
 

FEATURE ARTICLE: Image-Based Modeling and Rendering 

Objective Quality 
Assessment and 
Perceptual Compression 
of Screen Content Images 

Screen content image (SCI) has recently emerged as 

an active topic due to the rapidly increasing demand 

in many graphically rich services such as wireless 

displays and virtual desktops. SCIs are often 

composed of pictorial regions and computer 

generated textual/graphical content, which exhibit 

different statistical properties that often lead to 

different viewer behaviors. Inspired by this, we 

propose an objective quality assessment approach 

for SCIs that incorporates both visual field adaptation 

and information content weighting into structural 

similarity based local quality assessment. 

Furthermore, we develop a perceptual screen content coding scheme based on the 

newly proposed quality assessment measure, targeting at further improving the SCI 

compression performance. Experimental results show that the proposed quality 

assessment method not only better predicts the perceptual quality of SCIs, but also 

demonstrates great potentials in the design of perceptually optimal SCI compression 

schemes.1 

Recently, there has been an increasing demand to enable thin-clients to enjoy the computation-
ally intensive and graphically rich services by instantly transmitting the complicated graphical 
interfaces to the clients. Such time variant interface can be rendered as a screen content image 
(SCI), which is a mixture of pictorial and computer generated textual/graphical regions. The 
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quality of the SCIs directly determines the user experience of the screen remoting system. There-
fore, an image quality assessment (IQA) model that can predict the perceptual quality of SCIs is 
desirable, which serves as a benchmark for monitoring, adjusting and optimizing the perfor-
mance of the screen remoting systems. 

In the past decades, there has been significant progress in the field of objective IQA.1,2,3,4,5 How-
ever, most existing methods are designed and validated based on natural images, which do not 
always share the same properties of SCIs. Typically, the discontinuous-tone computer generated 
image is featured by repeated patterns, sharp edges and thin lines with few colors, while natural 
images usually have continuous-tone, smoother edges, thicker lines and more colors. Moreover, 
the acquisition of natural images may introduce noise due to the physical limitations of imaging 
sensors, while the screen content is usually noise free as they may be purely generated by com-
puters. In view of these distinct properties of SCIs, in6 a screen image quality assessment data-
base (SIQAD) was created, which contains 20 reference and 980 distorted SCIs in total. The 
distorted images are generated by different distortion types including Gaussian noise, Gaussian 
blur, motion blur, contrast changing, JPEG, JPEG2000 and layer segmentation based coding. 
The reported low correlations between the scores of subjective and objective measures suggest 
that there is still large room to improve for SCI quality assessment.6 In other words, IQA meth-
ods that suffice to provide useful quality evaluation of SCIs are largely lacking. 

In this work, we study the characteristics of the SCIs and propose an IQA method that predicts 
SCI quality by incorporating viewing field adaption and local information content weighting. As 
widely hypothesized in computational vision science, the major task of the human visual system 
(HVS) when viewing a real scene is to act as an optimal information extractor, or an efficient 
coder.7 This motivates us to evaluate the quality of SCIs with the strategy of local information 
content weighting. Another psychology finding regarding the perception of screen images is that 
the extent of the visual field used to extract useful information is much larger in pictorial than in 
textual regions.8 A possible reason accounting for such observation is that the textual content is 
richer in salient stimuli. These observations further inspire us to introduce spatial adaptation in 
the local quality assessment approach. 

In contrast to the numerous recent efforts in developing high efficiency SCI compression tech-
niques, little has been dedicated to visual perception based SCI compression. This is due to the 
lack of trusted SCI IQA models that can provide essential guidance in optimizing advanced SCI 
coding schemes. Given our newly proposed SCI IQA method, we further incorporate it into a 
High Efficiency Video Coding (HEVC) screen content codec, targeting at improving the coding 
efficiency of SCIs. Specifically, we propose a novel perceptual SCI compression scheme in-
spired by the design philosophy of the divisive normalization transform,9 which has been shown 
to be a useful framework that better accounts for the spatially varying distortion sensitivities of 
the HVS. 

