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Reduced-Reference Image Quality Assessment Using
Divisive Normalization-Based Image Representation
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Abstract—Reduced-reference image quality assessment
(RRIQA) methods estimate image quality degradations with
partial information about the “perfect-quality” reference image.
In this paper, we propose an RRIQA algorithm based on a divisive
normalization image representation. Divisive normalization has
been recognized as a successful approach to model the perceptual
sensitivity of biological vision. It also provides a useful image
representation that significantly improves statistical independence
for natural images. By using a Gaussian scale mixture statistical
model of image wavelet coefficients, we compute a divisive normal-
ization transformation (DNT) for images and evaluate the quality
of a distorted image by comparing a set of reduced-reference
statistical features extracted from DNT-domain representations
of the reference and distorted images, respectively. This leads
to a generic or general-purpose RRIQA method, in which no
assumption is made about the types of distortions occurring in the
image being evaluated. The proposed algorithm is cross-validated
using two publicly-accessible subject-rated image databases (the
UT-Austin LIVE database and the Cornell-VCL A57 database)
and demonstrates good performance across a wide range of image
distortions.

Index Terms—Divisive normalization, image quality assessment,
reduced-reference image quality assessment (RRIQA), perceptual
image representation, statistical image modeling.

I. INTRODUCTION

I N RECENT years, there has been an increasing need of
accurate and easy-to-use image quality assessment (IQA)

algorithms in a variety of real world applications, including
image compression, communication, printing, display, restora-
tion, segmentation, and fusion [1]. Most existing IQA methods
require full access to an original reference image that is assumed
to have perfect quality. Without the reference image, the IQA
task becomes very difficult, and almost all existing no-reference
IQA metrics were designed for one or a set of predefined spe-
cific distortion types (such as blocking [2]–[5] and blurring [5]
in JPEG; and ringing [6], blurring [6] and wavelet quantization
effect [7], [8] in JPEG2000). They are unlikely to generalize for
evaluating images degraded with other types of distortions. In
practice, these no-reference methods are useful only when the
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types of distortions between the reference and distorted images
are fixed and known.

Reduced-reference IQA (RRIQA) methods provide an inter-
esting tradeoff. They predict the quality degradation of an image
with only partial information about the reference image, in the
form of a set of RR features [1]. RRIQA measures supply a prac-
tically useful and convenient tool in applications such as real-
time visual information communications over wired or wireless
networks, where they can be employed to monitor image quality
degradations or control the network streaming resources on the
fly. Fig. 1 illustrates how an RRIQA system may be deployed.
The system includes a feature extraction process at the sender
side and a feature extraction/quality analysis process at the re-
ceiver side. The extracted RR features, or the side information,
usually have a much lower data rate than the image data and are
typically transmitted to the receiver through an ancillary channel
[1]. It is often assumed that the ancillary channel is error-free.
However, this is not an absolutely necessary requirement since
even partly decoded RR features may still be helpful in evalu-
ating the quality of the distorted image, though the accuracy may
be affected. The ancillary channel may also be merged with the
distortion channel, in which the RR features would need to re-
ceive stronger protection (e.g., by error control coding) than the
image data during the transmission. Such examples include the
“quality-aware image” system proposed in [9]. At the receiver
side, the difference between the features extracted from the ref-
erence and distorted images is used to evaluate image quality
degradation. The feature extraction process at the receiver side
may also be adapted according to the information obtained from
the RR features received from the ancillary channel.

The general RRIQA framework described in Fig. 1 leaves
flexibilities on the selection of RR features. This is indeed the
major challenge in the design of RRIQA algorithms, where the
appropriate RR features are desirable to:

1) provide an efficient summary of the reference image;
2) be sensitive to a variety of image distortions;
3) be relevant to the visual perception of image quality.

