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Abstract The fact that multimedia services have become the major driver for next
generation wireless networks underscores their technological and economic impact.
A vast majority of these multimedia services are consumer-centric and therefore
must guarantee a certain level of perceptual quality. Given the massive volumes of
image and video data in question, it is only natural to adopt automatic quality pre-
diction and optimization tools. The past decade has seen the invention of several ex-
cellent automatic quality prediction tools for natural images and videos. While these
tools predict perceptual quality scores accurately, they do not necessarily lend them-
selves to standard optimization techniques. In this chapter, a systematic framework
for optimization with respect to a perceptual quality assessment algorithm is pre-
sented. The Structural SIMilarity (SSIM) index, which has found vast commercial
acceptance owing to its high performance and low complexity, is the representative
image quality assessment model that is studied. Specifically, a detailed exposition
of the mathematical properties of the SSIM index is presented first, followed by a
discussion on the design of linear and non-linear SSIM-optimal image restoration
algorithms.
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1 Introduction

Optimization of perceptual image quality has traditionally been associated with im-
age compression and is aimed at achieving the highest perceptual quality at the
lowest possible encoding rate. The earliest known design of perceptually optimal
algorithms can be traced to Mannos and Sakrison’s seminal work [21] on image cod-
ing with respect to a visual fidelity criterion. The primary challenge with perceptual
optimization is the fact that a majority of the state-of-the-art perceptual quality al-
gorithms do not enjoy convenient mathematical properties such as differentiability,
convexity and metricity. Further, several of these algorithms employ parameters and
thresholds that are again not easy to deal with in an optimization framework. While
these challenges appear to make the problem intractable, we present a systematic
framework in this chapter to address the problem of perceptual optimization. As
a particular and particularly pratical example to illustrate the framework, we work
with the Structural SIMilarity (SSIM) index.

1.1 Image Quality Assessment Measures

The goal of image quality assessment (IQA) is to predict the quality of images in a
manner that is consistent with human subjective evaluation. IQA can be divided into
full-reference, reduced-reference and no-reference, depending on the full, reduced
and non-availability of the original (ground truth) image. Full-reference IQA algo-
rithms are more of image fidelity predictors since the goal is to measure similarity
between two images. They are often used as quality predictors when one of the im-
ages being compared is considered to have pristine quality. By contrast, reduced-
and no-reference IQA algorithms rely more on prior knowledge about high quality
natural images in the statistical sense [36].

The focus in this chapter will be limited to full-reference algorithms, and specif-
ically to those methods that are based on the notion of structural similarity. A brief
chronological evolution of the Structural SIMilarity (SSIM) index is presented next.

The Universal Image Quality Index (UIQI) [35] was the precursor to the suc-
cessful SSIM index [37] and introduced the idea of measuring local luminance,
contrast and structural similarity between a reference image and its test version.
For an original image signal x = {xi | i = 1, . . . ,N} and its distorted version
y = {yi | i = 1, . . . ,N}, UIQI is defined as

Q(x,y) =

(
2µxµy

µ2
x +µ2

y

)(
2σxσy

σ2
x +σ2

y

)(
σxy

σxσy

)
, (1)

where µx is the mean of the image signal, σ2
x its variance and σxy the covariance be-

tween the original and distorted version of the image signal. The three terms in this
formulation are the foundations of structural similarity based image quality assess-
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ment. The first term measures luminance similarity between the images, the second
measures contrast similarity and the third term measures correlation or structural
similarity between the images. If the quality metric were to be applied on a patch-
wise basis to the images, the overall image quality is estimated as

Q =
1
M

M

∑
j=1

Q j, (2)

where Q j is the UIQI of the jth image patch and M is the number of patches.
The Structural SIMilarity (SSIM) index builds on the ideas introduced by UIQI

by using weighted means, variances and covariances in addition to introducing sta-
bilizing constants to Q so as to avoid numerical problems when the local statistics
are close to zero. The local SSIM index is defined as [37]

SSIM(x,y) =

(
2µxµy +C1

µ2
x +µ2

y +C1

)(
2σxσy +C2

σ2
x +σ2

y +C2

)(
σxy +C3

σxσy +C3

)
, (3)

where C1,C2 and C3 are stabilizing constants. Also, the mean, variance and covari-
ance are estimated locally via