OBJECTIVE QUALITY ASSESSMENT OF SCIs 

Characteristics of SCIs 
We find that two statistical features are useful in differentiating the characteristics of pictorial 
and textual regions in an image, and also in the development of meaningful IQA and compres-
sion methods for SCIs. 

Frequency Energy Falloff Statistics 

It has long been discovered in the literature of natural scene statistics that the amplitude spectrum 
of natural images falls with the spatial frequency approximately proportional to the 1/	 ௦݂ law,10 
where fs is the spatial frequency and p is an image dependent constant. By contrast, typical tex-
tual images generated by computers appear somewhat “unnatural.” This inspires us to further 
examine such property on SCIs. Examples of natural and textual images are decomposed using 
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Fourier transform, as demonstrated in Figure 1. It is observed that the energy falloffs against spa-
tial frequency for natural images are approximately straight lines in log-log scale, which is con-
sistent with the 1/	 ௦݂ relationship. However, for textual images there are peaks at mid and high 
frequencies. It is also interesting to observe that larger characters push the peak frequency to-
wards lower frequencies, which further demonstrates the close relationship between the peak and 
the width and spacing of the strokes. Although such properties are not explicitly taken advantage 
of in the design of the proposed IQA method, these observations suggest that the statistical prop-
erties of textual images differ from natural images, motivating us to distinguish them in the de-
sign of quality assessment method. 

 

Figure 1. Examples of frequency energy falloffs of textual and natural images in log-log scale. (a) & 
(b) Textual images at different scales; (c) A natural image; (d) & (e) Frequency energy falloffs of 
textual images in (a) & (b); (f) Frequency energy falloff of the natural image (c). 

Information Content of SCIs 

An effective information content model11 is obtained by locally modeling the input signal with a 
Gaussian source that is transmitted through a Gaussian noise channel to the receiver.3 As such, 
the mutual information between the input and received signals is the amount of the perceived 
information content, which can be quantified by 

 ( )
2

2 2
ω log 1                          1p

n

σ
σ

 
= +  

 
 

where ߪଶ is the variance within a local window x, and ߪଶ is a constant parameter accounting for 
the noise level in the visual channel. An example of the local information maps computed using 
(1), together with the corresponding original images are shown in Figure 2, which provide a use-
ful indicator about how perceptual information is distributed over space and how the distribu-
tions are different in textual and pictorial regions. In particular, since the local variances around 
high contrast edges are usually significant, higher information content can be observed from the 
information content map. As such, textual regions that contain abundant high contrast edges typ-
ically have higher local information content than pictorial regions. This is also consistent with 
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the recent findings regarding the saliency of webpages in,12 in which it is shown that SCIs con-
tain richer information in textual regions. 

 

Figure 2. Examples of SCIs and the corresponding local information content maps (brighter 
indicates higher information content). (a)(c) SCIs; (b)(d) Corresponding information content maps. 

Quality Assessment Model 
The local quality prediction of SCIs is based on the structural similarity (SSIM) index,1 which 
has been demonstrated to be an effective quality measure that achieves a good compromise be-
tween quality prediction accuracy and computational efficiency. Given two local image patches 
x and y extracted from the original and distorted images, respectively, the SSIM index between 
them is evaluated as 

 ( ) ( )( )
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where µx, σx, and σxy are the mean, standard deviation and cross correlation within a local win-
dow of size l×l, respectively. C1 and C2 are positive constants used to avoid instability when the 
means and variances are close to zero, which are set to be 

( )2

1 1C K L=   ( ) ( )2

2 2                                         3C K L=  

where L denotes the dynamic range of the pixel values. Parameters K1 and K2 are constants and 
are selected to be 0.01 and 0.03, respectively. 

The distinct characteristics of SCIs described in Section 2.1 suggest that it is useful to differenti-
ate the pictorial and textual content, such that their perceptual distortions can be evaluated in dif-
ferent ways. Another interesting property regarding the perception of the screen content is the 
extent of visual field when viewing SCIs. Monica Castelhano and Keith Rayner observed that 
the perceptual span in reading textual content is clearly smaller than that in natural scene percep-
tion or visual search.8 This further motivates us to adapt the window size when accessing the lo-
cal quality of textual and pictorial content. 