Another important aspect that has to be kept in mind in the se-
lection of RR features is to maintain a good balance between the
data rate of RR features and the accuracy of image quality pre-
diction. With a high data rate, one can include a large amount of
information about the reference image, leading to more accurate
estimation of image quality degradations, but it also becomes a
heavy burden to transmit the RR features to the receiver. On the
other hand, a lower data rate makes it easier to transmit the RR
information, but more difficult for accurate quality estimation.
In practical implementation and deployment, the maximal al-
lowed RR data rate is often given and must be observed. Overall,
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Fig. 1. General framework for the deployment of RRIQA systems.

the merits of an RRIQA system should not be gauged only by
the quality prediction accuracy, but by a tradeoff between the
accuracy and the RR data rate.

Three different but related types of approaches have been
employed in existing RRIQA methods [9]–[16]. The first type
of approaches are based on modeling image distortions and
are mostly developed for specific application environments
[10]–[14]. For example, when the distortion type is known to
be standard image/video compression, a set of typical distor-
tion artifacts such as blurring, blocking and ringing may be
identified, and image features may be defined that are partic-
ularly useful to quantify these artifacts [11], [12]. For another
example, in [10], [13], a set of spatial and temporal features
have been found to be effective in measuring the distortions
occurring in standard video compression and communication
environment. The second type of approaches are based on
modeling the human visual system [15], [16], where perceptual
features motivated from computational models of low level
vision were extracted to provide a reduced description of the
image. One advantage of these approaches is that the perceptual
features being employed are not directly related to any specific
distortion system. As a result, RRIQA methods built upon them
could potentially be extended for general purpose. They may
also be trained on different types of distortions and produce
a variety of distortion-specific RRIQA algorithms under the
same general framework. However, no study has been reported
so far that applies these methods to the images with generic
distortions except for JPEG and JPEG2000 compression [15],
[16]. The third type of approaches are based on modeling
natural image statistics [9]. The basic assumption behind these
approaches is that most real-world image distortions disturb
image statistics and make the distorted image “unnatural.” The
unnaturalness measured based on models of natural image sta-
tistics can then be used to quantify image quality degradation.
In [9], a generalized Gaussian density function is used to model
the marginal statistics of the linear coefficients in wavelet
subbands, and the parameters of the fitting model are employed
as RR features. This general-purpose approach has achieved
somewhat surprising success, as it does not require any training,
and has a rather low RR data rate, but still supplies reasonable
performance when tested with a wide range of image distortion
types [9].

Although the method introduced in [9] achieved notable suc-
cess, our further investigation has revealed some important lim-
itations. First, although the method performed quite well when
tested with individual distortion types (e.g., JPEG or JPEG 2000
compression, blurring, or noise contamination), its performance
degrades significantly when images with different types of dis-
tortions are tested together, as will be shown later in this paper.
Second, it uses a rather weak model of natural image statistics,
as only marginal distributions of wavelet coefficients are consid-
ered. It has been widely noticed that there exist strong dependen-
cies between neighboring wavelet coefficients, which has been
completely ignored by this method. Third, it also uses a rather
weak model for perceptual image representation, as wavelet de-
composition is linear and cannot reflect the nonlinear mecha-
nisms used by the biological visual systems.

In this paper, we propose a new RRIQA method that is in-
spired by the recent success of the divisive normalization trans-
form (DNT) as a perceptually and statistically motivated image
representation [17], [18]. In computational vision science, it has
long been hypothesized that the purpose of early visual sensory
processing is to increase the statistical independence between
neuronal responses [19], [20]. However, linear decompositions,
such as Fourier- and wavelet-types of transformations, only re-
duces the first-order correlation, but cannot reduce the higher
order statistical dependencies [21]. In the literature of neural
physiology, it has been shown that a local gain-control divisive
normalization model is powerful in accounting for the neuronal
responses in biological visual systems [22], [23]. This nonlinear
gain-control mechanism is built upon linear transform models,
where each neuronal response (or linear transform coefficient)
is normalized (divided) by the energy of a cluster of neighboring
neuronal responses (neighboring coefficients). This process has
been shown to significantly reduce the statistical dependencies
of the original linear representation [21] and produce approx-
imately Gaussian marginal distributions [24]. Similar models
has also been employed in real world image processing appli-
cations, including image compression [25] and image enhance-
ment [18]. The strong perceptual and statistical relevance of di-
visive normalization representation (as compared to linear de-
compositions) motivated us to switch from the linear wavelet
transform domain (as in [9]) to DNT domain in the design of
our RRIQA method.
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II. DIVISIVE NORMALIZATION-BASED IMAGE REPRESENTATION

