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1 Introduction

Digital images and video are prolific in the world today owing to the ease of acquiring,

processing, storing and transmitting them. Several common image processing operations

such as compression, dithering and printing affect the quality of the image. Advances in

sensor and networking technologies, from the internet to wireless networks, has led to a

surge of interest in image communication systems. Again, the communication channel tends

to distort the image signal passing through it and the quality of the image needs to be closely

monitored to meet requirements at the end receiver. The integrity of the image also needs

to be preserved, irrespective of the specific display system that is used by the viewer. In this

chapter, we describe state of the art objective quality metrics to assess the quality of digital

images.

In all the applications mentioned above, the targeted receiver is the human eye. Com-

pression and half-toning algorithms are generally designed to generate images that closely

approximate the original reference image, as seen by the human eye. In fact, most of the

images encountered in day to day life are meant for human consumption. The measure of

quality depends on the intended receiver and we focus on applications where the ultimate

receiver is the Human Visual System (HVS).

Subjective assessment of image quality involves studies where humans are asked to
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assign a score to an image after viewing it under certain fixed environment conditions such

as viewing distance, display characteristics and so on. Typically, the same image is shown

to a number of subjects and final scores are assigned after accounting for any variability in

the assessment. However, subjective assessment studies are tedious and impossible to do for

every possible image in the world. The goal of quality assessment research is to objectively

predict the quality of an image to approximate the score a human might assign to it.

The HVS is very good at evaluating the quality of an image blindly, i.e., without a

reference “perfect” image to compare it against. It is however rather difficult to perform this

task automatically using a computer. Although the term image quality is used, what we are

actually referring to is image fidelity. We assume that a reference image is available and the

quality of the test image is determined by how close it is to the reference image perceptually.

Objective measures for image quality play an important role in evaluating the perfor-

mance of image fusion algorithms [1]. In many applications, the end receiver of the fused

images are humans. Several fusion algorithms presented in the literature have been eval-

uated using subjective criteria [2], as well as measures such as Mean Square Error (MSE)

described below [3]. Measures to evaluate objective quality are hence useful to evaluate

the effectiveness of a fusion algorithm, as well as to optimize for various parameters of the

algorithm to improve performance.

MSE between the reference and test images is a commonly used metric for image

quality. Let ~x = {xi, i = 1, 2, . . . , N} denote a vector containing the reference image pixel

values, where i denotes a spatial index. Similarly, let ~y = {yi, i = 1, 2, . . . , N} denote the

test image. Then the MSE between ~x and ~y is defined as
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MSE(~x, ~y) =
1

N

N∑
i=1

(yi − xi)
2 (1)

This metric is known to correlate very poorly with visual quality, but is still widely

used due to its simplicity. The failure of MSE as a metric for quality is illustrated here using

a number of examples where all distortions have been adjusted in strength such that the

MSE between the reference and distorted image is 50. The visual quality of the images are,

however, drastically different. The MSE is a function of just the difference between corre-

sponding pixel values and implicitly assumes that the perceived distortion is independent

of both the actual value of the pixel in the reference image and neighboring values. This

directly contradicts the luminance masking and contrast masking properties of the HVS [4].

In reality, the perception of distortion varies with the actual image at hand, as illustrated

in Fig. 1. Fig. 1(a) shows the original “Buildings” image. Fig. 1(c) shows a blurred version

of the same image obtained by convolving the image with a Gaussian window. Fig. 1(e)

shows a JPEG compressed version of the image. Fig. 1(b), 1(d) and 1(f) show the orig-

inal, Gaussian blurred and JPEG compressed “Parrots” image. The “Parrots” image has

relatively large smooth areas, corresponding to low frequencies, and the blurring distortion

is very pronounced. The blocking artifacts of JPEG compression are also visibly annoying

in this image. This is, however, not the case in the “Buildings” image. Additionally, just

adding a constant to every pixel in the image leads to a large MSE, but almost insignificant

loss in visual quality. This is illustrated in Fig. 2(a). Salt and Pepper noise is a form of

extremely impulsive noise where randomly selected pixels in the image are turned black or

white. This kind of noise is usually visible to the eye even at very low strengths and the

image has extremely poor quality at a MSE of 50, as illustrated in Fig. 2(b). The reference

images shown here are available from the database in [5]. These examples clearly illustrate

the failure of MSE as a good metric for visual quality.
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(a) Original ‘Buildings’ image (b) ’Original ’Parrots’ image