In this work, instead of performing image segmentation that divides the image into large seg-
ments of textual and pictorial regions, we propose a block-classification approach by making use 
of the information content map, as shown in Figure 2. Based on our analysis earlier, the textual 
regions are richer in saliency stimuli and typically have higher local information content. There-
fore, we classify each 4 × 4 block by applying a threshold Tf on the sum of the information con-
tent in the block. Subsequently, the overall quality of the textual and pictorial regions Ω் and Ω, denoted by ST and SP, respectively, are computed by applying spatially adaptive weighted 
pooling to access the relative weight of the local content within the textual or pictorial content, 
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where the parameter α is used to adjust the strength of weighting. The parameters Tf and α are 
selected empirically to be 30 and 0.3, respectively. Since textual content is perceived with 
smaller extend of visual field than pictorial regions, the local SSIM value is calculated by em-
ploying different sizes of Gaussian windows with different standard deviations (std), denoted by 
kT and kP, respectively. The local information ωi and ωj are calculated with their respective win-
dows, within which the SSIM indices are computed. It is also worth mentioning that textual con-
tent is not the only difference between the natural images and SCIs, for example, SCIs often 
contain large flat areas. However, text is the most dominant characteristic in SCIs. It conveys 
meaningful information and meanwhile produces high perceptual contrast. Fortunately, this is 
captured by the information content measure that is used as a weighting factor in the proposed 
method. 

The final SCI quality index (SQI) is given by a weighted average of ST and SP, which computes 
the relative weight between textual and pictorial region as a whole, 

 ( )SQI                                         5T T P P

T P

S Sμ μ
μ μ

⋅ ⋅+=
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density of information content of the textual and pictorial regions, and for fair comparison, the 
Gaussian window size, denoted by kU, used to compute ωu needs to be uniform in both regions, 
and should be a compromise between kT and kP . 

The window size parameters kT , kP and kU are determined empirically. Based on our discussions 
earlier, it is a natural choice to let kT < kP, and kU in-between. In our current implementation, we 
set kT = 0.5, kP = 2.5 and kU = 1.5, respectively. 

Validation 
The SIQAD database was designed specifically for SCI quality assessment. It contains 980 im-
ages that are corrupted by seven distortion types. Full reference IQA algorithms including 
PSNR, SSIM,1 IW-SSIM,2 GSIM,13 FSIM,4 VSI,5 and VIF3 are used for comparison. In previous 
tests using subject-rated IQA databases, these state-of-the art IQA algorithms have been repeat-
edly proven to achieve high correlations with the mean opinion scores (MOS) of natural im-
ages.14 Moreover, the specifically developed IQA measure SCI Perceptual Quality Assessment 
(SPQA)6 is compared as well. Three evaluation metrics are employed to assess the performance 
of these IQA methods, including Pearson linear correlation coefficient (PLCC), Root mean-
squared error (RMSE) and Spearman rank correlation coefficient (SRCC). 

The PLCC is computed after a nonlinear mapping between the subjective and objective scores to 
evaluate the prediction accuracy. Given the raw objective scores, a logistic regression function is 
employed to generate the mapped scores, and PLCC is obtained by computing the correlation 
between the subjective and mapped objective scores. RMSE is subsequently calculated by com-
paring the subjective and objective scores after nonlinear mapping. SRCC is nonparametric rank 
order-based correlation metrics to assess prediction monotonicity. A better objective IQA meas-
ure should have higher PLCC and SRCC, but lower RMSE values. 

As illustrated in Table 1, when all the test images are included in the evaluation, the proposed 
method clearly outperforms state-of-the-art quality assessment algorithms in terms of both pre-
diction accuracy and monotonicity. Moreover, we examine the breakdown prediction perfor-
mance for individual distortion types. The breakdown performance in terms of SRCC and PLCC 
are provided in Table 2, where in most cases, the proposed method is among the best. Scatter 
plots of human ratings versus raw objective predicted quality scores before nonlinear mapping 
for each FR methods are shown in Figure 3. It can be observed that the proposed method can ac-
curately predict the MOS scores. 