A. Computation of Divisive Normalization Transformation

A divisive normalization transform (DNT) is built upon a
linear image decomposition, followed by a divisive normaliza-
tion stage. The linear transformations may be discrete cosine
transform (DCT) (as in [25]) or wavelet-type of transforms (as
in [17], [18], [21]). Here, we assume a wavelet image decompo-
sition, which provides a convenient framework for localized rep-
resentation of images simultaneously in space, frequency (scale)
and orientation. Let represent a wavelet coefficient, then a nor-
malized coefficient is computed as , where is a posi-
tive divisive normalization factor that is calculated as the energy
of a cluster of coefficients that are close to the coefficient in
space, scale, and orientation.

Several different approaches have been used to compute the
normalization factor [17], [18], [21], [25]. Most of them use
a weighted sum of the squared neighboring coefficients plus a
positive constant [18], [21], [25]. This involves several param-
eters (the weights and the constant) that are sometimes difficult
to determine. They may be hand-picked (as in [25]) or chosen
to maximize the independence of the normalized response to
an ensemble of natural images [21]. In [18], a global model of
Markov random field over the wavelet coefficients is assumed
and the parameters were derived by learning the model param-
eters using natural images. A more convenient approach is to
derive the factor through a local statistical image model. In
particular, the Gaussian scale mixtures (GSM) model has found
to be very useful in this context [17]. A length- random vector

is a GSM if it can be expressed as the product of two indepen-
dent components: , where denotes equality in prob-
ability distribution, is a zero-mean Gaussian random vector
with covariance , and is a scalar random variable called
a mixing multiplier. In other words, the GSM model expresses
the density of a random vector as a mixture of Gaussians with
the same covariance structure but scaled differently (by

). Suppose that the mixing density is , then the density of
can be written as

(1)
This GSM model has shown to be very useful to account for
both the marginal and joint statistics of the wavelet coefficients
of natural images [17], where the vector is formed by clus-
tering a set of neighboring wavelet coefficients within a sub-
band, or across neighboring subbands in scale and orientation.
The GSM model has also found successful applications such as
image desnoing [26], image restoration [27], and image quality
assessment [28].

The general form of the GSM model allows for the mixing
multiplier to be a continuous random variable at each location
of the wavelet subbands. To simplify the model, we assume that

only takes a fixed value at each location (but varies over space
and subbands). The benefit of this simplification is that when
is fixed, is simply a zero-mean Gaussian vector with covari-
ance . As a result, it becomes natural to define the nor-
malization factor in the DNT representation as an estimate of

Fig. 2. (a) Original wavelet coefficients. (b) DNT coefficients. (c) Histogram of
original coefficients (solid curve) and a Gaussian curve with the same standard
deviation (dashed curve). (d) Histogram of DNT coefficients (solid) fitted with
a Gaussian model (dashed).

the multiplier from the neighboring coefficient vector . The
coefficient cluster moves step by step as a sliding window
across a wavelet subband, resulting in a spatially varying nor-
malization factor . In our implementation, the normalization
factor computed at each step is only applied to the center coef-
ficient of the vector , and the normalized new coefficient
becomes , where is the estimate of . A convenient
method to obtain is by a maximum-likelihood estimation [17]
given by

(2)

where the covariance matrix is estimated from
the entire wavelet subband before the estimation of local ,
and is the length of vector , or the number of neighboring
wavelet coefficients.

