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Abstract

Nuclear magnetic resonance (NMR) spectral analysis
has recently become one of the major means for the detec-
tion and recognition of metabolic changes of disease state,
physiological alteration, and natural biological variation.
For the pattern recognition tasks in which two or more NMR
spectra need to be compared, it is critical to properly align
the spectra for the subsequent pattern recognition analy-
sis. Previous spectral alignment methods do not consider
any baseline intensity variation between the spectra and
disregard the effect of noise. Here we formulate the spec-
tra alignment problem in a Bayesian statistical framework,
which allows us to simultaneously and efficiently estimate
the spectral shift and the baseline intensity variation in the
existence of independent additive noise. Experimental re-
sults with real high-resolution NMR spectral data from hu-
man plasma demonstrate the effectiveness and robustness of
the proposed approach.

1. Introduction

Pattern recognition using NMR spectra examines dy-
namic and time-dependent profile of metabolic responses
to pathophysiological stimuli or genetic modification in
an integrated biological system [4, 5]. The resonance of
molecules in the sample can be represented by their chemi-
cal shifts (ppm) and the intensity values. A set of intensity
values over chemical shifts lead to a spectrum (e.g., Fig. 1).

In many applications, one wish to compare a set of spec-
tra from different samples simultaneously. However, small
variations in spectra due to instrumental and environmen-
tal instabilities may significantly affect the spectral align-
ment and thus can interfere with direct comparisons be-
tween samples. One such example is shown in Fig. 2, where
it can be observed that even a small amount of misalignment
can cause large differences if the signals are directly com-
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Figure 1. An NMR spectrum of human plasma
obtained by a 600 MHz spectrometer.

pared point by point. Therefore, it is crucial to align the
spectraprior to any pattern recognition processes such as
feature selection and classification.

A number of methods have been proposed to align NMR
spectra. These include dynamic time warping [6], correla-
tion optimized warping [6], partial linear fit [9], principle
component analysis-based methods (for the alignment of a
series of spectra) [1, 8], and genetic algorithm-based meth-
ods [2, 3]. Nevertheless, to the best of our knowledge, all
these existing methods assumed that the baseline intensity
variation is minimal and does not significantly affect the ac-
curacy of alignment. In practice, however, this may not be
true. As can be observed from two real NMR spectral seg-
ments shown in Fig. 2, the baseline intensity variation is
a significant effect. Another fact that has often been dis-
regarded in previous approaches is the existence of noise,
which is typically observed in NMR spectral signals (see
Figs. 1 and 2). Moreover, almost all existing methods in-
volve some numerical optimization procedures that often
result in increased computational complexity.
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Figure 2. NMR spectra before alignment (segments extracted and enlarged from two 600 MHz NMR
spectra of human plasma).

In this paper, we propose a new approach that cansimul-
taneouslyestimate the spectral shift and the baseline inten-
sity variation. By formulating the problem in aBayesian
statistical framework, the effect of noise is conveniently in-
cluded. Aclosed-formsolution of the problem is obtained
that can be computed efficiently and shows robustness.

2. Method

2.1. Differential formulation and least
square solution

Let x(ω) andy(ω) be two spectral signals to be aligned,
whereω is the frequency index of the spectra. In the ideal
case, the two signals represent the same spectral structure
but are shifted versions of each other in both the frequency
and the intensity directions. We can write

y(ω) = x(ω + ∆ω) + ∆a, (1)

where we call∆ω and∆a the spectral shift and the baseline
intensity variation, respectively. A Taylor series expansion
of the right hand side atω0 yields

y(ω0) = x(ω0)+∆ω
dx

dω
|ω0 +

(∆ω)2

2
d2x

dω2
|ω0 + · · ·+∆a .

(2)
In practice, the amount of the spectral shift and the base-
line intensity variation are typically not fixed, but varies
smoothly along the frequency axis. Therefore, Eq. (2)
is only approximately true for a local spectral region-of-
interest (SROI). In addition, the NMR spectral data acquired
is discrete along the frequency axis. Assume that there are
N discrete points within an SROI from the two signals.
We denote them as{x(ω1), x(ω2), ...,x(ωN )} and{y(ω1),
y(ω2), ..., y(ωN )}, respectively. Also assume that the fre-
quency shift∆ω is small, so that the second and higher or-
der terms can be ignored. We can then write

y = x + ∆ω x′ + ∆a1, (3)

wherex = [x(ω1), x(ω2), ...,x(ωN )]T , y = [y(ω1), y(ω2),
..., y(ωN )]T , x′ = [ dx

dω |ω1 , dx
dω |ω2 , ..., dx

dω |ωN
]T , and1 is an

N -dimensional column vector with all entries equaling 1.
Reorganizing Eq. (3) into a matrix operation format gives

Ac = ∆x , (4)

whereA = [x′ 1], ∆x = y − x, andc = [∆ω ∆a]T is
a column vector containing the parameters to be estimated.
The least square solution can be found by minimizing an
error energy functionE(c) = ‖Ac−∆x‖2 and is given by

ĉLS = (AT A)−1AT ∆x . (5)

This gives a straightforward way to simultaneously compute
the best local spectral shift and baseline intensity variation
parameters in the least square sense. One problem with this
solution is that occasionally the matrix (AT A) might be
singular (or close to singular) and inverting the matrix may
lead to unstable solutions.