(c) Blurred image (d) Blurred image

(e) JPEG compressed image (f) JPEG compressed image

Figure 1: Examples of Distorted Images (MSE = 50)
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(a) Mean shifted image (b) Salt and Pepper Noise

Figure 2: Examples of Additive Distortions (MSE = 50)

Traditional approaches to image quality assessment use a bottom-up approach, where

models of the Human Visual System (HVS) are used to derive quality metrics. Bottom-

up HVS based approaches are those that combine models for different properties of the

HVS in defining a quality metric. The response of the HVS to variations in luminance

is a nonlinear function of the local mean luminance and this is commonly referred to as

luminance masking. It is called masking because the variations in the distorted signal are

masked by the base luminance of the reference image. Secondly, the HVS has a bandpass

characteristic and its frequency response can be characterized by the Contrast Sensitivity

Function (CSF). Experiments are conducted to detect the threshold of visibility of sine

waves of different frequencies to determine the CSF. Contrast masking refers to the masking

of certain frequency and orientation information due to the presence of other components

that have similar frequency and orientation. Bottom-up HVS based quality metrics use

different models to account for the luminance masking, contrast sensitivity and contrast

masking features of the HVS and normalize the error terms by corresponding thresholds.

The final step involves combining these normalized error terms to obtain either a quality

map for the image at every pixel or a single number representing the overall visual quality
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of an image. A commonly used metric for error pooling is the Minkowski error. A detailed

description of HVS based quality measures can be found in [6].

Recent approaches to quality assessment, however, follow a top-down approach where

the hypothesized functionality of the HVS is modeled. In this chapter, we describe two such

approaches that have been shown to be competitive with bottom-up HVS based approaches

in predicting image quality. These methods additionally demonstrate several advantages

over bottom-up HVS based measures in several aspects [7, 8].

Structural similarity approaches to image quality assume that the HVS has evolved to

extract structural information from an image [8]. The quality of the image as perceived by

the human eye is hence related to the loss of structural information in the image. The error

metrics used here correspond to measures to quantify structural distortions, which are more

meaningful than simple signal similarity criteria like MSE. A detailed description and the

intuition behind this approach is presented in Section 2.

A related recent top-down approach hypothesizes that the test image is the output of a

communication channel through which the reference image passes and image quality is related

to the mutual information between these images [7]. Statistical models that accurately

characterize the source and the channel are the key to the success of this approach in relating

statistical information measures to perceived distortion. Natural images are images obtained

from the real world and form a small subspace of the space of all possible signals [9]. A

computer that generates images randomly is unlikely to produce anything that even contains

objects resembling those in natural images. The statistical properties of the class of natural

images have been studied by various researchers and these natural scene models are used in

the information theoretic development here. The details of this approach and the derivation

of the quality metric are presented in Section 3.
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We briefly introduce the notation used throughout this chapter. ~x represents a vector x

and bold face character X, represent a matrix X. Capital letters are used to denote random

variables and the X̂ symbol is used to represent the estimated value of the random variable

X. Greek characters are used to denote constants.

Section 4 presents experimental results that demonstrate the success of structural and

information-theoretic approaches in image quality assessment. Finally, we conclude this

chapter in Section 5 with a brief summary of the two paradigms of quality assessment

presented here.

2 The Structural Similarity Paradigm

Traditional bottom-up HVS based measures of image quality have several limitations [8].

The working of the HVS is not yet fully understood and it is not clear how accurate the

models for the HVS that are used in quality assessment are. Models of the frequency response

of the HVS, for example, are typically obtained by showing human subjects relatively simple

patterns like global sinusoidal gratings. Masking behavior of the HVS is modeled using

data obtained by showing human subjects superposition of two or three of these sinusoidal

patterns. Images of the real world, however, are quite complex and contain several structures

that are the superposition of hundreds of simple sinusoidal patterns. It is difficult to justify

the generalization of the models obtained from these simple experiments to characterize the

HVS. Also, typical experiments performed to understand the properties of the HVS operate

at the threshold of visual perception. Quality assessment, however, deals with images that

are perceptibly distorted which is known as suprathreshold image distortion. It is again not

clear how models developed for near visibility generalize to models that quantify perceived

distortion. Finally, an implementation involving accurate models for the HVS might be too
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complex for most practical applications. A top down approach could lead to a simplified

algorithm that works acceptably, as long as the underlying hypothesis characterizes the

primary features of the distortion that the HVS perceives as loss of quality.