B. Image Statistics in Divisive Normalization Transform
Domain

As will be shown in the next section, our RRIQA approach is
essentially based on the statistics of the transform coefficients in
DNT domain and how they vary with image distortions. Before
the development of the specific RRIQA algorithm, it is useful
to observe variations of image statistics before and after the
DNT is applied. In Fig. 2, we compare the marginal distribu-
tions of an original wavelet subband computed from a steerable
pyramid decomposition [29] [Fig. 2(a)] and the same subband
after DNT [Fig. 2(b)]. In Fig. 2(c), the original wavelet coeffi-
cient histogram is compared with a Gaussian shape that has the
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TABLE I
KLD BETWEEN THE MARGINAL DISTRIBUTIONS OF WAVELET/DNT COEFFICIENTS AND GAUSSIAN FIT

Fig. 3. (a) Conditional histograms between a parent and a child coefficients extracted from the original wavelet representation and (b) the corresponding DNT
representation.

same standard deviation. The significant gap between the two
curves indicates that the original wavelet coefficients are highly
non-Gaussian. It has been shown that such histograms can be
well-fitted with a generalized Gaussian density function (GGD)
given by [30]

(3)

where (for ) is the Gamma func-
tion, and and are called the scale and power factors, respec-
tively. The Gaussian density is a special case of GGD when is
fixed to be 2. However, for the histograms of the wavelet coeffi-
cients of natural images, the best fitting value of typically lies
between 0.5 and 1.0 [31]. By contrast, the histogram of the coef-
ficients after DNT can be well-fitted with a Gaussian, as demon-
strated in Fig. 2(d). Similar behavior is observed for other nat-
ural images. To provide a quantitative measure, we compute the
Kullback–Leibler distance (KLD) [32] between the histogram
and the best-fitting Gaussian curve before and after DNT for a
set of natural images. The results are shown in Table I, where we
can see that Gaussian fit is consistently better in DNT domain
for all test images.

Fig. 3 demonstrates the impact of DNT on the joint statis-
tics of wavelet coefficients. In Fig. 3(a) and (b), we show the
conditional histograms of the coefficients extracted from two
neighboring subbands (a parent band and a child band) in the
original wavelet decomposition and in the DNT representation,
respectively. It can be observed that in the conditional histogram
[ in Fig. 3(a)], the variance of a child coefficient
(vertical axis) is highly dependent on the magnitude of its parent
coefficient (horizontal axis). Such strong second-order variance
dependency is confirmed by the significant difference between
the widths of two cross-sections of the conditional histogram.

By contrast, in the DNT representation, the histogram of the
child coefficients makes little difference when conditioned on
the magnitudes of the parent coefficients, as can be seen in
Fig. 3(b). This demonstration clearly shows that the DNT repre-
sentations can significantly reduce the second-order dependen-
cies between the transform coefficients.

C. Perceptual Relevance of Divisive Normalization
Representation

The DNT image representation is not only an effective way
to reduce the statistical redundancies between wavelet coeffi-
cients, it is also highly relevant to biological vision. First, based
on the widely accepted hypothesis that the early visual sen-
sory processing is optimized to increase the statistical inde-
pendence between neuronal responses (subject to certain phys-
ical limitations such as power consumption) through the evolu-
tion and development processes, the modeling of the biological
visual system and the modeling of natural scene statistics are
dual problems [19]–[21]. Second, in the context of neural phys-
iology, it has been found that divisive normalization provides
an effective model to account for many recorded data of cell re-
sponses in the visual cortex [22], [23]. It is also a useful frame-
work in explaining the adaptations of neural responses with re-
spect to the variations of the visual environment [33]. Third, in
psychophysical vision, it has been shown that the divisive nor-
malization procedure can well explain the visual masking effect
[34], [35], where the visibility of an image component (e.g., a
wavelet coefficient) is reduced in the presence of large neigh-
boring components (e.g., the wavelet coefficients close in space,
scale, and orientation). Furthermore, the perceptual relevance
of DNT image representation has also been demonstrated by
testing its resilience to noise contamination as well as its effec-
tiveness in image compression and image contrast enhancement
[18].
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Fig. 4. Histograms of DNT coefficients in a wavelet subband under different types of image distortions. (a) Original “Lena” image. (b) Gaussian noise contami-
nated image. (c) Gaussain blurred image. (d) JPEG compressed image. Solid curves: histograms of DNT coefficients. Dashed curves: the Gaussian model fitted to
the histogram of DNT coefficients in the original image. Significant departures from the Gaussian model is observed in the distorted images (b), (c), and (d).