µx = wT x, (4)
σ

2
x = (x−µxe)T diag(w)(x−µxe), (5)

σxy = (x−µxe)T diag(w)(y−µye), (6)

where w is a normalized weight vector and e is a vector of ones.
The SSIM index is also expressed as

SSIM(x,y) = l(x,y)c(x,y)s(x,y), (7)

where l(x,y) is the luminance term, c(x,y) is the contrast term and s(x,y) corre-
sponds to the structure term. As shown in [37], SSIM embodies important mask-
ing mechanisms in the terms l(x,y) and c(x,y), specifically luminance masking
(Weber’s law) and contrast masking, both of which are key determinants of image
quality. The structure term s(x,y) captures the notion that image distortion destroys
perceptually relevant image structure.

In its most general form, the SSIM index is defined as

SSIM(x,y) = [l(x,y)]α [c(x,y)]β [s(x,y)]γ , (8)

where the positive exponents α,β ,γ determine the importance assigned to each of
the components. Since the structure term can be negative, γ should be normalized
to 1 to avoid any complex number and not to favorize any anti-correlation. Alterna-
tively, s(x,y) may be transformed to max(0,s(x,y)) to avoid any negative values.

The SSIM index is applied block-wise to arrive at the image level SSIM index.
Again, as with UIQI,
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SSIM(x,y) =
1
M

M

∑
j=1

SSIM j(x,y), (9)

where SSIM j is the SSIM index of the jth image patch and M is the number of
patches.

The Multi-Scale-SSIM (MS-SSIM) index [41] is an improvement over the SSIM
index in that it measures structural similarity over multiple spatial scales. The MS-
SSIM index is defined as

SSIM(x,y) = [lJ(x,y)]αJ
J

∏
j=1

[c j(x,y)]β j [s j(x,y)]γ j (10)

corresponding to J spatial scales. Starting from the highest spatial scale correspond-
ing to the original image resolution, successive spatial scales (at lower resolution)
are obtained by decimation i.e., low-pass filtering of the current scale followed by
downsampling by a factor of 2. Following the notation established earlier, lJ(x,y)
corresponds to luminance similarity after (J− 1) stages of decimation. In similar
fashion, c j(x,y) and s j(x,y) correspond to contrast and structural similarity after
j− 1 decimation stages respectively. Further, αJ is the exponent applied to the lu-
minance term while β j and γ j correspond to exponents applied to the contrast and
structure terms at the ( j−1)st decimation stage, respectively.

Many extensions of the SSIM index have been proposed in the literature. To
name a few, we mention the Complex-Wavelet-SSIM (CW-SSIM) [34], Information
content Weighted SSIM (IW-SSIM) [38], SSIM extension for color images [22, 19]
and for videos [39].

A comprehensive comparison of IQA measures was performed in the TID-2008
experiment [29]. MS-SSIM was the clear winner, followed by SSIM at the second
place. Several other metrics with better performance on this database have been in-
troduced since then, many of them inspired by SSIM. According to the TID-2013
experiment [28], Feature SIMilarity (FSIM) [43], Sparse Feature Fidelity (SFF)
[8], PNSR-HA/HMA [27], Block-Based Multi-Metric (BMMF) [17] and Spectral
Residual SIMilarity (SR-SIM) [42] correlate better with subjective quality assess-
ment than MS-SSIM on the TID database.

Yet, SSIM and MS-SSIM have found vast commercial and academic acceptance,
owing to its high efficiency in terms of computation (it is very fast) and performance
(it correlates with human judgments nearly as well as the top models). Indeed, SSIM
and MS-SSIM are marketed and used throughout the global broadcast, cable and
satellite television industries. The SSIM team members each received a Primetime
Emmy Award in October 2015 for their work. Morever, because of the simplicity
of the SSIM index, it is a good prototype of a perceptual optimization criterion. It
is hoped that a detailed study of optimization techniques for the SSIM index will
inspire similar studies for future IQA models and for the design of improved IQA
methods that will better serve the multimedia industry.
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1.2 Perceptual optimization framework

Perceptual optimization is a particular case of the general optimization framework
where the objective measure models perceptual quality of an image. Before studying
the specific case of SSIM-based optimization, we lay the groundwork for perceptual
optimization in both Bayesian and variational perspectives.