To overcome these limitations, a new framework for image quality assessment has been

proposed that assumes that the HVS has evolved to extract structural information from

images. Hence, a measure of the structural information change can be used to quantify

perceived distortions [8]. This is illustrated in Fig. 3. All images shown here have approx-

imately the same MSE with respect to the reference image. Clearly, the mean shifted and

contrast enhanced image have very high perceptual quality despite the large MSE. However,

this is not the case in the blurred, JPEG2000 compressed and Additive White Gaussian

Noise (AWGN) corrupted images. This can be attributed to the fact that there is no loss of

structural information in the former case, but this is not true in the latter case. The mean

shifting and contrast stretching operations are invertible (except at the points where the

luminance saturates) and the original image can be fully recovered. However, the blurring

and compression are not easily invertible transformations. Blurring can be inverted, in some

cases, by de-convolution when none of the frequency components are zeroed out. The HVS,

however, is unable to invert the transformation easily and extract the structural information

in the image. In this sense, there is no loss of structural information in the mean-shifted

and contrast stretched images. Furthermore, the mean shifted and contrast stretched images

have only luminance and contrast changes, as opposed to the blurred images that have severe

structural distortions. The luminance and contrast of an image depend on the illumination,

which does not affect the structural information in the image. The good visual quality of

the mean shifted and contrast stretched images, despite the large MSE, can be attributed in

the structural framework to the fact that there is almost no loss of structural information in

these images.
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(a) Original ‘Boats’ image (b) Contrast enhanced image

(c) Mean Shifted image (d) Blurred image

(e) JPEG 2000 compressed image (f) AWGN Corrupted image

Figure 3: Illustrative Examples of Structural Distortions
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The mathematical formulation of the Structural SIMilarity (SSIM) index is given in

Section 2.1. Use of this index to predict image quality and illustrative examples of the

performance of this algorithm are presented in Section 2.2.

2.1 The Structural Similarity Index

Fig. 4 shows a block diagram of the SSIM quality assessment algorithm. The luminance of

an object is the product of the reflectance and illumination of the object and is independent

of the structure of the object. The structural information in an image is defined as those

attributes that are independent of the illumination. Hence, to quantify the loss of struc-

tural information in an image, the effects of luminance and contrast are first canceled out.

The structure comparison is then carried out between the luminance and contrast normal-

ized signals. The final quality score is a function of the luminance, contrast and structure

comparisons, as shown in Fig. 4.

Figure 4: Block Diagram of the SSIM Quality Assessment System [Reproduced from [10]]

Let ~x and ~y represent vectors containing pixels from the reference and distorted images

respectively. The reference image is assumed to have “perfect” quality. The SSIM algorithm

operates in three stages given by luminance, contrast and structure comparison.

First, the luminance of the two signals is compared. The luminance of an image is
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estimated using its mean intensity and is given by

µx =
1

N

N∑
i=1

xi (2)

where N represents the number of pixels in ~x. The luminance comparison function

l(~x, ~y) is then a function of the luminance of the reference and test images, µx and µy

respectively. Then, the luminance of the images are normalized by subtracting out the mean

luminance. The resulting signal, given by ~x − µx can then be thought of as the projection

of the image ~x onto an N -dimensional hyperplane defined by

N∑
i=1

xi = 0 (3)

The second stage is to compare and normalize the contrasts of the two images. The

contrast is defined as the estimate of the standard deviation of the image intensities and is

given by

σx =

(
1

N − 1

N∑
i=1

(xi − µx)
2

) 1
2

(4)

The factor of N − 1 is used in the denominator to obtain an unbiased estimate of

the standard deviation. The contrast comparison function c(~x, ~y) is then a function of the

contrasts of the reference and test signals, σx and σy respectively. The contrasts of ~x and

~y are then normalized by dividing them by their own standard deviations. The structure

comparison is then performed on these normalized signals given by ~x−µx

σx
and ~y−µy

σy
to obtain

the index s(~x, ~y).

11



Finally, the three components are combined to obtain the overall Structural SIMilarity

index (SSIM) given by

SSIM(~x, ~y) = f (l(~x, ~y), c(~x, ~y), s(~x, ~y)) (5)

The three components used to predict image quality are relatively independent as

we cancel out the effect of each one of them by normalization before computing the next

component.

We now define the three functions for luminance, contrast and structure comparisons.

