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Abstract—Many state-of-the-art perceptual image quality as-
sessment (IQA) algorithms share a common two-stage structure:
local quality/distortion measurement followed by pooling. While
significant progress has been made in measuring local image
quality/distortion, the pooling stage is often done in ad-hoc ways,
lacking theoretical principles and reliable computational models.
This paper aims to test the hypothesis that when viewing natural
images, the optimal perceptual weights for pooling should be
proportional to local information content, which can be estimated
in units of bit using advanced statistical models of natural images.
Our extensive studies based upon six publicly-available sub-
ject-rated image databases concluded with three useful findings.
First, information content weighting leads to consistent improve-
ment in the performance of IQA algorithms. Second, surprisingly,
with information content weighting, even the widely criticized
peak signal-to-noise-ratio can be converted to a competitive
perceptual quality measure when compared with state-of-the-art
algorithms. Third, the best overall performance is achieved by
combining information content weighting with multiscale struc-
tural similarity measures.

Index Terms—Gaussian scale mixture (GSM), image quality
assessment (IQA), pooling, information content measure, peak
signal-to-noise-ratio (PSNR), structural similarity (SSIM), statis-
tical image modeling.

I. INTRODUCTION

I N RECENT years, there has been an increasing interest
in developing objective image quality assessment (IQA)

methods that can automatically predict human behaviors in
evaluating image quality [1]–[3]. Such perceptual IQA mea-
sures have broad applications in the evaluation, control, design
and optimization of image acquisition, communication, pro-
cessing and display systems. Depending upon the availability
of a “perfect quality” reference image, they may be classified
into full-reference (FR, where the reference image is fully
accessible when evaluating the distorted image), reduced-refer-
ence (RR, where only partial information about the reference
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image is available) and no-reference (NR, where no access to
the reference image is allowed) algorithms [3].

Many state-of-the-art IQA measures (especially FR algo-
rithms) adopted a common two-stage structure, as illustrated in
Fig. 1. In the first stage, image quality/distortion is evaluated
locally, where the locality may be defined in space, scale
(or spatial frequency) and orientation. For example, spatial
domain methods such as the mean squared error (MSE) and
the structural similarity (SSIM) index [4], [5] compute pixel-
or patch-wise distortion/quality measures in space, while
block-discrete cosine transform [6] and wavelet-based [7]–[11]
approaches define localized quality/distortion measures across
scale, space and orientation. Such localized measurement
approaches are consistent with our current understanding about
the human visual system (HVS), where it has been found that
the responses of many neurons in the primary visual cortex are
highly tuned to the stimuli that are “narrow-band” in frequency,
space and orientation [12]. The local measurement process
typically results in a quality/distortion map defined either in
the spatial domain or in the transform domain (e.g., wavelet
subbands). A spatial domain example is shown in Fig. 2. To
assess the quality of a JPEG compressed image (b) given a
reference image (a), two local quality/distortion measures,
absolute error and the SSIM index, were computed, resulting an
absolute error map (c) and an SSIM map (d). Careful inspection
shows that the SSIM index better reflects the spatial variations
of perceived image quality. For example, the blockiness in the
sky is clearly indicated in Fig. 2(d) but not in Fig. 2(c). To
convert such quality/distortion maps into a single quality score,
a pooling algorithm is employed in the second stage of the IQA
algorithm.

In the literature, significant progress has been made in the de-
sign of the first stage, i.e., local quality measurement [1]–[3], but
much less is understood about the pooling stage. The potential
of spatial pooling has been demonstrated by experimenting with
different pooling strategies [13] or optimizing spatially varying
weights to maximize the correlation between objective and sub-
jective image quality ratings [14]. A common hypothesis un-
derlying nearly all existing schemes is that the pooling strategy
should be correlated with human visual fixation or visual re-
gion-of-interest detection. This is supported by a number of in-
teresting recent studies [14]–[16], where it has been shown that
sizable performance gain can be obtained by combining objec-
tive local quality measures with subjective human fixation or
region-of-interest detection data. In practice, however, the sub-
jective data is not available, and the pooling stage is often done
in simplistic or ad-hoc ways, lacking theoretical principles as
the basis for the development of reliable computational models.

1057-7149/$26.00 © 2010 IEEE
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The existing pooling approaches can be roughly categorized in
the following ways.

