
developed by Treisman et al. [1] in the 1980s, the early se-
lective attention mechanism leads some image regions to be
salient for their different features (color, intensity, orienta-
tion, motion, etc.) from their surrounding regions [1]. Koch
et al.’s visual attention model [2] suggests that selective vi-
sual attention includes three stages: elementary parallel fea-
ture representation across the visual field; the Winner-Take-
All (WTA) mechanism singling out the most salient location;
and the routing selection for the next most salient locations.
Recently, computer vision researchers proposed various com-
putational saliency detection models for images. Compared
with saliency detection in still images, video saliency detec-
tion is a more difficult problem due to the complication in the

detection and usage of temporal and motion information.

Only a limited number of algorithms have been pro-
posed for spatiotemporal saliency detection from video sig-
nals [3, 4, 5, 6, 7, 8]. Itti et al. utilized a Bayesian model
to detect surprising events as important information attracting
human attention, where the surprise is measured by the differ-
ence between posterior and prior beliefs of the observer [3].
Ma et al. integrated top-down mechanisms into classical
bottom-up saliency detection models for video summariza-
tion [4], where the top-down information includes semantic
cues such as face and speech. Zhai et al. linearly combined
spatial and temporal saliency maps [5], where the saliency
maps are computed based on color histograms and the pla-
nar motion between images, respectively [5]. Le Meur et
al. extended their saliency model for images by adding tem-
poral saliency information into the framework [6]. Mahade-
van et al. incorporated motion-based perceptual grouping and
the discriminant formulation of center-surround saliency [7].
Guo et al. represented image pixels using quaternion in-
tensity, color and motion features and employed the phase
spectrum of Quaternion Fourier Transform to calculate spa-
tiotemporal saliency [8]. Seo et al. introduced the notion of
self-resemblance to measure visual saliency from video sig-
nals [15].

A key issue in video saliency evaluation is how to quan-
tify the contribution of motion information, for which exist-
ing models tend to use ad-hoc methods with little justifica-
tion from psychological or physiological studies. Our work
is inspired by a recent study by Stocker et al. regarding hu-
man visual speed perception [9], where a set of psychovisual
experiments were carried out to measure the prior probabil-
ity distribution and likelihood function of visual speed per-
ception. These measurements are consistent across human
subjects and can be modeled by simple parametric functions.
These results allow us to quantify the surprisal or motion in-
formation content in a perceptually meaningful way and use
it as a predictor of motion visual attention. Another impor-
tant problem in the development of spatiotemporal saliency
models is how to combine spatial and temporal saliency maps
when both of them are available. Unlike existing approaches
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Fig. 1. Framework of the proposed model.

that often use simple combination rules such as linear com-
bination with fixed weights, we associate each saliency map
with a uncertainty map obtained from statistics of human
saliency data and merge the saliency maps adaptively based
on the local uncertainty measures. In the next two sections,
we describe the proposed algorithm and demonstrate its effec-
tiveness in achieving improved accuracy in predicting human
saccade in viewing video signals.

2. PROPOSED METHOD

The general framework of the proposed model is depicted in
Fig. 1. Low-level spatial and motion features are first ex-
tracted from the input video sequence, where the spatial fea-
tures (including luminance, color and texture) and the mo-
tion feature are used to calculate the spatial and temporal
saliency maps, respectively. The spatial and temporal uncer-
tainty maps are then calculated to assess the confidence of the
corresponding saliency maps. Finally, the spatial and tem-
poral saliency maps are fused using an uncertainty weighting
approach, resulting in the final spatiotemporal saliency map.

2.1. Spatial Saliency Evaluation

The spatial saliency detection method basically follows the
method for still image saliency estimation introduced in [10]
(with modifications) and is briefly described here.

