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1. Introduction 
Real-world live video distribution systems are often faced with the great challenge of processing videos of 
extremely diverse content type and complexity. The challenge becomes even greater given the critical real-
time requirement and the large volume of 24/7 video streams that need to be processed. Using a fixed 
encoding setup to drive the live video encoders for bandwidth reduction, as is the case in most real-world 
live distribution systems, causes serious problems, resulting in encoded/transcoded videos that often suffer 
from severe and unpredictable quality variations across time, video assets, and content types. 

In the case of live video distribution, decisions need to be made instantaneously to make the best options 
for encoder configurations easily adopted in the video encoding/transcoding pipeline. 

To empower the encoder with intelligence requires two key components:  

1. A quality-of-experience (QoE) metric that not only accurately predicts end viewers experience 
when consuming videos streamed to their viewing devices, but is also real-time and light-weight, 
producing consistent QoE predictions across content type, content complexity, codec type, bit rate, 
video resolution, frame rate and dynamic range; and  

2. An intelligent optimization engine that drives the encoders to produce the best and controllable 
QoE scores in diverse environment and meanwhile maximizing bandwidth reduction. 

Working solutions that best address these critical issues are highly desirable for live video distributions. 

2. User Experience Metrics for Encoding Performance 
An objective user QoE metric aims to automatically predict end viewer’s visual experience when watching 
the encoded video fully decoded and rendered on their viewing devices. Objective QoE assessment is a 
difficult task because it requires deep understanding about how the sophisticated encoding process creates 
compression artifacts for diverse types of video content and how such artifacts impact the quality 
assessment behavior of the human visual system (HVS). Traditionally a direct numerical measure, namely 
the peak signal-to-noise-ratio (PSNR), has been commonly used for encoder evaluation and comparison, 
but PSNR has been shown to have low correlation with perceived video quality [1]. There has been a great 
deal of effort in the past two decades developing advanced objective metrics that better predict subjective 
video quality. Representative metrics include the structural similarity index (SSIM) [1], [2], the multi-scale 
SSIM (MS-SSIM) [3], the information content-weighted SSIM (IW-SSIM) [4], the video quality model 
(VQM) [5] and the video multi-method assessment fusion (VMAF) [6]. These metrics demonstrate 
significantly improved video quality predictions under certain controlled test conditions. Nevertheless, they 
are still highly limited in terms of their functionality, interpretability, application scope, and computational 
cost. Such limitations often make it extremely difficult, if not completely impossible, to use these objective 
metrics in various real-world video encoding/transcoding scenarios, especially in time-critical applications 
such as live video distributions. In recent years, novel objective QoE metrics designed to overcome these 
problems are emerging. These metrics target two types of crucial properties, which will be elaborated here. 

The first type of properties focus on the accuracy, speed, cost and interpretability of the QoE metric. There 
is no doubt that the QoE metric should produce video quality scores that accurately predict viewer 
experiences. The standard way to test the accuracy of an objective metric is to compute the linear correlation 
coefficient, rank-order correlation coefficient, and mean prediction error, between the objective scores and 
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mean subjective opinions using large-scale subject-rated video databases. The metric also needs to have 
low computational and implementation cost, readily deployed in large-scale video distribution systems. 
This will also allow for high-speed computation for continuous 24/7 real-time assessment of high-
resolution, high frame rate and high dynamic range videos with moderate hardware configurations. The 
metric must also be easily interpretable, producing quality scores that linearly relate to what an average 
viewer would say about the quality of a video. For example, if the quality score range may be between 0 
and 100, divided into five evenly spaced segments corresponding to five perceptual QoE levels of bad (0-
20), poor (21-40), fair (41-60), good (61-80), and excellent (81-100) quality, respectively. Such a metric 
creates an easy-to-grasp common language, allowing smooth communication in large organizations, where 
engineers and operators can identify and fix quality problems on the fly, researchers and developers can 
optimize individual components and the overall video delivery systems, and executives can make critical 
business decisions. 