III. REDUCED-REFERENCE IMAGE QUALITY ASSESSMENT

A. DNT-Domain Statistics of Distorted Images

The strong perceptual and statistical relevance of DNT
image representation provides good justifications for the use
of DNT for RRIQA. In addition to that, we must also show
that the statistics of DNT coefficients are sensitive to various
image distortions. To study this, we apply DNT to a set of
images with different types of distortions and observe how
these distortions alter the statistics of the coefficients in DNT
domain. This is demonstrated in Fig. 4, where the histogram of
the DNT coefficients of a wavelet subband can be well-fitted
with a Gaussian model [Fig. 4(a)]. However, when we draw
the same Gaussian model together with the histogram of the
DNT coefficients computed from Gaussian noise contaminated
image [Fig. 4(b)], Gaussian blurred image [Fig. 4(c)], or JPEG
compressed image [Fig. 4(d)], significant changes are ob-
served. It is also interesting to see that the way the distribution
changes varies with the distortion type. For example, Gaussian
noise contamination increases the width of the histogram, but
maintains the shape of Gaussian. By contrast, Gaussian blur
reduces the width of the histogram and creates a much peakier
distribution than Gaussian. These observations are important
because our RRIQA algorithm is based on quantifying the
variations of DNT-domain image statistics as a measure of
image quality degradation.

B. Reduced-Reference Image Quality Assessment Algorithm

We propose an RRIQA algorithm by working with the mar-
ginal distributions of DNT coefficients. Although this algorithm
still works with marginal distributions only (no explicit joint sta-
tistical model is employed, as in [9]), it does take into account

the dependencies between the original neighboring wavelet co-
efficients because of the involvement of the divisive normaliza-
tion process. We consider this as a major advantage of the pro-
posed approach (as compared to [9]) in capturing the joint sta-
tistics of wavelet coefficients while maintaining the simplicity
of the algorithm. Moreover, the algorithm has a low data rate, as
only a small set of RR features are extracted from the reference
image and are employed in quality evaluation of the distorted
image.

A convenient approach to measure the variations of the mar-
ginal probability distributions of the DNT coefficients between
the original and distorted images (as being observed in Fig. 4)
is to compute the KLD between them

(4)

where and are the probability density functions of
the DNT coefficients in the same subband of the original and
distorted images, respectively. To accomplish this, the DNT co-
efficient histograms of both the reference and distorted images
must be available. The latter can be easily computed from the
distorted image, which is always available. The difficulty is in
obtaining the DNT coefficient histogram of the original image.
Using all the histogram bins as RR features would result in ei-
ther a heavy RR data rate (when the bin size is fine) or a poor
approximation accuracy (when the bin size is coarse). To over-
come this problem, we make use of the important property that
the probability density function of the original DNT coef-
ficients can be well approximated with a zero-mean Gaussian
model [as has been observed in Figs. 2(d) and 4(a)]

(5)
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This model provides a very efficient means to summarize the
DNT coefficient histogram of the original image, such that only
one parameter is needed to describe it (as opposed to all the
histogram bins). Furthermore, to account for the variations be-
tween the model and the true distribution, we compute the KLD
between and as

(6)

and use it as an additional RR feature. This is computed for
each subband independently, resulting in two parameters ( and

) for each subband.
In order to evaluate the quality of a distorted image, we es-

timate the KLD between the probability density function
of the DNT coefficients computed from the distorted image and
the model estimated from the original image

(7)

Combining this with the available RR feature , we ob-
tain an estimate of the KLD between and

(8)

It can be easily shown that

(9)

The estimation error can then be calculated as

(10)

This error is small when and are close, which is true
for typical natural images. With the additional cost of adding
one more RR parameter , (9) not only delivers a more
accurate estimate of than (7), but also provides a useful
feature that when there is no distortion between the original and
distorted images (which implies that for all ),
then both the targeted distortion measure and estimated
distortion measure are exactly zero.