These functions are designed to satisfy the following properties:

1. Symmetry: S(~x, ~y) = S(~y, ~x)

2. Bounded: S(~x, ~y) ≤ 1

3. Unique maximum: S(~x, ~y) = 1 if and only if ~x = ~y

For luminance, l(~x, ~y) is defined by

l(~x, ~y) =
2µxµy + C1

µ2
x + µ2

y + C1

(6)

where the constant C1 is added to increase stability when the denominator becomes very

small. One choice for C1 given in [8] is C1 = (K1L)2, where L is the range of the pixel values

and K1 << 1 is a small constant. (6) is qualitatively consistent with Weber’s law which is

widely used to model luminance masking in the HVS. The Weber’s law states that the just

noticeable difference in luminance is directly proportional to the background luminance. The

HVS is hence sensitive to relative luminance changes and not the absolute change. Letting
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R represent the fractional change in luminance, the luminance of the distorted signal can be

written as µy = (1 + R)µx. Then, we have

l(~x, ~y) =
2(1 + R)

1 + (1 + R)2 + C1

µ2
x

(7)

If C1 is small enough compared to µ2
x, then l(~x, ~y) is a function of just R and this is

consistent with Weber’s law.

The contrast comparison function is given by

c(~x, ~y) =
2σxσy + C2

σ2
x + σ2

y + C2

(8)

where C2 = (K2L)2 is chosen as earlier and again, K2 << 1. This measure is less

sensitive to high base contrast than low base contrast, for the same absolute change in

contrast. This is also qualitatively consistent with the contrast masking feature of the HVS.

The structure comparison is then performed between the luminance and contrast nor-

malized images, ~x−µx

σx
and ~y−µy

σy
. These lie in the hyperplane defined by

∑N
i=1 xi = 0. The

correlation between these vectors is used as the measure to quantify structural similarity

between the images. The correlation is defined by

s(x, y) =
σxy + C3

σxσy + C3

(9)

where σxy is given by
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σxy =
1

N − 1

N∑
i=1

(xi − µx)(yi − µy) (10)

Geometrically, s(~x, ~y) corresponds to the cosine of the angle between these vectors in

the hyperplane.

Finally, these three components are combined to obtain the SSIM index between ~x and

~y using

SSIM(~x, ~y) = l(~x, ~y)αc(~x, ~y)βs(~x, ~y)γ (11)

where α, β, γ > 0 are parameters to adjust the relative importance of these parameters.

Specific values for these constants given by α = β = γ = 1 and C3 = C2

2
have been shown to

be effective in [8].

2.2 SSIM Index in Image Quality Assessment

For image quality assessment, the SSIM index is applied locally rather than globally. This is

because image features are highly non-stationary. Additionally, using local windows provides

a quality map of an image, as opposed to a single index for the entire image, and can provide

valuable information about local quality.

The quantities µx, σx, µy, σy and σxy are computed in a local sliding window, that is

moved pixel by pixel over the entire image. To avoid blocking artifacts, the resulting values

are weighted using a circularly symmetric 11×11 Gaussian function. The weighting function,

~w = {wi, i = 1, 2, . . . N}, has a standard deviation of 1.5 samples and is normalized to have
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unit sum (
∑N

i=1 wi = 1). The estimates of µx, σx and σxy are then modified accordingly as

µx =
N∑

i=1

wixi (12)

σx =

(
N∑

i=1

wi(xi − µx)
2

) 1
2

(13)

σxy =
N∑

i=1

wi(xi − µx)(yi − µy) (14)

The constants K1 and K2 used in the definition of l(~x, ~y) and c(~x, ~y) are chosen to be

0.01 and 0.03 experimentally. The overall quality of the entire image is defined to be the

Mean SSIM (MSSIM) index and is given by

MSSIM( ~X, ~Y ) =
1

M

N∑
i=1

SSIM(~xi, ~yi) (15)

where ~X and ~Y are the reference and test images, ~xi and ~yi are the pixels in the ith local

window and M is the total number of windows in the image. A MATLAB implementation

of the SSIM algorithm is available at [11].

Fig. 5 shows the performance of the SSIM index on an image. Fig. 5(a) and Fig. 5(b)

show the original and JPEG compressed “Church and Capitol” images. The characteristic

blocking artifacts of JPEG compression are clearly visible in the background of the image, on

the roof of the church, in the trees and so on. Also, compression causes loss of high frequency

information and the ringing artifacts are clearly visible along the edges of the Capitol dome.
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(a) Original ‘Church and Capitol’ image

Figure 5: Illustrative example of SSIM
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(b) JPEG compressed image

Figure 5: Illustrative example of SSIM
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(c) SSIM Quality map

Figure 5: Illustrative example of SSIM
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(d) Absolute Error Map

Figure 5: Illustrative example of SSIM
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Fig. 5(c) clearly illustrates the effectiveness of SSIM in capturing the loss of quality in these

regions. Brighter regions correspond to better visual quality and the map has been scaled

for better visibility. The SSIM index clearly captures the loss of quality in the trees and the

roof etc., and also captures the ringing artifacts along the edge of the Capitol. Fig. 5(d)

shows the absolute error map between the images. This clearly fails to capture the distortion

present in different regions of the image adequately.