Given a video frame, we first convert all image pixels
into the YCbCr color space and divide the frame into non-
overlapping 8 × 8 patches. Four features are extracted from

each patch, including one luminance feature L (DC value of
the Y component), two color features C1 and C2 (DC val-
ues of the Cb and Cr components), and one texture feature
T (total AC energy of the Y component). These patch-based
features extracted across space constitute four feature maps.

Assuming saliency is associated with the surprisal of the
current patch against its neighboring patches in terms of cer-
tain image features, we use a contrast-of-feature approach to
estimate patch saliency. The saliency value Sk

i for patch i
based on the contrast of feature k is calculated as:

Sk
i =

∑
j ̸=i

[
1√
2πσ

e−l2ij/2σ
2

]
Dk

ij (1)

where kϵ{L,C1, C2, T}, σ is a width parameter of the Gaus-
sian weighting function, which is used to weight the absolute
feature difference Dk

ij between patches i and j, and lij is the
spatial distance between patches i and j. The value of σ de-
termines the size of the neighborhood and thus the locality of
the feature contrast measure.

Finally, the feature maps are normalized to [0, 1] and the
overall spatial saliency map of the video frame is calculated
as the average of the four feature maps [10]:

Ss =
1

K

K∑
k=1

N(Sk) (2)

where N is the normalization operator and K is the number
of features (K = 4).

2.2. Temporal Saliency Evaluation

Object motion is often highly correlated with visual atten-
tion [1]. Our temporal saliency evaluation algorithm starts
with optical flow based motion estimation [11], which is more
efficient and provides denser and smoother motion vector
field compared with block matching-based motion estimation.
The optical flow vector field indicates absolute local motion,
but perceived object motion often corresponds to the relative
motion between the object and the background. Generally, an
object of strong motion with respect to the background would
be a strong surprisal to the human visual system (HVS). If
we consider the HVS as an efficient information extractor, it
would pay more attention to such a surprising event. There-
fore, visual attention of motion can be measured by the sur-
prisal of motion, which can be estimated based on the percep-
tual prior probability distribution about the speed of motion.
Recently, Stocker et al. measured the prior probability of hu-
man speed perception based on a series of psychovisual ex-
periments [9]. The results have been employed in the field of
perceptual video quality assessment [12], but have not been
exploited in the context of visual saliency estimation. Ac-
cording to their results, the “perceptual” prior distribution of
motion speed can be well fitted with a power-law function

p(v) = κ/vα (3)
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Fig. 2. Likelihood of saliency as a function of spatial distance
from saliency center.

where κ and α are two positive constants. This suggests that
with the increase of object speed, the probability decreases
and thus the visual surprise increases. This also allows us to
compute a motion speed-based temporal saliency value using
its self-information or surprisal as

St = − log p(v) = α log v + β (4)

where β = −logκ is a constant. The parameters α and β are
chosen based on the study in [12].

It remains to compute v, which is the relative motion
speed of the current position with respect to the background.
To be aligned with the spatial saliency map, here we evaluate
the relative speed vi of the i-th patch as

vi =
∑
j ̸=i

[
1√
2πσ

e−l2ij/2σ
2

]
Dv

ij (5)

where Dv
ij is the length of the vector difference between the

mean absolute motion vectors of patches i and j. As in (1), a
Gaussian weighting function is applied, which determines the
impact of neighboring patches based on their distances to the
current patch.

2.3. Uncertainty Evaluation

Depending on the visual content, the detected saliency based
on spatial and motion features may have different levels of
confidence or certainty across space and time. For example,
a single moving object in a static background scene and with
sharp color contrast with respect to the background may be
detected as a salient object with high certainty, while the cer-
tainty drops dramatically when multiple objects with similar
color and texture are moving at a similar speed. Here we pro-
pose to estimate such uncertainty in saliency evaluation and
demonstrate its value in improving the accuracy of saliency
detection.