We first consider the no-reference IQA case. Let x be an image and let Q(x)
be a quality measure of x with Q(x) ≥ 0 and Q(x) = 0 for perfect quality. Given
a distorted image y obtained from an unknown image x by a model of distortion
y = D(x), we want to restore the original image x. To do so, we seek an image x̂
that will optimize the quality criterion Q(x̂) with the constraint y = D(x̂). Often,
the distortion model will include a stochastic component such as additive noise. In
that case, the distortion model can be expressed as y = D(x)+ ξ , where D is the
deterministic part and ξ is the noise component. For example, for additive white
Gaussian noise, the probability distribution function of ξ will be

P(Ξ = ξ ) ∝ exp(−1/2‖ξ‖2
2/σ

2),

where σ2 is the variance of the noise. We can also assume a probabilistic model for
the unknown image x such as

P(X = x) ∝ exp(−Q(x)α/β ).

Note that other monotonic transformations of Q(x) could be found instead of a
power transformation. Since ξ = y−D(x) the probability distribution function of ξ

can also be seen as the conditional probability of y given x:

P(Y = y|X = x) ∝ exp(−1/2‖y−D(x)‖2
2/σ

2).

We can now use the Bayes’ rule to find the probability distribution of the clean
image x given the distorted image y:

P(X = x|Y = y) ∝ P(Y = y|X = x)P(X = x) (11)
∝ exp(−1/2‖y−D(x)‖2

2/σ
2)exp(−Q(x)α/β ). (12)

The maximum a posteriori estimator is then obtained by finding the optimal image
x. Taking the negative of the logs, it yields to

− log(P(X = x|Y = y)) ∝ 1/2‖y−D(x)‖2
2/σ

2 +Q(x)α/β .

This is the variational form for the image restoration problem. Notice that the mean
squared error in the first term does not come from the image quality model, but
rather the model of the noise. The second term, usually called the regularization
term, often adopts simple forms such as the L2-norm (for Tikhonov regularization),
the total variation or the norm of the gradient or of second-order partial derivatives
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(for thin-plate spline). From a Bayesian perspective, these represent different models
of image quality.

For the full-reference case, we can use a distance (or dissimilarity) measure
d(x,z). The goal of the optimization will then be to bring the estimated clean image
x̂ close to a prior image z. For example, we could minimize d(x,z) over all x satis-
fying the constraint y = D(x). Instead of a single prior image, we could also have a
dictionary of images z1,z2, . . . ,zP. In this case, we will solve the problem

x̂ = argmin
p

min
x:y=D(x)

d(x,zp). (13)

If instead we have a (possibly empirical) prior probability distribution P(z), with a
stochastic model of distortion P(Y = y|Z = z), then Bayes’ formulas will lead to

P(Z = z|Y = y) ∝ P(Y = y|Z = z)P(Z = z).

Finding the maximum a posteriori estimator does not require any optimization of
an image quality measure. (Or we could say that the image quality measure was
empirically found to be Q(z)α ∝− log(P(Z = z)).) However, we could instead look
to maximize the expected perceptual quality:

x̂ = argmin
x

EZ [d(z,x)|Y = y] (14)

= argmin
x

∫
d(z,x)P(Z = z|Y = y)dz. (15)

The optimization problems presented in this chapter will roughly follow one of
the forms presented above. However, by sampling through the SSIM-optimization
literature, we will not present a completly methodical and exhaustive approach as it
was outlined here.

1.3 Chapter Overview

We first review the mathematical properties of SSIM that makes it a suitable cri-
terion for optimization. We then study several optimization problems starting with
a local (block-based) perspective. Specifically, we discuss SSIM-optimal equalizer
design, SSIM-optimal soft-thresholding algorithms, and SSIM best basis approx-
imation. We then present a variational formula with a SSIM term that allows to
pass from a local (block-based) to a global (image-wide) solution. We illustrate the
techniques with several examples and compare the mean-square error equivalent.
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2 Mathematical Properties of the SSIM index

2.1 Structural and non-structural distortions

The main insight behind the Structural Similarity index and the family of related
quality measures is a decomposition of images/signals into structural and non-
structural components. Indeed, it is generally observed that for the same mean-
square error, structural image distortions are perceived more strongly than non-
structural ones.