• Minkowski pooling
Let be the local quality/distortion value at the th loca-
tion in the quality/distortion map. The Minkowski summa-
tion is given by

(1)

where is the total number of samples in the map, and
is the Minkowski exponent. To give a specific example,

let represent the absolute error as in Fig. 2(c), then (1)
is directly related to the norm (subject to a monotonic
nonlinearity). As special cases, corresponds to the
mean absolute error (MAE), and to the MSE. As
increases, more emphasis is shifted to the high distortion
regions. Intuitively, this makes sense because when most
distortions in an image is concentrated in a small region
of an image, humans tend to pay more attentions to this
low quality region and give an overall quality score lower
than direct average of the quality map [13]. In the extreme
case , it converges to , i.e., the measure
is completely determined by the highest distortion point.
In practice, the value of typically ranges from 1 to 4
[5]–[10]. In [13], it was shown that Minkowski pooling can
help improve the performance of IQA algorithms, but the
best value depends upon the underlying local metric
and there is no simple method to derive it.

• Local quality/distortion-based pooling
The intuitive idea that more emphasis should be put at high
distortion regions can be implemented in a more straight-
forward way by local qulaity/distoriton-based pooling.
This can be done by using a nonuniform weighting ap-
proach, where the weight may be determined by an error
visibility detection map [17]. It may also be computed
using the local quality/distortion measure itself [13], such
that the overall quality/distortion measure is given by

(2)

where the weighting function is monotonically in-
creasing when is a distortion measure (i.e., larger value
indicates higher distortion), and monotonically decreasing
when is a quality measure (i.e., larger value indicates
higher quality). Another method to assign more weights
to low quality regions is to sort all values and use a
small percentile of them that correspond to the lowest
quality regions. For example, in [18] and [19], the worst
5% or 6% distortion values were employed in computing
the overall quality scores. Local quality/distortion-based
pooling has been shown to be effective in improving
IQA performance, as reported in [13], [19], though the
implementations are often heuristic (for example, in the
selection of the weighting function and the per-
centile), without theoretical guiding principles.

Fig. 1. Two-stage structure of IQA systems.

• Saliency-based pooling
Here we use “saliency” as a general term that represents
low-level local image features that are of perceptual signifi-
cance (as opposed to high-level components such as human
faces). The motivation behind saliency-based pooling ap-
proaches is that visual attention is attracted to distinctive
saliency features and, thus, more importance should be
given to the associated regions in the image. A saliency
map , created by computing saliency at each image
location, can be used as a visual attention predictor, as well
as a weighting function for IQA pooling as follows:

(3)

Given an infinite number of possible saliency features, the
question is what saliency should be used to create .
This can range from simple features such as local vari-
ance [13] or contrast [20] to sophisticated computational
models based upon automatic point of gaze predictions
from low-level vision features [19], [21]–[24]. It has also
been found that motion information is another useful fea-
ture to use in the pooling stage of video quality assessment
algorithms [25]–[27].

• Object-based pooling
Different from low-level vision based saliency approaches,
object-based pooling methods resort to high-level cog-
nitive vision based image understanding algorithms that
help detect and/or segment significant regions from the
image. A similar weighting approach as in (3) may be
employed, just that the weight map is generated from
object detection or segmentation algorithms. More weights
can be assigned to segmented foreground objects [28] or
on human faces [26], [29]–[31]. Although object-based
weighting has demonstrated improved performance for
specific scenarios (e.g., when the image contains distin-
guishable human faces), they may not be easily applied to
general situations where it may not always be an easy task
to find distinctive objects that attract visual attention.

In summary, all of the previous pooling strategies are well
motivated and have achieved certain levels of success. Combi-
nations of different strategies have also shown to be a useful
approach [19], [25], [26], [31]. However, the existing pooling
algorithms tend to be ad-hoc, and model parameters are often
set by experimenting with subject-rated image databases. What
are lacking are not heuristic tricks but general theoretical prin-
ciples that are not only qualitative sensible but also quantitative
manageable, so that reliable computational models for pooling
can be derived.