Our uncertainty measure is based on two intuitive obser-
vations. First, the spatial location that is closer to the most
concentrated saliency regions in an image is more likely to be
a salient location. Second, a spatial location that is more con-
nected to other saliency regions are more likely to be a salient
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Fig. 3. Likelihood of saliency as a function of connectedness.

location. These observations are justified by our empirical
statistics of an image database created by Achanta et al. [13],
which includes 1000 images and their corresponding ground
truth salient objects selected by human subjects. Specifically,
given an image and its ground truth saliency map S, we first
compute the expected center location of its saliency map by

xc =
1

M

∑
(x,y)∈RS

xSx,y (6)

yc =
1

M

∑
(x,y)∈RS

ySx,y . (7)

where RS is the set of all ground truth salient pixels and M
is their total count. We can then compute the spatial distance
d from the expected saliency center (xc, yc) to any location
(x, y) in the image, and carry out statistics of the likelihood of
being a salient pixel as a function of d. The statistical results
are shown in Fig. 2. As expected, with the increase of d from
the saliency center, the likelihood decreases. To describe this
relationship efficiently, we find that the statistical data can be
very well fitted with the following function

p(s|d) = α1 exp

[
−
(

d

β1

)γ1
]

(8)

where p(s|d) stands for the likelihood of a pixel being salient
given its distance d from the saliency center (xc, yc). α1, β1

and γ1 are fitting parameters for the model and are found to
be α1 = 0.9694, β1 = 93.30, and γ1 = 2.8844, respectively,
based on the image database [13]. The fitting curve is also
shown in Fig. 2. Given this likelihood model, a natural way
to quantify the level of perceptual uncertainty is to compute
the entropy of the likelihood:

Ud = Hb(p(s|d)) (9)

where Hb(p) is the binary entropy function computed as
−p log2 p− (1− p) log2(1− p).

Another aspect that could have a significant impact on the
saliency likelihood of a pixel is how it is connected to other
salient pixels. For each pixel, we calculate its connectedness
as

c =
∑

(x,y)∈RN

Sx,y (10)



Fig. 4. Sample spatial, temporal and overall saliency maps. Column 1: original video frame with human fixation point marked
with a circle; Column 2 - 4: spatial, temporal, and overall saliency maps, respectively.

where RN represents the set of direct neighboring pixels
near the current pixel, excluding itself. Based on the image
database [13], we carried out statistics on the likelihood of a
pixel being salient as a function of connectedness c, and the
results are shown in Fig. 3. It can be observed that the more a
pixel is connected to salient pixels, the more likely it is also a
salient pixel. This relationship can also be summarized using
an empirical function given by

p(s|c) = 1− exp

[
−
(

c

β2

)γ2
]

(11)

where p(s|c) represents the likelihood of a pixel being salient
given its connectedness c to other salient pixels. β2 and γ2
are fitting parameters and are found to be β2 = 4.7262 and
γ2 = 5.2531, respectively. The fitting function is shown in
Fig. 3. Similarly, we can quantify the uncertainty using the
entropy of the likelihood:

U c = Hb(p(s|c)) (12)

Finally, we can calculate the total uncertainty for each pixel
in the image as

U = Ud + U c (13)

Applying such uncertainty computation to both spatial and
temporal saliency maps computed in Sections 2.1 and 2.2, we
obtain two uncertainty maps of each video frame, denoted as
Us and Ut, respectively.

2.4. Spatiotemporal Saliency Computation

The last step in creating an overall spatiotemporal saliency
map is to combine the spatial and temporal saliency maps
computed in Sections 2.1 and 2.2, respectively, which are also
associated with different levels of uncertainty based on the
computation in Section 2.3. Naturally, the saliency measure
with lower uncertainty should be given larger weight. This
leads to an uncertainty weighted fusion rule given by

S =
Ut Ss + Us St

Us + Ut
(14)

Since both spatial and temporal uncertainty maps change over
space and time, this fusion rule is spatiotemporally adap-
tive, which differentiate it from existing methods where fixed
weighting is used to fuse spatial and temporal saliency maps.
Figure 4 provides a sample video frame, together with its
spatial, temporal and overall saliency maps. It can be ob-
served that both spatial and temporal saliency maps are ef-
fective at identifying potential salient objects, and the fused
overall saliency map successfully predicts the actual location
of visual fixation.