We shall refer to distortions that do not alter the general shape of an image as
being ”non-structural”. Change in luminance, change in contrast, translation and ro-
tation are some examples of non-structural distortions. We want perceptual metrics
to be quasi-invariant to these types of distortions.

On the other hand, we shall refer to distortions that strongly affect the perceptual
quality of an image as being ”structural”. As we will see, all remaining distortions
will be lumped together once the non-structural distortions have been accounted for.

A commonly used simplification of the local SSIM (3) is obtained by setting
C3 =C2/2. The formula then reduces to

SSIM(x,y) =

(
2µxµy +C1

µ2
x +µ2

y +C1

)(
2σx,y +C2

σ2
x +σ2

y +C2

)
, (16)

= S1(x,y)S2(x,y). (17)

In this simplified form of the SSIM index, only one type of non-structural distor-
tion is considered explicitly: the luminance shift. Given a grayscale image patch x,
its luminance is a function of the average value µx of the patch. The decomposition
of an image patch into structural and non-structural parts is then given by:

x = µxe+(x−µxe), , (18)

where e = (1,1, . . . ,1) is in the direction of the mean and x−µxe is the zero-mean
component. The luminance term S1 of the SSIM index acts on the mean direction
of the signal, whereas the combined contrast-correlation term S2 involves the zero-
mean component of the signal.

We can then rewrite the components S1 and S2 using the two following projec-
tions:

P1(x) = µxe, and (19)
P2(x) = (Id−P1)x = x−µxe, (20)

where Id(x) = x is the identity operator (matrix). For x,y ∈ RN , we define

d(x,y) =
(

‖x−y‖2
2

‖x‖2
2+‖y‖2

2+C

)1/2
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for some positive constant C. This is a valid normalized distance metric [7]. Note
that

1−S1(x,y) =
|µx−µy|2

µ2
x +µ2

y +C1
= [d(P1x,P1y)]2 and (21)

1−S2(x,y) =
‖(x−µxe)− (y−µye)‖2

2

‖x−µxe‖2
2+‖y−µye‖2

2+(N−1)C2
= [d(P2x,P2y)]2. (22)

This implies that 1−S2(x,y) can be interpreted as an inverse variance weighted nor-
malized mean square error. The fundamental difference between 1−S2(x,y) and the
normalized mean square error ‖P2x−P2y‖2

2 is that the former models the masking
effect by weighting more heavily distortions on flatter patches.

By convention, optimization problems are cast as minimization problems. This
is of course always possible to pass from maximization to minimization since
maxx f (x) = minx a f (x) + b with a < 0. We thus consider the minimization of
f1(x,y) := 1−S1(x,y) and f2(x,y) := 1−S2(x,y).

2.2 Convexity and quasi-convexity

The functions f1 and f2 that were derived from the components of the simplified
SSIM are not convex everywhere. As it was studied in detail in [7], for fixed y,
f1 is convex for {x : 0 ≤ P1x ≤

√
3P1y} and f2 is convex for all points in {x :

‖P2x− P2y‖2≤ ‖P2y‖2(
√

3− 1)2}. The exact limit of the region of convexity is
actually a tear-shaped region which is rotated around the direction of P2y.

Although the functions f1 and f2 are not convex everywhere, they possess a
weaker form of convexity called quasi-convexity.

Definition 1. Given a convex set X , a function f : X →R is said to be quasi-convex
if its h-sublevel set, defined as

Xh = {x ∈ X | f (x)≤ h}, (23)

is a convex set for all h ∈ Range( f ).

Any convex function is necessarily quasi-convex. An example of function that is
quasi-convex but not convex is f (x) = |x|1/2.

Quasi-convexity is a useful property for non-linear optimization [4]:

Theorem 2.1 Let X be a convex vector space and let f : X → R be a quasi-convex
function. If f has a minimum, then it is either unique or the function is constant in
a neighborhood of the minimum.