3 The Information Theoretic Paradigm

The information theoretic paradigm approaches the quality assessment problem as an infor-

mation fidelity problem, as opposed to a signal fidelity problem. MSE and SSIM are examples

of signal fidelity criteria where MSE is a simple mathematical criterion, while SSIM attempts

to measure closeness between signals in the perceptual domain. Information fidelity criteria,

however, attempt to relate visual quality to the amount of information shared between the

reference and test images [7]. This shared information can be quantified by the commonly

used statistical measure, namely mutual information.

Here, the test image is assumed to be the output of a communication channel whose

source is the reference image. The communication channel consists of a distortion channel as

well as the HVS. The distortion channel models various operations like compression, blurring,

additive noise, contrast enhancement and so on that lead to loss or enhancement of visual

quality of the image. The HVS itself acts as a distortion channel as it limits the amount

of information that is extracted from an image that passes through it [12]. This is the

consequence of various properties of the HVS like luminance, contrast and texture masking

that make certain distortions imperceptible. In fact, image compression algorithms rely on

these properties of the HVS to successfully reduce the number of bits used to represent an
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image, without affecting the visual quality.

Information theoretic analysis requires accurate modeling of the source and the com-

munication channel to quantify the information shared between the source and the output

of the communication channel. Source modeling is accomplished using statistical models for

natural images. Natural images are those that represent images from the real world and not

necessarily images of nature. The statistical properties of such images have been studied by

numerous researchers in the context of several applications such as compression, de-noising

etc [13, 14]. These natural scene models attempt to characterize the distributions of natural

images that distinguish them from images generated randomly by a computer.

In Section 3.1, we present the natural scene model that is used in the quality assessment

algorithm. Section 3.2 discusses the distortion model and Section 3.3 presents the HVS model

used here. The algorithm for quality assessment is presented in Section 3.4. We present

certain illustrative examples that describe the properties of this novel quality measure in

Section 3.5.

3.1 Natural Scene Model

The semi-parametric class of Gaussian Scale Mixtures (GSM) have been used to model the

statistics of the wavelet coefficients of natural images [15]. A random vector ~Y is a GSM if

~Y ∼ Z~U where Z is a scalar random variable, ~U is a zero mean Gaussian random vector and Z

and ~U are independent. Z is called the mixing density. The GSM density can be represented

as the integral of Gaussian density functions weighted by the mixing density; hence the term

“mixtures”. This class of distributions has heavy-tailed marginal distributions and the joint

distributions exhibit certain non-linear dependencies that are characteristic of the wavelet

coefficients of natural images [16].
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Here, we model a coefficient and a collection of its neighbors in each sub-band of the

wavelet decomposition of an image as a GSM. Specifically, we use the steerable pyramid

which is a tight frame representation and splits the image into a set of sub-bands at different

scales and orientations [17]. We model each sub-band of the wavelet decomposition by a

random field C = {~Ci, i ∈ I } given by

C = ZU = {Zi
~Ui, i ∈ I } (16)

where Z = {Zi, i ∈ I } is the mixing field, U = {~Ui, i ∈ I } is an M -dimensional

zero-mean Gaussian vector random field with covariance matrix CU and I denotes a set

of spatial indices. Also, U is assumed to be white, i.e., ~Ui is uncorrelated with ~Uj if i 6= j.

Each sub-band of the wavelet decomposition is partitioned into non-overlapping blocks of

M coefficients each and each block is modeled as the vector ~Ci.

This model has certain nice properties that make it analytically tractable. Each ~Ci is

normally distributed given Zi. Also, given Z, ~Ci is independent of ~Cj if i 6= j. Methods to

estimate the multiplier Z and the covariance matrix CU have been described in detail in

[15, 14]. This GSM model is used as the source model for natural images in the following

discussion.

3.2 Distortion Model

The distortion model that is used here is a signal attenuation and additive noise model in

the wavelet domain given by
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D = GC + ν = {gi
~Ci + ~νi, i ∈ I } (17)

where C denotes the random field that represents one sub-band of the reference image,

D = { ~Di, i ∈ I } denotes the random field representing the corresponding sub-band of

the test image, G represents a deterministic scalar attenuation field and ν is a stationary,

additive, zero-mean additive Gaussian noise field with covariance Cν = σ2
νI.