In this research, we look at the IQA pooling problem from
an information theoretic point of view. The general belief is
that the HVS is an optimal information extractor, as widely
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Fig. 2. (a) Original image. (b) Distorted image (by JPEG compression). (c) Absolute error map—brighter indicates better quality (smaller absolute difference).
(d) SSIM index map—brighter indicates better quality (larger SSIM value).

hypothesized in computational vision science [32]. To achieve
such optimality, the image components that contain more infor-
mation content would attract more visual attention [33]. Using
statistical information theory, the local information content can
be quantified in units of bit, provided that a statistical image
model is available. The local information content measure can
then be employed for IQA weighting. In essence, our approach
is saliency-based, but the resulting weighting function also has
interesting connections with quality/distortion-based pooling
method, which we will discuss later in Section II. Information
theoretic methods are by no means new for IQA. In fact,
our work is inspired by the success of the visual information
fidelity (VIF) method [34], though VIF was not originally
proposed for pooling purpose. In [27], based upon statistical

models of Bayesian motion perception [35], motion informa-
tion content and perceptual uncertainty were computed for
video quality assessment. In our preliminary work [13], simple
local information-based weighting demonstrated promising
results for improving IQA performance. In this paper, we build
our information content weighting method upon advanced
statistical image models and combine it with multiscale IQA
methods. This results in superior performance in our extensive
tests using six independent databases, which in turn, provides
strong support of our general hypothesis.

II. INFORMATION CONTENT WEIGHTING

The computation of image information content relies on
good statistical image models. In [13], a rather crude spatial
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domain local Gaussian model is assumed for spatial pooling
of IQA. Inspired by several recent successful approaches in
image denoising [36] and IQA [34], [37], [38], here we adopt
the Gaussian scale mixture (GSM) model for natural images.
As in many other image models, to reduce the high dimen-
sionality of natural images, a Markov assumption is made that
the probability density of a pixel (or a transform coefficient)
is fully determined by the pixels (coefficients) within a spatial
(and/or scale) neighborhood. The remaining task is, thus,
the statistical modeling of groups of neighboring pixels (or
coefficients). GSM has found to be a powerful model for this
purpose [39], where the neighborhood is typically composed
of a set of neighboring coefficients in a multiresolution image
transform domain. It has been shown that the GSM framework
can be easily adapted to account for the marginal statistics of
multiresolution transform coefficients of natural images, where
the density exhibits strong non-Gaussianity, with sharp peak
at zero and heavy tails [32]. Meanwhile, GSM is also effective
in describing the amplitude-dependency between neighboring
coefficients [39].

Let be a length- column vector that contains a group of
neighboring transform coefficients (e.g., wavelet or Lapla-

cian pyramid transform [40] coefficients). We model it as a
GSM, which can be expressed as a product of two independent
components

(4)

where is a zero-mean Gaussian vector with covariance ma-
trix , and is called a mixing multiplier. The general form
of GSM allows to be a random variable that has a certain dis-
tribution in a continuous scale. To simplify the computation, we
assume that only takes a fixed value at each location (but varies
over space and scale). The benefit of this simplification is that
when is fixed and given, is simply a zero-mean Gaussian
vector with covariance

(5)

An important concept that we learned from the information
theoretical IQA approaches [34], [37] is that the information
contained in an image is not equated with the amount of in-
formation perceived by the visual system. The mutual informa-
tion between the images before and after the visual perceptual
channel provides a more useful measure. Following this idea,
we propose a model to compute perceptual information content,
which is illustrated in Fig. 3. First, the reference signal passes
through a distortion channel, resulting in a distorted signal

(6)

where the distortion is modeled based upon a gain factor fol-
lowed by additive independent Gaussian noise contamination

with covariance (where represents the iden-
tity matrix). Although this model seems to be over simplistic in
capturing all potential types of distortions such as blocking and
ringing artifacts that often appear in compressed images, it was
claimed to achieve a reasonable balance in terms of the level
of perceptual annoyance across distortion types [34]. This was
demonstrated empirically in [34] using an image synthesis ap-

Fig. 3. Diagram for computing information content.

proach, where images under different types of distortions were
compared with synthesized distortion images using the local at-
tenuation/noise model. Although the real and synthesized dis-
torted images look different in terms of the types of artifacts, the
synthesized images reproduced more reasonably balanced per-
ceptual annoyance than an additive noise-only distortion model
[34]. Stronger and more theoretical justifications of this distor-
tion model are still yet to be discovered.