It thus means that a function f will have a unique minimum if it is monotonically
increasing away from the minimum.

The quasi-convexity of f1 for P1x ≥ 0,P2y ≥ 0 and of f2 on the half-plane
(P2y)T P2x ≥ 0 is easy to prove. The set of points such that fi ≤ h < 1 for i = 1,2
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is, respectively, the interval (hyperball) centered at Piy
1−h2 of mid-length (radius) of√

‖Piy‖2
(

1
(1−h2)2 −1

)
+Ci

h2

1−h2 , which is a convex set.

2.3 Combination rule

In order to optimize perceptual quality, we need either to optimize the vector-valued
function ( f1, f2) or to devise some way to collapse the vector to a scalar function. We
then examine each option in terms of the (quasi-)convexity of the resulting function.

In the simplified form of SSIM, the product between S1 and S2 is taken. Other
combination rules could also be devised, and the choice we make will affect not
only how good our perceptual image quality model is, but also the mathematical
properties of the created function.

Writing the local SSIM in term of f1 = 1−S1 and f2 = 1−S2, we get

SSIM(x,y) = (1− f1(x,y))(1− f2(x,y)) (24)
= 1− f1(x,y)− f2(x,y)+ f1(x,y) f2(x,y). (25)

Maximizing SSIM is equivalent to minimizing the following function,

1−SSIM(x,y) = f1(x,y)+ f2(x,y)− f1(x,y) f2(x,y). (26)

Another simple combination rule would be to take the sum of f1 and f2:

F1(x,y) = f1(x,y)+ f2(x,y) (27)

This can be seen as a linear approximation of 1-SSIM. Surprisingly, this approxi-
mation performed slightly better in a psycho-visual experiment [5]. Moreover, this
alternative form preserves the property of a metric [7].

If x is in the region of convexity for f1 and f2, then it will be automatically in the
region of convexity of F1. However, contrary to the convex function case, the sum
of quasi-convex functions is not necessarily quasi-convex. So F1 does not inherit the
quasi-convexity property of f1 and f2.

Even if the scalarized function to be optimized is neither convex nor quasi-
convex, it is still sometimes possible to optimize each component independently.
Indeed, the decomposition given in (18) is an orthogonal decomposition. The Or-
thogonal Decomposition Theorem goes as follows:

Theorem 1. Let X be a space and {Pk}K−1
k=1 be orthogonal projections. Define PK =

Id−∑
K−1
k=1 Pk, where Id(x) = x is the identity function. Then each point x ∈ X has a

unique decomposition as

x =
K

∑
k=1

Pk(x).
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In particular,
x = y ⇐⇒ Pk(x) = Pk(y) for 1≤ k ≤ K.

For the particular case of SSIM, the Orthogonal Decomposition Theorem says that
if µx = µy and x− µxe = y− µye, then x = y, which is quite trivial. However, this
kind of result will also be valid for more complex types of orthogonal decomposi-
tion. The next proposition follows immediately from the Orthogonal Decomposition
Theorem:

Theorem 2. Let X = X1 +X2 be an orthogonal decomposition of X and let f1 on X1
and f2 on X2 be two functions. Then

min
z1:z1=P1z1

f1(z,P1y)+ min
z2:z2=P2z2

f2(z2,P2y) = min
z

f1(P1z,P1y)+ f2(P2z,P2y). (28)

Moreover, if f1, f2 > 0, then

min
z1:z1=P1z1

f1(z,P1y) min
z2:z2=P2z2

f2(z2,P2y) = min
z

f1(P1z,P1y) f2(P2z,P2y). (29)

This theorem can be also used for a subdomain A ⊂ X , but with the limitation that
A = P1A+P2A.

2.4 Spatial aggregation

The simplest way to spatially aggregate local SSIM scores is by averaging (9). Other
pooling options could be possible such as a power mean or maximum error [40].
Visual saliency models can also be used to guide the pooling strategy [44]. Finally,
multi-resolution schemes such as MS-SSIM can be devised.