This model is both analytically tractable and computationally simple. This model can

be used to describe most commonly occurring distortion types locally. The deterministic

gain field G captures the loss of signal energy in sub-bands due to various operations like

compression and blurring. The additive noise field accounts for local variations in the at-

tenuated signal. Additionally, changes in image contrast can also be described locally by a

combination of these two factors. For most practical distortions, gi would be less than unity,

but it could take larger values when the image is contrast enhanced, for instance.

3.3 HVS Model

The HVS model that is used here is also described in the wavelet domain. Natural scene

models are in some sense the dual of HVS models, as the HVS has evolved by observing

natural images [18]. Hence, many aspects of the HVS have already been incorporated in the

natural scene model. It was experimentally determined that just an additive noise model for

the HVS gives a marked improvement in the performance of the quality assessment algorithm

[7].

The noise added by the HVS is modeled as a stationary, additive noise field N =

{ ~Ni, i ∈ I }, where the ~Ni are zero-mean, uncorrelated Gaussian random vectors. We then
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have

E = C +N (18)

F = D +N ′ (19)

where E and F denote the output of the communication channel that is the HVS in

this case, when the inputs are the reference and test images respectively. The noise field

N is assumed to be independent of C and the covariance of N , given by CN, is modeled

using CN = σ2
NI. N ′ is modeled similarly. σ2

N is the variance of the HVS noise and is

a parameter of the model that is derived empirically to optimize the performance of the

algorithm. Although the performance of the quality assessment algorithm is affected by the

choice of σ2
N , it is quite robust to small changes in the value.

3.4 The Visual Information Fidelity Measure

Let ~CN = { ~C1, ~C2, . . . ~CN} denote N elements from C. Let ~EN , ~FN , ~DN , ZN and ~UN be

defined similarly. Also, let Ẑi and ĝi denote the estimated value of Zi and gi at coefficient i

respectively. Similarly, σ̂N and σ̂ν represent the estimated variances of the HVS noise and

the noise in the distortion model respectively. Let the eigen decomposition of the covariance

matrix CU be given by

CU = QΛQT (20)
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Then, it can be shown [7] using the models described above that

I(~CN , ~EN |ZN) =
1

2

N∑
i=1

M∑
j=1

log2

(
1 +

Ẑi
2
λj

σ̂N
2

)
(21)

I( ~DN , ~FN |ZN) =
1

2

N∑
i=1

M∑
j=1

log2

(
1 +

ĝi
2Ẑi

2
λj

σ̂N
2 + σ̂ν

2

)
(22)

where I(~CN , ~EN |ZN) represents the mutual information between the random field rep-

resenting the reference image coefficients and the output of the HVS channel, conditioned

on the mixing field [7]. Here, λi denotes the eigen values of the covariance matrix CU.

Notice that the form of this equation is very similar to the Shannon capacity of a

communication channel. This is not surprising as the capacity of a communication channel

is in fact defined by the mutual information between the source and the output of the channel,

The quantity in the LHS of (21) can be interpreted as the reference image information, i.e.

the amount of information that can be extracted by the HVS from an image that passes

through it. Similarly, the quantity in the LHS of (22) can be thought of as the amount of

information that can be extracted by the HVS from the reference image after it has passed

through the distortion channel. The visual quality of the distorted image should relate to

the amount of information that can be extracted by the HVS from the test image relative

to the reference image information. If the amount of information that is extracted is very

close to the reference image information, then the visual quality of the distorted image is

very high as no loss of information occurs in the distortion channel.

The ratio of the two information measures has been shown to relate very well with

visual quality [7]. Fig. 6 illustrates the block diagram to compute the VIF measure. Thus,
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Figure 6: Block Diagram of the VIF Quality Assessment System [Reproduced from [12]]

the Visual Information Fidelity (VIF) criterion is given by

VIF =

∑
j∈sub−bands I( ~DN,j, ~FN,j|ZN,j)

∑
j∈sub−bands I(~CN,j, ~EN,j|ZN,j)

(23)

where ~CN,j represents a set of N vectors from the jth sub-bands. The VIF index for

the entire image is hence calculated as the sum of this ratio of information measures over

all sub–bands of interest, assuming that the random fields representing the sub-bands are

all independent of each other. Although this assumption is not strictly true, it considerably

simplifies the analysis without adversely affecting prediction accuracy.