Next, both the reference and distorted signals pass through a
perceptual visual noise channel

(7)

(8)

where and are assumed to be independent white
Gaussian noise with diagonal covariance .
This simple one-parameter visual distortion model aims
to capture the lumped uncertainty of the visual system [34].
Similar to (5), we can then compute the covariance matrices of

and as

(9)

(10)

(11)

Since all the computation in the rest of this section assumes a
fixed and known multiplier , for notational convenience, we
drop the conditional notation “ ” in all the derivations.

Based upon the approach given in [34], at each location, the
information of the original and distorted images perceived by
the visual system can be computed by the mutual information

and , respectively. Here we move one step fur-
ther to estimate the total perceptual information content from
both images. More specifically, we compute the sum of
and minus the common information shared between
and . This results in a total information content weight mea-
sure given by

(12)
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To compute (12), it is useful to be aware that and
are all Gaussian for given fixed . As a result, the mutual

information evaluations, and , can be
calculated based upon the determinants of the covariances [41]
by

(13)

(14)

(15)

where

(16)

(17)

(18)

Equation (16) can be simplified based upon the fact that

(19)

where is the expectation operator and we have used the fact
that and are independent. This leads to

(20)

Similarly, we can derive

(21)

(22)

and

(23)

Combining (12), (13), (14), (15), (20), and (23), we can simplify
our information content weight computation to the following
expression:

(24)

Plug (22), (10), and (11) into (18), we have

(25)

To compute the determinant of , it is useful to apply
an eigenvalue decomposition to the covariance matrix

, where is an orthogonal matrix, and is a diagonal
matrix with eigenvalues for along its diagonal
entries. Equation (25) can then be expressed as

(26)

Since is orthogonal and the expression between the two
matrices in (26) is a diagonal matrix, the determinant of
can be easily computed as

(27)

Plug this into (24) and simplify the expression, we obtain

(28)

Although the derivation mentioned here is completely based
upon evaluations of local information content, the resulting
weight function (28) shows some interesting connections with
local distortion/quality-weighted pooling method described in
Section I. In particular, based upon the distortion model (6),
the variations from to are characterized by the gain factor

and the random distortion . Since is a scale factor along
the signal direction, it does not cause structural changes of
the signal. Therefore, the structural distortions are essentially
captured by . Note that the weight function (28) increases
monotonically with . This implies that more weights are
given to the regions with larger distortions, which is in line with
the philosophy behind quality/distortion-weighted pooling.

To finish the computation in (28), we need to estimate a set of
parameters, including and . As in [36], we estimate

using

(29)

where is the number of evaluation windows in the subband,
and is the th neighborhood coefficient vector. This needs to
be computed only once for each subband. The multiplier is
spatially varying and can be estimated using a maximum likeli-
hood estimator [39]

(30)

Finally, the distortion parameters and can be obtained by
least square regression that optimizes

(31)

Take derivative of the squared error function with respective to
and let it equal zero, we have

(32)

Substitute this into (6), we can estimate using ,
which leads to

(33)
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Fig. 4. Computation of local information content maps. (a),(b) Original and distorted images. (c),(d) Corresponding Laplacian pyramid subbands at four scales
(enhanced for visualization). (e) Corresponding information content maps computed at four scales (enhanced for visualization). Brighter indicates larger informa-
tion content.

When computing information content weights for real-world
images, we first apply a five-scale Laplacian pyramid decom-
position [40] to the original and distorted images, resectively.
We then compute information content weight using a sliding
window that runs across each subband, where at each location,
the window includes 3 3 spatial neighborhood coefficients to-
gether with one parent coefficient (as a result, ). This
process results in an information content weight map for each
scale. An example of the “Einstein” image is given in Fig. 4. By
visually inspecting the reference and distorted images, we ob-
serve that the information content is distributed unevenly over
space. For example, compared with the background, the eye re-
gions and some sharp edge areas in the images are perceptually
more informative. As expected, these observations are well rep-
resented by the information content maps, where brighter indi-
cates more information content and, thus, higher visual impor-
tance in IQA.