In order to preserve the quasi-convexity property of the components of SSIM,
an interesting option would be to take the maximum value of the scores on local
patches:

SSIMmax = max
1≤ j≤M

SSIM j(x,y). (30)

This strategy can be justified empirically by the fact that the eye will be attracted
to the most salient feature, which could be said to be the one with the greatest
dissimilarity. The advantage of this choice is that the aggregated score will be quasi-
convex, since it is the maximum of quasi-convex functions.
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x[n] - H -⊕
?
η [n]

-
y[n] G - x̂[n]

Fig. 1 Block diagram of a general linear time invariant equalizer system. The goal is to design a
linear equalizer block G that maximizes the SSIM index between the source process x[n] and the
restored process x̂[n] is maximized. To solve this problem it is assumed that the LTI filter H , and
the power spectral density of the noise process η [n] are known.

3 Perceptually Optimal Algorithm Design

3.1 SSIM-optimal Equalizer Design

One of the oldest and most widely researched problems in digital image process-
ing is image restoration, a.k.a. equalization [1], which has its origins in the early
days of America’s space program. Given the problem’s rich history, there exist sev-
eral excellent solutions that form a part of most image acquisition systems [18]. In
this section, we discuss a relatively recent image restoration solution that explicitly
optimizes the SSIM index. A precursor to this solution is the SSIM-optimal linear
estimator that addresses the image denoising problem [10].

3.2 Equalization Problem

The equalization problem is as follows: Design an equalizer g[n] of length N (for
any N) that optimizes the SSIM index between the reference and restored wide sense
stationary (WSS) processes x[n] and x̂[n] respectively, given the observed process
y[n] that is a blurred and noisy version of x[n]. The blurring filter h[n] of length M is
assumed to be linear and time-invariant (LTI) and the noise process η [n] is assumed
to be additive and white in nature. Furthermore, it is assumed that the blurring filter
h[n] and the power spectral density (PSD) of η [n] are known at the receiver. This
system is summarized in Fig. 1 and the optimization problem is set up as follows.
Given

y[n] = h[n]∗ x[n]+η [n], (31)

design a filter g[n] of length N such that

g∗[n] = arg max
g[n]∈RN

SSIM(x[n], x̂[n]), (32)

where
x̂[n] = g[n]∗ y[n]. (33)
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3.3 Solution

For completeness, the standard SSIM index [37] as defined for deterministic signals
is reviewed first. However, the equalizer design problem in (32) is defined on WSS
random processes thereby rendering a direct application of the deterministic SSIM
index infeasible. To circumvent this issue, the definition of the SSIM index is ex-
tended to handle WSS processes. The optimization problem is then restated in terms
of the extended definition of the SSIM index.

3.3.1 Equalization Problem Redefined

As noted previously, the definition of the SSIM index in (3) needs to be modified to
measure similarity between WSS processes. This is accomplished via the definition
of the statistical SSIM index (StatSSIM index).

Definition 2. Given two WSS random processes x[n] and y[n] with means µx and µy
respectively, the statistical SSIM index is defined as

StatSSIM(x[n],y[n]) =
(

2E[x[n]]E[y[n]]+C1

E[x[n]]2 +E[y[n]]2 +C1

)
×
(

2E[(x[n]−E[x[n]])(y[n]−E[y[n]])]+C2

E[(x[n]−E[x[n]])2]+E[(y[n]−E[y[n]])2]+C2

)
,(34)

where E[] is the expectation operator. This is a straightforward extension of the
pixel domain definition of the SSIM index by replacing sample means and variances
with their statistical equivalents. This could be seen as a plug-in estimator of the
expectation of SSIM (14). The problem in (32) is redefined as

g∗[n] = arg max
g[n]∈RN

StatSSIM(x[n], x̂[n]), (35)

To solve (35), the StatSSIM index is first expressed in terms of the equalizer filter
coefficients g[n] using the definition in (34).