Notice that the calculation of the VIF criterion involves the estimation of several pa-

rameters in the model. ZN and CU are parameters of the GSM model and ways to obtain

the Maximum Likelihood estimates are discussed in [14]. Since we calculate the parameters

of the model from the reference image, we are implicitly assuming that the random field C
is ergodic. The parameters of the distortion model, namely ĝi and σ̂ν

2 can also be obtained

easily using linear regression as the reference image is available [7]. The gain field G is as-

sumed to be constant over small blocks and is estimated using the reference and test image

coefficients in these blocks. Finally, as mentioned earlier, the variance of the HVS noise

modeled by σ̂2
N was obtained experimentally.
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3.5 VIF in Image Quality Assessment

We now briefly discuss the properties of VIF. It is bounded below by zero. Additionally, VIF

is exactly unity when the distorted image is identical to the reference image. Note that this

was a design criterion in the structural approach as well. For most practical distortions that

result in loss of information in the distortion channel, VIF takes values between 0 and 1.

Finally, VIF can capture improvements in the quality of the image caused by, for instance,

operations like contrast enhancement. In these cases, VIF takes values larger than unity.

This is a remarkable property of VIF that distinguishes it from other metrics for image

quality. Most other metrics assume that the reference image is of “perfect” quality and

quantify only the loss in quality of the test image.

Fig. 7 presents an illustrative example of the power of VIF in predicting image quality.

Fig. 7(a) shows the reference “Church and Capitol” image and Figure 7(b) shows the JPEG

compressed version of the image. These are the same images on which the performance of the

SSIM algorithm was illustrated earlier in Section 2.2. Fig. 7(c) shows the information map

of the reference image. This corresponds to the denominator of the VIF measure and shows

the spread of statistical information in the reference image. It is seen that the information

is high in regions of high frequency, but is relatively low in the smooth regions of the image.

Fig. 7(d) shows the VIF quality map of the image and illustrates the loss of information

due to the distortion. Brighter regions correspond to better quality and the map has been

contrast stretched for better visibility. The VIF measure is also successful in predicting the

loss of quality in specific regions of the image that we visually noted. This includes the

blocking artifacts in the background and roof of the church and the ringing artifacts on the

edges of the Capitol.
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(a) Original ‘Church and Capitol’ image

Figure 7: Illustrative example of VIF
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(b) JPEG compressed image

Figure 7: Illustrative example of VIF
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(c) Image Information map

Figure 7: Illustrative example of VIF
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(d) Absolute Error Map

Figure 7: Illustrative example of VIF
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4 Performance of SSIM and VIF

The power of VIF and SSIM in predicting image quality was illustrated in the previous

sections using example images. However, to test the performance of the quality assessment

algorithm quantitatively, the Video Quality Experts Group (VQEG) Phase I FR-TV specifies

four different metrics [19]. First, logistic functions are used in a fitting procedure to provide

a non-linear mapping between the objective and subjective scores. The performance of the

algorithm is then tested with respect to the following aspects of their ability to predict

quality [20]:

1. Prediction Accuracy: The ability to predict the subjective score with low error.

2. Prediction Monotonicity: The ability to accurately predict relative magnitudes of

subjective scores.

3. Prediction Consistency: The robustness of the predictor in assigning accurate scores

over a range of different images.

The first two metrics used are the correlation coefficient between the subjective and ob-

jective scores after variance-weighted and non-linear regression analysis respectively. These

metrics characterize the prediction accuracy of the objective measure. The third metric is

the Spearman rank-order correlation coefficient between the objective and subjective scores,

which characterizes the prediction monotonicity. Finally, the outlier ratio measures the

prediction consistency.

Performance of the SSIM algorithm was tested on images that were compressed using

JPEG and JPEG2000 at different bit rates. The details of the experiments conducted to

obtain subjective quality scores can be found in [8]. Multiple subjects were asked to assign
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CC (Variance CC(Non-linear OR (Non-linear
Model Weighted Regression) Regression) regression) SROCC

PSNR 0.903 0.905 0.157 0.901
Sarnoff 0.956 0.956 0.064 0.947
MSSIM 0.967 0.967 0.041 0.963

Table 1: Validation of MOS Scores for SSIM: The criteria are Correlation Coefficient (CC),
Outlier Ratio (OR), Spearman Rank-Order Correlation Coefficient (SROCC)

quality scores to the same image along a linear scale marked with adjectives ranging from

‘bad’ to ‘good’. However, not all subjects use the entire range of values in the numerical

scale and this leads to variability [21]. The raw scores are hence converted to Z-scores. The