In addition to , we also found the following measures
useful in improving the accuracy of image quality evaluation:

(11)

(12)

(13)

where , and are the standard deviation, the
kurtosis (the fourth-order central moment divided by the fourth
power of the standard deviation and then minus 3), and the skew-
ness (the third-order central moment divided by the third power
of the standard deviation) of the DNT coefficients computed
from the original and distorted images, respectively. These mea-
sures provide further information about the shape changes of the

probability density functions. In particular, two images with the
same KLD with respect to the original image may have different
types of distortions, and visual quality assessment varies across
distortion types. Adding these features not only provides new
means to quantify the amount of distortions, but also supplies
new information that helps the algorithm differentiate distortion
types. We have also carried out experiments to compare our IQA
algorithm with and without these features, and we found that
adding these features lead to significant improvement in terms
of the performance of image quality prediction. Since
can be computed from the available distorted image and is al-
ready acquired when fitting the Gaussian model of (5), only two
new RR features, and , are added. Indeed, both of them are
close to zero because the probability distribution of DNT coef-
ficients of the original image is approximately Gaussian, which
has zero skewness and kurtosis.

At each subband, we define the overall image distortion mea-
sure as a linear combination of and in the
logarithmic domain

(14)

where , and are weighting parameters. Finally, the
overall distortion of the distorted image is computed as the sum
of the distortion measures of all subbands

(15)

C. Implementation Issues

To compute the DNT representation of an image, we first de-
compose the image using a steerable pyramid [29] with three
scales and four orientations, as shown in Fig. 5. For each center
coefficient at each subband, we define a DNT neighboring
vector that contains 13 coefficients, including nine from the
same subband (including the center coefficient itself), one from
the parent band, and three from the same spatial location in the
other orientation bands at the same scale. An illustration is given
in Fig. 5. These coefficients are selected from the direct neigh-
bors of the center coefficient because the magnitudes of clus-
ters of wavelet coefficients tend to scale together [20] and thus
are more likely to share the same scale factor in the GSM
model described earlier. Increasing the size of the neighbor-
hood will increase the computational complexity of DNT cal-
culation [specifically, the estimation of in (2)], but will not
add extra RR features (because it only affects the DNT com-
putation and all other processes after DNT remain unaltered).
In our experiments, we did not observe significant variations of
the overall performance of the algorithm under slight changes of
the neighborhood, but more careful study on this issue remains
future work. After the DNT computation, four RR features are
extracted from each subband of the original image, including

and . This results in a total of 48 scalar RR fea-
tures for each original image.
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Fig. 5. Illustration of steerable pyramid decomposition and the selection of DNT neighbors. The neighboring coefficients include the 3� 3 spatial neighbors
within the same subband, one parent neighboring coefficient and three orientation neighboring coefficients.

The evaluation of the KLD between probability density func-
tions needs to be done numerically using histograms. For ex-
ample, for (6), we compute

(16)

where and are the normalized heights of the th
histogram bins, and is the number of bins in the histograms.

One problem with the subband quality measure of (14) is that
when , or is close to zero, the measure becomes
unstable. In our implementation, to avoid such instability, we
compute

(17)

where is a positive constant. Another useful property of this
formulation is that the resulting distortion measure is always
non-negative, and is zero when the original and distorted images
are exactly the same.