III. IQA ALGORITHMS

A. Information Content Weighted PSNR

Let and be the th pixel in the original image and the
distorted image , respectively. The MSE and PSNR between
the two images are given by

MSE (34)

PSNR
MSE

(35)

where is the total number of pixels in the image and is
the maximum dynamic range. For 8 b/pixel gray-scale images,

.
Here we define an information content weighted MSE (IW-

MSE) and an information content weighted PSNR (IW-PSNR)
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measures by incorporating the Laplacican pyramid transform
[40] domain information content weights computed as in (28).
Let and be the th transform coefficients at the th scale,
and be the information content weight computed at the cor-
responding location, then we define IW-MSE as

(36)

where is the number of scales, is the weight given to the
th scale, and the weights are defined in similar ways as in the

multiscale SSIM approach [42], which will be discussed in more
detail in Section III-B. Analogous to MSE-PSNR conversion,
IW-MSE can be converted to IW-PSNR by

(37)

B. Information Content Weighted MultiScale SSIM

The basic spatial domain SSIM algorithm [5] is based upon
separated comparisons of local luminance, contrast and struc-
ture between an original and a distorted images. Given two local
image patches and extracted from the original and distorted
images, respectively, the luminance, contrast and structural sim-
ilarities between them are evaluated as

(38)

(39)

(40)

respectively. Here, and represent the mean, stan-
dard deviation and cross-correlation evaluations, respectively.

are small constants
that have been found to be useful in characterizing the satura-
tion effects of the visual system at low luminance and contrast
regions and stabilizing the performance of the measure when the
denominators are close to zero. The local SSIM index is defined
as the product of the three components, which gives

SSIM (41)

When this local measurement is applied to an entire image using
a sliding window approach, an SSIM quality map is created, as
exemplified by Fig. 2(d). The overall SSIM value of the whole
image is simply the average of the SSIM map.

It has been found that the performance of the previous
single-scale SSIM algorithm depends upon the scale it is ap-
plied to [42] and [43]. In [42], a multiscale SSIM (MS-SSIM)
approach was proposed that incorporates SSIM evaluations at
different scales. Psychovisual experiments were carried out
to find the relative weights between scales. Interestingly, the
measured weight function peaks at middle-resolution scales
and drops at both low- and high-resolution scales, consistent
with the contrast sensitivity function extensively studied in the

vision literature [12]. Let and be the th local image
patches (extracted from the th evaluation window) at the th
scale, and let be the number of evaluation windows in the
scale, then the th scale SSIM evaluation is computed as

SSIM (42)

for , and

SSIM (43)

for . The overall MS-SSIM measure is defined as

SSIM (44)

where the values were obtained through psychophysical mea-
surement [42].

By combining information content weighting with multiscale
SSIM, we define an information content weighted SSIM mea-
sure (IW-SSIM). Let be the information content weight
computed at the th spatial location in the th scale using (28),
the th scale IW-SSIM measure is defined as

(45)

for , and

(46)

for . The final overall IW-SSIM measure is then com-
puted as

(47)

using the same set of scale weights ’s as in MS-SSIM.
The proposed IW-PSNR and IW-SSIM algorithms do

not involve any training process or any new parameters
for tuning. All parameters are inherited from previous
publications. These include and
from [5]; from [34]; from [42]; and
the fine-to-coarse scale weights

from [42].

C. Interpretation of VIF Based Upon Information Content
Weighting

Based upon the interpretation in its original publication,
the VIF algorithm [34] does not seem to fit into the two-stage
framework shown in Fig. 1, because the information content is
summed over the entire image space before the fidelity ratio is
computed

VIF (48)
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Here we show that with some simple transformations, VIF in-
deed can be nicely interpreted using the same two-stage frame-
work. Specifically, we can write

VIF
VIF

(49)

where we have defined a local VIF measure (which follows the
same philosophy as the general VIF concept [34])

VIF (50)

and a weighting function

(51)

Interestingly, this weight definition is essentially an information
content measure, although different from what we use in our
approach [as in (12)].

IV. VALIDATION AND COMPARISON

We validate the proposed IW-PSNR and IW-SSIM measures
and compare them with 13 other algorithms.

• PSNR, which has a wide usage in the image processing
literature. It also provides useful baseline comparisons.

• SSIM [5], MS-SSIM [42], visual signal-to-noise ratio
(VSNR) [44], VIF [34], PSNR-HVS-M [45], and most
apparent distortion (MAD) [17], which are state-of-the-art
algorithms that have demonstrated competitive perfor-
mance. They are also available online [43], [46]–[49] that
facilitate repeatable experimental verifications.