Z-score zj of a raw score xj of a subject X is given by

zj =
xj − µx

σx

(24)

where µx = 1
N

∑N
i=1 xi and σx = 1

(N−1)

∑N
i=1(xi − µx)

2, where xi, i = 1, . . . , N are the

raw scores assigned by subject X to all images. The Z-scores, hence, tell us how many

standard deviations from the mean the given score is. The Z-scores are then re-scaled to fit

the entire range of values from 1 to 100. The Mean Opinion Score (MOS) for each image

is computed as the mean of the Z-scores for that image, after removing any outliers. The

scatter plots of the MOS versus the SSIM model prediction are shown in Fig. 8. Each

sample point represents one image. The best fitting logistic function is also plotted in the

same graph. Also shown here is the scatter plot of the MOS versus Peak Signal to Noise

Ratio (PSNR). PSNR is defined by

PSNR = 10log10

2552

MSE
(25)
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(a) PSNR (b) SSIM

Figure 8: SSIM: Plot of MOS vs. model prediction and the best fitting logistic function to
the subjective and objective scores [Reproduced from [10]]

Model CC OR SROCC

PSNR 0.826 0.114 0.820
Sarnoff 0.901 0.046 0.902
VIF 0.949 0.013 0.949

Table 2: Validation of DMOS Scores for VIF: The criteria are Correlation Coefficient (CC),
Outlier Ratio (OR), Spearman Rank-Order Correlation Coefficient (SROCC)

for 8-bit images and is just a function of the MSE. The plots clearly illustrate that

SSIM performs much better than PSNR in predicting image quality. Table 1 shows the

four metrics that were obtained for PSNR, the currently popular Sarnoff model (Sarnoff

JND-Metrix 8.0 [22]) and SSIM. Again, SSIM outperforms PSNR for every metric.

Performance of the VIF algorithm was tested on JPEG and JPEG2000 compressed

images, blurred images, AWGN corrupted images and images reconstructed after transmis-

sion errors in a JPEG2000 bitstream while passing through a fast fading Rayleigh channel.

The details of the experiments conducted to obtain subjective quality scores can be found

in [7]. Again, the raw scores were converted to Z-scores and then re-scaled to fit the range

of values from 1 to 100. The Mean Opinion Score (MOS) for each image is computed. The
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Figure 9: VIF: Plot of DMOS vs. model prediction and the best fitting logistic function to
the subjective and objective scores [Reproduced from [12]]

raw scores were also converted to difference scores between the reference and test images

and then converted to Z-scores and finally, a Difference Mean Opinion Score (DMOS). The

scatter plots of the MOS versus the VIF model prediction, as well as PSNR are shown in

Fig. 9. The best fitting logistic function is also plotted in the same graph. The plots clearly

illustrate that VIF performs much better than PSNR in predicting image quality. Table 2

shows the metrics that were obtained for PSNR, the Sarnoff model and VIF. Again, VIF

outperforms PSNR by a sizeable margin for every metric.

Note that the databases used in testing the performance of VIF and SSIM are different,

as indicated by the values of the correlation coefficients for both PSNR and the Sarnoff

model. The correlation coefficients for both PSNR and SSIM are higher in Table 1 than

the corresponding values in Table 2. This indicates that the database used to evaluate the

performance of SSIM is in some sense easier than the one used to evaluate VIF. The metrics

for SSIM and VIF presented here are, therefore, not comparable. Further comparisons can

be found in [7].
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5 Conclusions

This chapter presented two different top-down approaches to image quality assessment. Both

methods have been shown to out-perform several state-of-the-art quality assessment algo-

rithms. We have presented only some of the results here and further details can be found in

[8, 7]. Structural approaches to image quality assessment attempt to measure the closeness of

two signals by measuring the amount of structural distortion present in the distorted signal.

This approach can be thought of as complementary to traditional bottom-up HVS based

measures [10]. Information theoretic approaches, on the other hand, assume that the test

image is the output of the channel through which the reference image passes and attempt

to relate visual quality to the mutual information between the distorted and reference im-

ages. The equivalence of the information-theoretic setting to certain bottom-up HVS based

systems has also been shown [23].

The success of both these methods in quality assessment and competitiveness to state-

of-the-art methods has been demonstrated beyond doubt. The question as to which role

each of them plays in the future of quality assessment research, however, is still unclear. It

is even possible that the two paradigms will converge together in building a unified theory of

quality assessment. Only further investigation into the structural and information-theoretic

framework will answer these questions.
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