3. EXPERIMENTAL EVALUATION

We use a publicly available video database [3] to evaluate
the performance of the proposed model. The database con-
tains 50 video clips totaling over 25 minutes with a variety
of video content. The ground truth is obtained from human
saccade data of 8 subjects recorded by an eye tracker. The
performance of spatiotemporal saliency detection models is
evaluated by comparing the response values at saccade and
random locations in the saliency map [3]. Generally, an ef-
fective saliency detection model would have high response
at saccadic locations and no response at most random loca-
tions. Here, the saliency distributions at saccadic and random
locations are calculated with 10 bins of saliency values over
the saliency map, as shown in Fig. 5. Kullback-Leibler (KL)
distance is used to measure the similarity between these two
distributions

KL(H,R) =
1

2

(∑
n

hn log
hn

rn
+
∑
n

rn log
rn
hn

)
(15)

where H and R are saliency distributions at human saccadic
locations and random locations with probability density func-
tions hn and rn, respectively; n is the index of the saliency
value bin (n ∈ {1, 2, 3..., 10}). The saliency detection model
with larger KL distance can better discriminate human sac-
cadic locations from random locations, and thus has better
performance [3]. In addition, we use Receiver Operating
Characteristics (ROC) curve [14] for performance evaluation.
The saliency distributions at human saccadic locations and
random locations are used as the test set and the discrimina-
tion set, respectively. The area under the ROC curve (AUC)
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Fig. 6. ROC comparison of video saliency models.

Table 1. KL distance and AUC Comparisons of spatiotempo-
ral saliency models.

Models SR [15] MRS [8] Surprise [3] Proposed
KL Dist. 0.391 0.529 0.593 2.584

AUC 0.722 0.771 0.782 0.951

provides an overall evaluation. A better video saliency detec-
tion model is expected to have a larger AUC value.

In addition to the proposed algorithm, three state-of-
the-art spatiotemporal saliency models are under compari-
son, which include self-resemblance-based model (SR) [15],
surprise-based model (Surprise) [3], and phase-based model
(MRS) [8]. The source code of all three models are avail-
able at their public websites. The saliency distributions of
all models are shown in Fig. 5, where we can see that the
difference between the saliency distributions at saccadic and
random locations computed from the proposed model is much
larger than those from the other models. This suggests that the
proposed method can better discriminate saccadic from ran-
dom locations. This is confirmed by the ROC curves given in
Fig. 6, where the ROC curve of the proposed model appears to
be much higher, especially when the false positive rate is low.
Furthermore, the KL distance and AUC values provided in
Table 1 quantify the significant improvement of the proposed

algorithm over state-of-the-art.
Figure 7 provides several visual examples to demonstrate

the superior performance of the proposed model. All saliency
models give useful predictions of visual fixation, but the SR,
Surprise and MRS models fail to clearly distinguish the fix-
ated object from many other objects in the background. By
contrast, the proposed model predicts visual fixations with
much higher accuracy.

4. CONCLUSION

We propose a novel video saliency model where the ma-
jor contributions are in the use of a psychological model
of human visual speed perception to quantify temporal
saliency and the incorporation of an uncertainty-based adap-
tive weighting approach in the fusion of spatial and temporal
saliency maps. These have led to the superior performance of
the proposed method against state-of-the-art approaches. The
general framework of the proposed method can be extended
in many ways. For example, the uncertainty measure can be
generalized to account for the ambiguity in motion and rela-
tive speed estimations. Top-down mechanisms and semantic
cues may also be employed to improve the spatial and tempo-
ral saliency or the uncertainty measurement.
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