• Distortion-weighted PSNR (DW-PSNR) and distortion
weighted SSIM (DW-SSIM), which were implemented
by ourselves to provide direct comparisons between
quality/distortion- and information content-weighted
approaches. Specifically, the weighting approach of
(2) is adopted, where the function is defined as

and for DW-PSNR and
DW-SSIM, respectively, which maximize the perfor-
mance of DW-based weighting approaches according to
the empirical results presented in [13].

• Contrast weighted PSNR (CTW-PSNR) and contrast
weighted SSIM (CTW-SSIM), where we replaced in-
formation content weighting with a local contrast-based
weighting approach to facilitate a straightforward com-
parison of the two pooling approaches. In particular, the
scale-dependent contrast measure proposed in [20] was
adopted.

• Saliency weighted PSNR (SW-PSNR) and saliency
weighted SSIM (SW-SSIM), where saliency maps com-
puted using the model proposed in [21] (using the Salien-
cyToolbox presented in [50], [51]) were employed to
create the local weighting function. This helps make direct
comparisons between the weighting approaches based
upon information content measures and widely accepted
saliency measures designed to predict human fixations.

To the best of our knowledge, there are currently six publicly-
available subject-rated image databases that are widely recog-
nized in the IQA research community. We include all of them

in our algorithm validation and comparisons. Since the con-
struction of our algorithms does not require training or param-
eter tuning, all image databases are used for testing only. These
databases include those shown in the following.

• The LIVE database [46] was developed at The Univer-
sity of Texas at Austin. It contains seven data sets of 982
subject-rated images, including 779 distorted images cre-
ated from 29 original images with five types of distor-
tions at different distortion levels. The distortion types in-
clude a) JPEG2000 compression (2 sets); b) JPEG com-
pression (2 sets); c) White noise contamination (1 set); d)
Gaussian blur (1 set); and e) fast fading channel distortion
of JPEG2000 compressed bitstream (1 set). The subjec-
tive test was carried out with each data set individually.
A cross-comparison set that mixes images from all dis-
tortion types is then used to help align the subject scores
across data sets. The subjective scores of all images are
then adjusted accordingly. The alignment process is rather
crude. However, the aligned subjective scores (all data) are
still very useful references, which are particularly impor-
tant for testing general-purpose IQA algorithms, for which
cross-distortion comparisons are highly desirable.

• The Cornell-A57 database [52] was created at Cornell
University. It contains 54 distorted images with six types
of distortions including a) quantization of the LH subbands
of a 5-level discrete wavelet transform, where the sub-
bands were quantized via uniform scalar quantization with
step sizes chosen such that the root mean-squared (RMS)
contrast of the distortions was equal; b) additive Gaussian
white noise; c) baseline JPEG compression; d) JPEG2000
compression without visual frequency weighting; e)
JPEG2000 compression with the dynamic contrast-based
quantization algorithm, which applies greater quantization
to the fine spatial scales relative to the coarse scales in an
attempt to preserve global precedence; and f) blurring by
using a Gaussian filter.

• The IVC database [53], [54] was developed at Ecole Poly-
technique de l’Universite de Nantes. It includes 185 dis-
torted images generated from ten original images. There
are four types of distortions that are a) JPEG compression;
b) JPEG2000 compression; c) Local adaptive resolution
(LAR) coding; and d) Blurring.

• The Toyama-MICT database [55] was created at Toyama
University. It contains 196 images, including 168 distorted
images generated by JPEG and JPEG2000 compression.

• The Tampere Image Database 2008 (TID2008) [56], [57]
was developed with a joint international effort between
Finland, Italy, and Ukraine. It includes 1700 distorted
images generated from 25 reference images with 17
distortion types at four distortion levels. The types of dis-
tortions include: a) Additive Gaussian noise; b) Additive
noise in color components is more intensive than additive
noise in the luminance component; c) Spatially corre-
lated noise; d) Masked noise; e) High frequency noise;
f) Impulse noise; g) Quantization noise; h) Gaussian blur;
i) Image denoising; j) JPEG compression; k) JPEG2000
compression; l) JPEG transmission errors; m) JPEG2000
transmission errors; n) Non eccentricity pattern noise;
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TABLE I
PERFORMANCE COMPARISONS OF 15 IQA ALGORITHMS ON SIX PUBLICLY AVAILABLE IMAGE DATABASES

o) Local block-wise distortions of different intensity;
p) Mean shift (intensity shift); and q) Contrast change.