51January/February 2018 www.computer.org/cga



  

 IEEE COMPUTER GRAPHICS AND APPLICATIONS 

Table 1. Performance Comparison with State-of-the-Art FR Algorithms Based on the SIQAD 
Database. 

 

Table 2. Distortion Type Breakdown for IQA Performance Comparisons. 

 

 

Figure 3. MOS versus model predictions. 

Generally, a good IQA measure should be tolerant to small changes in parameter values. There-
fore, the sensitivities of the parameters Tf  and α on the IQA performance are examined. In par-
ticular, Tf varies from 20 to 40 with an interval of 5 and α varies from 0.1 to 0.5 with an interval 
of 0.1. The results are tabulated in Table 3 and Table 4, from which we can observe that the pro-
posed method achieves considerably stable performance. 

Table 3. Parameter sensitivity testing with the variation of Tf. 

Tf 20 25 30 35 40 

SRCC 0.8580 0.8577 0.8548 0.8489 0.8365 

PLCC 0.8630 0.8645 0.8644 0.8620 0.8533 

RMSE 7.2318 7.1946 7.1982 7.2558 7.4640 
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Table 4. Parameter sensitivity testing with the variation of α. 

α 0.1 0.2 0.3 0.4 0.5 

SRCC 0.8592 0.8586 0.8548 0.8498 0.8438 

PLCC 0.8617 0.8648 0.8644 0.8620 0.8582 

RMSE 7.2629 7.1866 7.1982 7.2569 7.3469 
 

PERCEPTUAL SCI COMPRESSION 

Divisive Normalization Based Video Coding 
In the predictive video coding framework, previously coded frames are used to predict the cur-
rent frame, and only the residuals after prediction are transformed and coded. In divisive normal-
ization transform based video coding scheme,15 the discrete cosine transform (DCT) coefficient 
of a residual block Ck is normalized by a positive perceptual normalization factor f to transform 
the DCT coefficients into a perceptually uniform domain: 

 ( ) ( ) ( )'
/                                      6   C k C k f=  

Subsequently, given the predefined quantization step Qs, the quantization process of the normal-
ized residuals is formulated as 
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where p is the rounding offset in the quantization. 

Correspondingly, at the decoder, the de-quantization and reconstruction of C(k) is performed 
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As such, the transform coefficients are converted into a perceptually uniform space by adaptively 
adjusting the quantization parameters for each coding unit (CU). The normalization factor f, 
which accounts for the perceptual importance, is derived from the SSIM index in DCT domain.16 
Specifically, given the reference and the reconstructed blocks, denoted by x and y, respectively, 
the DCT domain SSIM can be calculated as, 
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where X and Y represent the DCT coefficient of x and y, respectively. Parameter N denotes the 
size of the block, and C1, C2 are constants according to the definition of the SSIM index.1 As-
suming each CU contains l DCT blocks, the normalization factors for AC coefficients are given 
by 
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Practically, only the original block is used because the distorted one cannot be accessed before 
the actual encoding, and fac is applied to derive the quantization parameter (QP) offset for each 
CU. 

Following the divisive normalization process, rate distortion optimization (RDO) is performed 
by minimizing the perceived distortion D with the bit rate R subject to a constraint Rc. This can 
be converted to an unconstrained optimization problem by 

 { } ( )min      where                                       11J J D Rλ= + ⋅  

where J denotes the rate-distortion (RD) cost and λ is known as the Lagrange multiplier which 
controls the tradeoff between R and D. Specifically, the distortion D is defined by computing the 
sum of squared difference (SSD) between the normalized original and distorted coefficients, 
which is given by 
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As the divisive normalization is performed to transform the DCT coefficients into a perceptually 
uniform space, the Lagrangian multiplier λ in rate distortion optimization is untouched in the en-
coder. 