Before applying the proposed algorithm for image quality as-
sessment, five parameters, , and , need to be learned
from the data. It is important to cross-validate these parameters
with different selections of the training and testing data. Details
will be given in the next section. For a given set of training im-
ages and the associated subjective scores, we use the Matlab
nonlinear optimization routine fminsearch in the optimization
toolbox to find the optimal parameters.

IV. VALIDATION

To validate the proposed RRIQA algorithm, two publicly-
accessible subject-rated image databases are used, which are
the LIVE database [36] developed at Laboratory for Image and
Video Engineering at The University of Texas at Austin and the
Cornell-VCL A57 database [37] developed at the Visual Com-

munications Laboratory at Cornell University. The LIVE data-
base contains seven datasets of 982 subject-rated images cre-
ated from 29 original images with five types of distortions at
different distortion levels. The distortion types include 1) JP2:
JPEG2000 compression (2 sets), 2) JPG: JPEG compression (2
sets), 3) Noise: white noise contamination, 4) Blur: Gaussian
blur, and 5) FF: fast fading channel distortion of JPEG2000
compressed bitstream. The subjective test was carried out with
each of the seven data sets individually. A cross-comparison
set that mixes images from all distortion types is then used to
help align the subject scores across different data sets. The sub-
jective scores of all images are then adjusted according to this
alignment. The alignment process is rather crude. However, the
aligned subjective scores (all data) are still very useful refer-
ences, which are particularly important for testing general-pur-
pose IQA algorithms, for which cross-distortion comparisons
are highly desirable. In the Cornell-VCL database, there are
totally 60 distorted images generated from three original im-
ages. Six different types of distortions are included, which are
1) FLT: quantization of the LH subbands of a five-level DWT
of the image using the 9/7 filters, where the bands were quan-
tized via uniform scalar quantization with step sizes chosen such
that the RMS contrast of the distortions was equal, 2) NOZ:
additive Gaussian white noise, 3) JPG: baseline JPEG com-
pression, 4) JP2: JPEG2000 compression using the 9/7 filters
and no visual frequency weighting; 5) DCQ: JPEG2000 com-
pression using the 9/7 filters with the dynamic contrast-based
quantization algorithm, which applies greater quantization to
the fine spatial scales relative to the coarse scales in an attempt
to preserve global precedence, and 6) BLR: blurring by using a
Gaussian filter.

Three criteria are used to evaluate how well the objective
scores predict the subjective scores: 1) Correlation coefficient
(CC) between the subjective/objective scores after a non-
linear mapping is computed to evaluate prediction accuracy,
2) Spearman rank-order correlation coefficient (ROCC) is
calculated to evaluate prediction monotonicity, 3) Outlier ratio
is used to evaluate prediction consistency, which is defined as

Authorized licensed use limited to: University of Waterloo. Downloaded on April 5, 2009 at 16:19 from IEEE Xplore.  Restrictions apply.



LI AND WANG: REDUCED-REFERENCE IMAGE QUALITY ASSESSMENT 209

TABLE II
WAVELET AND DNT DOMAIN COMPARISON OF THE PROPOSED METHODS USING THE LIVE DATABASE

TABLE III
WAVELET AND DNT DOMAIN COMPARISON OF THE PROPOSED METHODS USING THE CORNELL-VCL DATABASE

TABLE IV
PERFORMANCE COMPARISON OF IQA ALGORITHMS USING THE LIVE DATABASE

the percentage of predictions outside the range of standard
deviations between subjective scores. These criteria had been
used in the previous tests conducted by the video quality expert
group [38]. Since we do not have access to the raw subjective
scores of the Cornell-VCL database, the standard deviations be-
tween subjective scores for each test image cannot be computed.
Therefore, only CC and ROCC comparisons are included for the
Cornell-VCL database.

Our validation work has two major purposes. The first is to
verify that using DNT image representation is beneficiary for
the improvement of IQA algorithms. The second is to com-
pare the performance of the proposed method with existing IQA
algorithms.