StatSSIM(x[n], x̂[n]) = f (g) =
(

2µxµx̂ +C1

µ2
x +µ2

x̂ +C1

)(
2E[(x[n]−µx)(x̂[n]−µx̂)]+C2

E[(x[n]−µx)2]+E[(x̂[n]−µx̂)2]+C2

)
=

(
2µxE[∑N−1

i=0 g[i]y[n− i]]+C1

µ2
x +(E[∑N−1

i=0 g[i]y[n− i]])2 +C1

)

×

(
2E[(x[n]−µx)(∑

N−1
i=0 g[i]y[n− i]−E[∑N−1

i=0 g[i]y[n− i]])]+C2

E[(x[n]−µx)2]+E[(∑N−1
i=0 g[i]y[n− i]−E[∑N−1

i=0 g[i]y[n− i]])2]+C2

)

(which follows from the definition of convolution)
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=

(
2µx ∑

N−1
i=0 g[i]µy +C1

µ2
x +(∑N−1

i=0 g[i]µy)2 +C1

)
(

2E[(x[n]−µx)(∑
N−1
i=0 g[i]y[n− i]−∑

N−1
i=0 g[i]µy)]+C2

E[(x[n]−µx)2]+E[(∑N−1
i=0 g[i]y[n− i]−∑

N−1
i=0 g[i]µy)2]+C2

)
(since x[n] is WSS, h[n] is LTI, y[n] is also WSS)

=

(
2µxgT eµy +C1

µ2
x +gT eeT gµ2

y +C1

)
(

2E[(x[n]−µx)(∑
N−1
i=0 g[i](y[n− i]−µy))]+C2

E[(x[n]−µx)2]+E[(∑N−1
i=0 g[i](y[n− i]−µy))2]+C2

)

=

(
2µxgT eµy +C1

µ2
x +gT eeT gµ2

y +C1

)(
2gT cxy +C2

σ2
x +gT Kyyg+C2

)

(36)

where g = [g[0],g[1], . . . ,g[N − 1]]T ,e = [1,1, . . . ,1]T are both length N vectors,
µx,µy are the means of the source and observed processes respectively, cxy =
E[(x[n]− µx)(y− eµy)], is the cross-covariance between the source (x[n]) and the
observed processes (y = (y[n],y[n− 1], . . . ,y[n− (N− 1)])T ), σ2

x is the variance of
the source process at zero delay, Kyy = E[(y− eµy)(y− eµy)

T ], is the covariance
matrix of size N×N of the observed process y[n], and C1,C2 are stabilizing con-
stants.

(a) MSE (b) SSIM

Fig. 2 MSE and StatSSIM index as a function of equalizer taps g[0], g[1].

From (36), it can be seen that the StatSSIM index is the ratio of a second de-
gree polynomial to a fourth degree polynomial in g. It is now demonstrated that
problem (36) admits a tractable, and in particular, near closed-form solution, with a
complexity that is comparable to that of the minimum MSE solution.
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3.3.2 StatSSIM-optimal linear equalization

The StatSSIM index is a non-convex function of g and local optimality conditions
such as Karush-Kuhn-Tucker (KKT) cannot guarantee global optimality. The non-
convex nature of the StatSSIM index is demonstrated in Fig. 2 and contrasted with
the convex nature of MSE. In particular, any approach based on descent-type al-
gorithms are likely to get stuck in local optima. To address this issue, the problem
is transformed from its non-convex form into a quasi-convex formulation. Convex
optimization problems are efficiently solvable using widely available optimization
techniques and software [2, 4]. Moreover, we show below that a near-closed form
solution can be achieved. In particular, the N-tap filter optimization is transformed
into an optimization problem over only two variables for any N. Exploiting convex-
ity properties, one can quickly search over one parameter by means of a bisection
technique, thus reducing the problem to a univariate optimization problem. This last
step can be efficiently performed using an analytic solution of a simplified problem.

3.3.3 Problem Reformulation

The problem is reformulated by noting that the first term of (36) (corresponding
to the mean) is a function only of the sum of the filter coefficients gT e. A typical
constraint in filter design problems is that the filter coefficients add up to unity. The
optimization problem in (36) is simplified by constraining gT e = α and takes the
form [

g(α) = argmaxg∈RN

(
2gT cxy+C2

σ2
x +gT Kyyg+C2

)
subject to : gT e = α.

]
, (37)

The solution is now a function of α . The problem now changes to finding the highest
StatSSIM index by searching over a range of α (typically in the interval [1−δ ,1+
δ ], for a small δ ). The solution of this problem is discussed in the next section.