• The Categorical Image Quality (CSIQ) Database [58]
was developed at Oklahoma State University. 30 original
images were used to create a total of 866 distorted images
using six types of distortions at four to five distortion
levels. The distortion types include JPEG compression,

JPEG2000 compression, global contrast decrements, ad-
ditive pink Gaussian noise, and Gaussian blurring.

We use five evaluation metrics to compare the performance of
IQA measures. Some of the metrics were included in previous
tests carried out by the video quality experts group (VQEG)
[59]. Other metrics are adopted from previous publications [56],
[60]. These evaluation metrics are shown in the following.
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TABLE II
AVERAGE PERFORMANCE OVER SIX DATABASES

• Pearson Linear correlation coefficient (PLCC) after a
nonlinear mapping between the subjective and objective
scores. For the th image in an image database of size ,
given its subjective score (mean opinion score (MOS)
or difference of MOS (DMOS) between reference and
distorted images) and its raw objective score , we first
apply a nonlinear function to given by [60]

(52)

where to are model parameters found numerically
using a nonlinear regression process in MATLAB opti-
mization toolbox to maximize the correlations between
subjective and objective scores. The PLCC value can then
be computed as

PLCC (53)

• MAE is calculated using the converted objective scores
after the nonlinear mapping described previously

MAE (54)

• RMS error is computed similarly as

RMS (55)

• Spearman’s rank correlation coefficient (SRCC) is defined
as:

SRCC (56)

where is the difference between the th image’s ranks in
subjective and objective evaluations. SRCC is a nonpara-
metric rank-based correlation metric, independent of any
monotonic nonlinear mapping between subjective and ob-
jective scores.

• Kendall’s rank correlation coefficient (KRCC) is another
nonparametric rank correlation metric given by

KRCC (57)

where and are the numbers of concordant and dis-
cordant pairs in the data set, respectively.

Among the previously mentioned metrics, PLCC, MAE, and
RMS are adopted to evaluate prediction accuracy [59], and
SRCC and KRCC are employed to assess prediction mono-
tonicity [59]. A better objective IQA measure should have
higher PLCC, SRCC, and KRCC while lower MAE and RMS
values.

In all of our tests, only the distorted images in the six
databases were employed (i.e., reference images are excluded).
This avoids several difficulties in computing the evaluation
metrics. Specifically, the reference images have infinite PSNR
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TABLE III
SPEARMAN RANK ORDER CORRELATION COEFFICIENT COMPARISONS FOR INDIVIDUAL DISTORTION TYPES

value, making it hard to perform nonlinear regression and
compute PLCC, MAE, and MSE values. In addition, since all
reference images are assumed to have perfect quality, there are
no natural relative ranks between them, resulting in ambiguities
when computing SRCC and KRCC metrics.

Table I shows our test results of 15 IQA measures using the
six databases. To provide an evaluation of the overall perfor-
mance of the IQA measures under comparison, Table II gives
the average PLCC, SRCC, and KRCC results over six databases,
where the average values are computed in two cases. In the first
case, the correlation scores are directly averaged, while in the
second case, different weights are given to different databases,
depending upon their sizes (measured as the numbers of im-
ages, i.e., 779 for LIVE, 54 for Cornell A57, 185 for IVC, 168
for Toyama, 1700 for TID2008, and 866 for CSIQ databases,
respectively). For each evaluation metric in each test, we high-
light the best two results with boldface. We have three major
observations based upon the results shown in Tables I and II:

• First, information content weighting leads to consistent
improvement in the performance of IQA algorithms for
different underlying local quality measures. This can be
seen by comparing the performance between {PSNR and
IW-PSNR}, or {SSIM, MS-SSIM, and IW-SSIM}. In fact,
for every database and every evaluation metric in Tables I
and II, IW-based weighting always results in performance
improvement. Although not all improvements are signifi-
cant (which are not surprising as several existing IQA mea-
sures have already achieved fairly high performance for the
databases being tested), the consistency of improvements
is perhaps a stronger indicator of the effect and reliability
of information content weighting.