To show the impact of DNT representation, we compare the
performance of the proposed RRIQA algorithm implemented
in the wavelet domain (linear steerable pyramid decomposition)
and in the DNT domain (linear steerable pyramid decompo-
sition, followed by the nonlinear DNT process). Specifically,
GGD is used to model the marginal distribution of wavelet
coefficients and Gaussian density is employed to model that of
DNT coefficients. All other aspects of the algorithm, including
the standard deviation, skewness and kurtosis features, the
KLD measure, the subband and overall quality measurement

approach, and the training data and process, are exactly the
same. The test results on the LIVE database and the Cor-
nell-VCL database are shown in Tables II and III, respectively,
where the training data are the full LIVE database and the full
Cornell-VCL database, respectively. It can be concluded from
these tables that the overall performance is clearly improved
from wavelet-domain to DNT-domain implementations.

The performance comparison with other IQA algorithms is
shown in Tables IV and V. To the best of our knowledge, the
only other RRIQA algorithm that has a comparable low RR
data rate and is designed for general-purpose is the method
proposed in [9]. In addition to this method, we have also
included peak signal-to-noise-ratio (PSNR), which is still the
most widely used full-reference IQA measure. Although such
comparison is highly unfair to the proposed method and the
method in [9] (PSNR requires full access to the original image,
as opposed to the 48 scalar features in the proposed method),
it provides a useful indication of the relative performance of
the proposed algorithm. For any IQA algorithm that involves a
training process of the parameters, it is important to verify that
the model is not overtrained. In other words, the performance
of the algorithm should not change dramatically with different
training data set. Therefore, in both Tables IV and V, we have
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TABLE V
PERFORMANCE COMPARISON OF IQA ALGORITHMS USING THE CORNELL-VCL DATABASE

included two versions of the proposed DNT-domain algorithm,
where the only difference between them is that their model
parameters ( , and ) are trained with the LIVE
database or the Cornell-VCL database (using all images in
both cases). Such a cross-validation process is useful to test the
robustness of the model. Not surprisingly, the test results are
better when the parameters are trained with the same database
than the results obtained by cross-training the parameters (Note
that some image distortion types included in one database may
not be included in the other). However, in both cases and for
both databases, the proposed algorithm performs better than the
method in [9]. In particular, it can be seen from both Tables IV
and V that for the all-data cases, where all the images with
different distortion types are mixed together, the method in [9]
does not perform well, and the improvement of the proposed
method is quite significant. Indeed, its CC and ROCC values
(for all-data cases) are comparable or even higher than the
full-reference PSNR measure.

V. CONCLUSION AND DISCUSSION

We proposed an RRIQA algorithm using statistical features
extracted from a divisive normalization-based image representa-
tion. We demonstrate that such a DNT image representation has
simultaneous perceptual and statistical relevance and its statis-
tical properties are significantly changed under different types
of image distortions. These properties make it well-suited for the
development of RRIQA algorithms. Experimental verifications
with publicly-accessible subject-rated image databases suggest
that this new image representation leads to improved perfor-
mance in the evaluation of image quality. The proposed algo-
rithm has a relatively low data rate for RR features. It does not
make any assumption about the image distortion types, thus has
the potential to be used for general-purpose in a wide range of
applications.

Several further questions may be asked from this work. First,
while the statistical features used in the proposed algorithm
seem to be perceptually relevant and useful for IQA, is there
any better means to combine them into a single scalar quality
measure of the distorted image? Second, other than the vari-
ance dependency that are well-captured by DNT, there are many
other types of dependencies between neighboring wavelet coef-
ficients that are still missing, for example, local phase coher-
ence [39]. Is there any efficient way to incorporate these depen-
dencies as well? Third, using the proposed RRIQA measure,
together with the statistical properties (RR features) about the

“perfect-quality” original image, can we design image quality
enhancement method that can correct or improve the quality
of the distorted image being evaluated? Finally, since the pro-
posed RRIQA method is relevant to the quantification of the
naturalness of images and does not use any knowledge about
image distortion types, would it be possible to further develop
it into a general-purpose no-reference image quality assessment
method?
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