 
Figure 1 – Critical requirements lacking in traditional QoE metrics  

 
The second type of critical properties relate to the usability and consistency of the QoE metric in real-world 
application scenarios. It is important to note that well-known video quality metrics (PSNR, SSIM, MS-
SSIM, IW-SSIM, VQM, VMAF) require pixel-to-pixel correspondence between the reference and test 
videos. As a consequence, when videos at the input and output of the video encoder/transcoder are of 
different spatial resolutions, frame rates, and dynamic ranges, these metrics often do not apply. This greatly 
impedes the practical usage of these metrics because in modern video distribution, it is very common that 
the source input videos are transcoded into multiple versions of not only different bit rates, but also different 
spatial resolutions, frame rates and dynamic ranges. In addition, the playbacks of the same video stream on 
different viewing devices could create significantly different viewer experiences, but these metrics often 
generate one quality score only (or a few scores corresponding to a few different devices), and thus fail to 
capture the device variations of visual QoE assessment. Another common but important issue with these 
quality metrics is that they often create inconsistent scores across content of different types and complexity 
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levels. As a result, scores generated by these metrics cannot be compared across content, meaning that two 
videos of similar perceptual QoE may be given drastically different scores, largely constraining the practical 
use such QoE metrics in large-scale distribution systems that make instantaneous resource allocation 
decisions across hundreds or thousands of video services and live video channels. Therefore, as shown in 
Figure 1, in real-world video distribution systems, it is essential to use a QoE metric that simultaneously 
produces consistent quality measurements across spatial resolutions, frame rates, dynamic ranges, viewing 
devices, and video content. 

Recently, great effort has been made to develop novel QoE metrics for the above-mentioned properties. So 
far, the full SSIMPLUS Viewer Score metric is offering all these critical properties [7],[8], and the open 
source VMAF project has also been making progress towards the direction [9]. 

3. Encoding Intelligence Driven by User Experience Metrics 
A good QoE metric that satisfies the critical properties is a fundamental ingredient to enable encoding 
intelligence. On top of that, an encoding decision-making engine driven by content and encoding 
performance analysis may be used to control the live encoding/transcoding process. This may be done in 
different ways, and two types of encoding intelligence frameworks are described below. 

 

   
Figure 2 – Type I Encoding Intelligence 

The first type of encoding intelligence works for the application scenarios where the encoder or transcoder 
configurations can be controlled on-the-fly. These configurations may include the spatial and temporal 
resolutions, the bit rate, the quantization parameter (QP), the group-of-picture (GoP) structure, the encoding 
pre-set, and other parameters that may influence the encoding process. When the source input video is 
received, it first goes through content analysis that may include spatial, temporal and color complexity 
measurement, content type analysis, dynamic range and color statistics, and other statistics of the content. 
Meanwhile, the QoE metric, which compares the current input and output video streams before and after 
the encoder/transcoder, is computed and then fed into the analysis module. Based on both content and 
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encoding performance analysis, decisions on encoder/transcoder configurations are made and used to 
control the encoder/transcoder instantaneously. The intelligence decisions should be geared towards the 
best balancing point between sustained quality delivery and cost-effective bandwidth usage. This process 
is illustrated in Figure 2. 

 

 

Figure 3 – Type II Encoding Intelligence 

The second type of encoding intelligence adapts to the scenarios where on-the-fly encoder parameter 
adjustment is difficult, but multiple encoder/transcoder configurations are setup previously. As a result, the 
intelligence is on the selection of encoders from multiple options, as shown in Figure 3. The pre-determined 
encoder/transcoder configurations may be designed to target at videos of different content types and 
spatial/temporal/color complexity levels. They could also represent different types of encoding 
technologies or encoder solutions. Similar to the Type I intelligence case, source content analysis is 
performed and the QoE metric between the current input and output video streams before and after the 
encoder/transcoder is computed instantaneously. Both types of information is employed by the content and 
encoding performance analysis module to create an intelligence decision that choses one out of the multiple 
encoder/transcoder configuration options for the next step or encoding event. 
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In both encoding intelligence frameworks, each encoder/transcoder block may be designed to generate one 
output video stream or a ladder of outputs (which includes multiple encoded videos of different resolutions, 
frame rates, and bit rates), depending on the deployment points in the video delivery chain and also on the 
specific use cases. In addition, the analysis and decision-making processes may be based on either short-
term instantaneous inputs, or on long-term statistics. 

4. Conclusions 
Compared with video-on-demand (VoD) and many other use cases, encoding intelligence for live video 
distribution is more challenging because all the critical decisions need to be made instantaneously, any 
suboptimal decisions need to be identified and corrected on-the-fly, and the solutions need to work robustly 
and continuously 24/7 in large-scale systems. The tolerance of errors is often low, and any wrong decision 
may lead to severe and unpredictable quality issues, immediately affecting a large number of end viewers’ 
visual experiences [10]. The two most crucial components for encoding intelligence is the QoE metric and 
the encoding intelligence engine. We discussed the challenges and state-of-the-art solutions for both 
components. We have also discussed two types of general frameworks on how QoE-driven encoding 
intelligence may be deployed in real-world application scenarios. 
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