2.2. Statistical modeling and Bayesian esti-
mation

The ideal system discussed above assumed the non-
existence of noise in spectral measurement, which would
not be true in the real world. Motivated by the Bayesian
approach in optical flow estimation [7], to account for the
noise effect in a stochastic framework, we model

g = Ac−∆x (6)

as a zero-mean Gaussian random vector, in which all en-
tries are independently and identically distributed Gaussian
random variables (i.e., the noise samples are independent).
The covariance matrix ofg is thus diagonal and can be de-
noted asΛnI, whereΛn is the noise variance andI is the



N -dimensional identity matrix. We can then write the prob-
ability density function (PDF) ofg for a givenc as

p(g|c) ∝ exp
{
− (Ac−∆x)T (Ac−∆x)

2Λn

}
. (7)

Here we have used the fact that the covariance matrix is
diagonal and ignored the constant in front of the Gaussian
PDF (because the constant has no effect on the final solu-
tion). Based on Bayes’ rule, we have

p(c|g) ∝ p(g|c) p(c) . (8)

For the prior distributionp(c), we model it using a zero-
mean Gaussian with a diagonal covariance matrixΛp:

p(c) ∝ exp
{
−1

2
cT Λ−1

p c
}

. (9)

By using such a prior, we have imposed that spectral shift
and baseline intensity variation are uncorrelated. This is
physically sensible because they are likely to be caused by
independent reasons. We have also imposed a preference
for small spectral shift and small baseline intensity varia-
tion. This is also a reasonable and useful assumption be-
cause large spectral shift or baseline intensity variation are
unexpected, and if they do happen, it would be doubtful that
they are caused by simple misalignment. It can be shown
that the resulting posterior distribution is still Gaussian:

p(c|g)

∝ exp
{
− (Ac−∆x)T (Ac−∆x)

2Λn

}
exp

{
−1

2
cT Λ−1

p c
}

= exp
{
−1

2

[
cT Λ−1

c c− 2AT ∆x
Λn

c +
∆xT ∆x

Λn

]}

∝ exp
{
−1

2
(c−mc)T Λ−1

c (c−mc)
}

, (10)

where

Λc =
(

AT A
Λn

+ Λ−1
p

)−1

and mc = Λc
AT ∆x

Λn
.

(11)
Finally, the Bayes least square (BLS) as well as the Bayes
maximum a posterior (MAP) solution is given by

ĉBLS = ĉMAP = mc =
(

AT A
Λn

+ Λ−1
p

)−1 AT ∆x
Λn

=
(
AT A + ΛnΛ−1

p

)−1
AT ∆x . (12)

ĉBLS and ĉMAP are equal because the posterior distribu-
tion is Gaussian and thus both solutions are simply the cen-
troid of the distribution. Notice that although obtained by a
different approach, this solution is consistent with the least

square solution of Eq. (5) in the sense that it coincides with
the least square solution when the spectral measurement is
noise-free, i.e.,Λn = 0.

The advantage of using statistical modeling and the
Bayesian approach is threefold. First, the effect of noise
can be well accounted for. Second, prior knowledge about
the quantities being estimated (specifically, the spectral shift
and the baseline intensity variation here) can be included in
a natural way. Third, in the case that the matrix (AT A)
is singular or close to singular, the added diagonal matrix
ΛnΛ−1

p in Eq. (12) makes it well-behaved, thus the solu-
tion is more robust than the least square solution.

3. Implementation and Result

Several implementation issues need to be resolved be-
fore the proposed approach is applied. First, to obtain the
matrixA, we need to compute the derivativex′ of an input
spectral signalx. This is not trivial because of the existence
of noise. A method that is often used is to apply a linear
smooth filter to the signal before the differentiation opera-
tion. This is equivalent of convolving the signal with the
derivative of the smooth filter. Specifically, we use a deriva-
tive of Gaussian (DoG) filter to computex′. Second, several
parameters need to be determined, which are the noise vari-
anceΛn and the diagonal entries of the covariance matrix
of the prior distributionΛc. In our experiment, they were
selected empirically based on the acquired data. Third, as
mentioned earlier, the spectral shift and the baseline vari-
ation of intensity are approximately constant only in a rel-
atively small SROI and may vary smoothly along the fre-
quency axis. Therefore, we apply the Bayesian estimation
approach locally within a sliding window that moves point
by point across the frequency axis. This result in two se-
quences of estimated parameters as functions of frequency,
one for local spectral shift and the other for local baseline
intensity variation. Finally, to align the two spectra, we keep
one of them fixed and warp the other locally based on the
estimated parameters.

We tested our algorithm with a dataset of NMR spec-
tra of human plasma obtained by a Varian INOVA 600
MHz spectrometer, where the ultimate goal is to exam-
ine metabolic perturbations induced by deficiency in sulfur
amino acid. A total of 68 spectra (each with 15387 points
along the frequency axis) are used in the experiment. Figs.
1 and 2 show representative spectra from the dataset. Fig. 3
is the alignment result of Fig. 2 after compensation of spec-
tral shift only. Fig. 4 shows the result after compensation of
both spectral shift and baseline intensity variation. It can be
seen that the spectra are well aligned both in frequency and
intensity. On average, the root mean squared error between
pairs of spectra being aligned was reduced from 0.2130 (be-
fore alignment), to 0.1924 (after compensation of spectral
shift only) to 0.1324 (after full alignment).
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Figure 3. Aligned NMR spectra with compensation of spectral shift only.
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Figure 4. Aligned NMR spectra with compensation of spectral shift and baseline intensity variation.

4. Conclusion

We have proposed an algorithm for automatic alignment
of NMR spectra. The novelty and advantages of our ap-
proach include 1) simultaneous estimation of both spectral
shift and baseline intensity variation; 2) the use of Bayesian
statistical modeling in the estimation of alignment param-
eters (such that noise effect can be well accounted for and
prior knowledge can be included); and 3) a simple closed-
form solution is obtained, leading to both efficient (com-
pared with previous approaches that require numerical opti-
mizations) and robust (compared with the noise-free least
square solution) implementation. Experiments with real
high-resolution NMR spectra of human plasma demonstrate
the effectiveness of the proposed method.
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