Perceptual SCI Compression 
The main difference between SSIM and SQI may be well accounted for by the window adaption 
and information content weighting process. Specifically, in analogies to the SQI method, block 
type classification is firstly performed by evaluating the local information content in each block 
and then compare it with a predefined threshold. Subsequently, based on the design philosophy 
of SQI, the normalization factor for a textual block is given by 

 ( )/                                       13t ac tf f g=  

where g t  denotes the relative importance of the local block in terms of the information content: 
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where k is the spatial location index within a block of size N, and i is the block index within each 
CU. 

Similarly, the normalization factor for a pictorial block is given by 
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It is worth noting that the local information here is computed with Gaussian window of larger 
size kP . 

The divisive normalization factors derived from SSIM and SQI for a typical SCI are given in 
Figure 4, where the divisive normalization factors are computed within each 4x4 block for better 
visualization. The results demonstrate that with the proposed method, we can assign smaller nor-
malization factors to textual regions with high contrast edges, which are more sensitive to the 
HVS compared to the pictorial regions. Consequently, with the divisive normalization approach 
that is specifically designed for SCI compression, we are able to adapt the bit allocation process 
to improve the overall SCI quality. 

 

Figure 4. Visualization of spatially adaptive divisive normalization factors for a typical SCI (darker 
pixels indicate higher normalization factors). (a) Original SCI. (b) Normalization factors derived from 
SSIM. (c) Normalization factors derived from SQI. 

Experimental Results 
We incorporate the proposed perceptual SCI coding approach into the newly developed HEVC 
screen content coding extension codec. The test images are in YUV4:4:4 format from both the 
SIQAD database and HEVC test sequences (the first frame of each sequence). They include 
common scenarios in screen image processing, such as web browsing, office software editing 
and video-conferencing. The R-D performance gain (BD-Rate) between the original HEVC en-
coder (anchor) and the proposed approach in terms of SQI is given in Table 5. It is observed that 
significant bit rate saving is achieved, which further demonstrates the effectiveness of the pro-
posed quality measure in potential applications such as encoder optimization. 

Table 5. RD Performance for Different SCIs in terms of SQI. 

Image BD-Rate 

Webpage -4.6% 

Digital magazine -4.3% 

PPT DOC XLS -5.0% 

Programming -4.2% 

Video Conferencing -8.3% 

Word Editing -9.7% 
 

We further carried a subjective test to verify the proposed perceptual SCI coding scheme. The 
subjective test is based on a two-alternative-forced-choice (2AFC) method, which has been 
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widely adopted in comparing the subjective quality of two video sequences.15,17 Specifically, in 
each trial a subject is forced to choose the one he/she thinks to have better quality from a pair of 
compressed SCIs. We selected four pairs of SCIs, and each pair is repeated four times in random 
order. In total, 14 subjects were invited in the subjective test. The coding bits, SQI and the re-
sults of the subjective tests are reported in Table 6, where the percentage by which the subjects 
are in favor of the anchor against the proposed scheme are demonstrated. As can be observed, 
the SCIs are compressed at similar bit bits, and the subjects are inclined to select the proposed 
method to have better quality. These results provide useful evidence that the proposed method 
improves the coding performance in terms of subjective quality. 

Table 6. Subjective Test Configurations and Results. 

SCI 
Anchor Proposed Percentage 

(In favor of 
Anchor) bpp SQI bpp SQI 

PPT DOC 
XLS 

0.260 0.8856 0.258 0.8937 23.21% 

Program-
ming 

0.225 0.9286 0.230 0.9402 8.93% 

Video Con-
ferencing 

0.378 0.9363 0.374 0.9454 14.29% 

Word Edit-
ing 

0.265 0.8748 0.261 0.8983 5.36% 

CONCLUSION 
We propose an objective quality assessment method for SCIs and then employ it to optimize the 
encoding process of SCI compression. The quality assessment method differentiates textual and 
pictorial blocks, and applies different parameters in the computation of the structural similarity 
for local quality assessment. A local information content weighting scheme is further adopted to 
derive the optimal perceptual weights for spatial pooling. Experimental results show the superior 
performance of the proposed method in predicting the quality of SCIs, and also demonstrate its 
potential in improving the performance of SCI compression. 
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