• Second, information content weighting converts the
widely criticized PSNR measure into a quite competitive
perceptual IQA approach. Indeed, the performance of
IW-PSNR is often comparable to many state-of-the-art al-
gorithms. This is quite surprising because both PSNR and
IW-PSNR are based upon rather poor local image quality
measurement (point-wise absolute error), as demonstrated
in Fig. 2. This is probably a more straightforward and
stronger demonstration of the power of information con-
tent weighting.

• Third, DW-, CTW-, and SW-based pooling all can im-
prove the performance of image quality measures. Some
of them achieve superior performance in subtests. For ex-
ample, DW-SSIM has outstanding performance on CSIQ
and Toyama-MICT databases. However, such improve-
ment is not as consistent and reliable as the IW approach.
For example, DW-SSIM is not as impressive on IVC
and TID2008 databases. The best overall performance
is achieved by IW-SSIM, which is a combination of
several useful ideas, including local SSIM measurement,
multiscale signal analysis and weighting, and informa-
tion content-based pooling. It is worth mentioning that
this is achieved without introducing any new parameter
and without involving any training or parameter tuning
process.

To examine the effects of information content weighting on
different image distortion types, we carried out a breakdown test
on the individual data sets in LIVE and CSIQ databases. The
results are shown in Table III. It can be observed that the IW
approach leads to consistent improvement for JPEG compres-
sion, JPEG2000 compression and blur distortions, but is not as
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TABLE IV
PEARSON LINEAR CORRELATION COEFFICIENT COMPARISONS FOR LOW AND HIGH QUALITY IMAGES

TABLE V
COMPARISONS OF COMPUTATION TIME (IN SECOND/IMAGE)

reliable when the distortion types are noise contamination or
transmission error.

To examine how the proposed IW approach behaves on
different levels of image distortions, we conducted breakdown
tests on all six databases by evenly dividing each database into
low-quality and high-quality halves. The results are shown in
Table IV. It appears that on average, improvement is achieved
on both low-quality and high-quality images, but the level
and consistency of improvement are much more significant at
low-quality than high-quality levels.

Finally, to compare the computational complexity of different
algorithms, we measured the average computation time required
to assess an image of size 512 512 (using a computer with
Intel Q6800 processor at 2.93 GHz). Table V reports the mea-
surement results, which are rough estimates only, as no code
optimization has been done on our Matlab implementations. It
can be seen that IW-SSIM takes more time than PSNR, VSNR
and other versions of SSIM, but less time than VIF and MAD.
In particular, the savings over VIF might be due to the use of
the Laplacian pyramid, rather than the steerable pyramid de-
compositions, which have higher computational complexity and
include more orientation subbands. Since almost all methods
under comparison (except for MAD) have quite high speed (less
than a few seconds per image), computational complexity may
not be a major concern in most real-world applications.

To facilitate future study and comparisons, we have put the
Matlab code of the proposed IW-PSNR and IW-SSIM algo-

rithms as well as our evaluation results online at http://www.
ece.uwaterloo.ca/~z70wang/research/iwssim/.

V. CONCLUSIONS AND DISCUSSIONS

This paper targets at finding the optimal pooling strategy for
the design of IQA algorithms. We propose a multiscale infor-
mation content weighting approach based upon a GSM model
of natural images [39]. We show that this novel weighting
method leads to significant and consistent performance im-
provement of both PSNR- and SSIM-based IQA algorithms.
Interestingly, the widely recognized VIF algorithm [34] can
also be reinterpreted in the same information content weighting
framework. Our extensive tests with six publicly-available
independent image databases show that the proposed IW-SSIM
algorithm achieves the best overall performance. We believe
that our results support the general principle underlying our
approach, i.e., the optimal weight for pooling should be directly
proportional to local information content measured in units of
bit.

The success of the IW-SSIM approach may be understood
as a natural consequence of an effective combination of several
proven useful approaches in IQA research. These include
multiscale image decomposition followed by scale-variant
weighting, SSIM-based local quality measurement [5], and
information theoretic analysis of visual information content
and fidelity [34], [37]. The current method may be extended in
many directions. Specifically, the image model currently being
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employed is based upon local magnitude statistics only. Ad-
vanced models that capture nonlocal characteristics of natural
images or phase and orientation regularities may lead to more
accurate information content measures. In addition, although
the images in five of the six test databases being employed in
this paper are color images, only the luminance components of
the images were used for IQA. How to make use of the color
components, and especially how to evaluate spatio-chromatic
information content is still an unresolved problem.
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