3.3.4 Quasi-convex Optimization

The optimization problem in (37) is still non-convex. It is first converted into a
quasi-convex form as follows,
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g(α) = argmaxg∈RN

(
2gT cxy +C2

σ2
x +gT Kyyg+C2

)
,

subject to : gT e = α,

⇔
min : γ

subject to :

[
max :

(
2gT cxy+C2

σ2
x +gT Kyyg+C2

)
≤ γ

subject to : gT e = α,

]
⇔
min : γ

subject to :
[

min : [γ(σ2
x +gT Kyyg+C2)− (2gT cxy +C2)]≥ 0

subject to : gT e = α

]
.

(38)

The first step involves the introduction of the auxiliary variable γ as an upper bound
on (37). The first equivalence relation is true since minimizing γ is the same as find-
ing the least upper bound of the function in (37). This is equal to the maximum value
of the function, which exists, as seen by straightforward continuity arguments. The
second equivalence relation holds since the denominator in (37) is strictly positive,
allowing for the rearrangement of terms. γ them becomes a true upper bound if the
problem, [

maxg∈RN : γ(σ2
x +gT Kyyg+C2)− (2gT cxy +C2)

subject to : gT e = α

]
, (39)

has a non-negative optimal value. The objective function is a linear term minus a
convex quadratic and is therefore concave. The constraint is affine, and thus con-
vex. Therefore, the overall problem is convex, and can be solved by introducing a
Lagrange multiplier λ and applying the first order sufficiency conditions,

∇g{γ(σ2
x +gT Kyyg+C2)− (2gT cxy +C2)+λ (gT e−α)}= 0. (40)

The solutions for g and λ , denoted by g(α),λ (α) to emphasize their dependence
on α , are given by

g(α) =
1
2γ

K−1
yy (2cxy−λ (α)e)

λ (α) =
1

eT K−1
yy e

(2cT
xyK−1

yy e−2γα).
(41)

The optimal γ can then be computed in O(log(1/ε)) iterations using a standard
bisection procedure. The algorithm is summarized in Fig. 3.3.4. The tolerance spec-
ified by ε determines the tightness of the bound γ .
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1. Pick an initial guess of γ (say γ0) between 0 and 1. upper limit = 1,
lower limit = γ0.

2. Evaluate the optimal filter.
3. Is γ(σ2

x +gT Kyyg+C2)− (2gT cxy +C2)≥ 0?
3a. If true, is (upper limit - lower limit < ε)?

3aa. If true, we have found a γ within ε of the optimal value. Exit.
3ab. If false, set γi = 0.5*(upper limit + lower limit),

upper limit = γi. Goto step 2.
3b. If false, set γi = 0.5*(upper limit + lower limit), lower limit = γi.

Goto step 2.

Fig. 3 An algorithm to search for the optimal γ .

3.3.5 Search for α

It should be noted that the solution in (41) is still a function of α . The overall solu-
tion to (36) is found by searching over α .

One method is to simply initialize α to be the sum of the filter coefficients of the
MSE-optimal filter, i.e., αinit = gT

msee. Another heuristic method is to initialize α to
be the sum of the filter coefficients of a structure-optimal filter. By structure-optimal
filter is meant a filter that optimizes only the structure term in the StatSSIM index
without any constraints on the mean. In other words, the goal is to find a filter g∗struct
such that

g∗struct = argmaxg∈RN Structure(x[n], x̂[n]) =
(

2E[(x[n]−µx)(x̂[n]−µx̂)]+C2

E[(x[n]−µx)2]+E[(x̂[n]−µx̂)2]+C2

)
=

(
2gT cxy +C2

σ2
x +gT Kyyg+C2

)
.

(42)

This problem is very similar to (37) and can be solved using the technique de-
scribed above. The solution is

g∗struct =
1

γstruct
(Kyy)

−1cxy, (43)

and so the initial value of α is

αinit = eT g∗struct . (44)

The value of γstruct is computed using the algorithm described in Section 3.3.4.
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3.3.6 Application to Image Denoising and Restoration

The StatSSIM-optimal equalizer can be applied to restore images as outlined in the
following steps.

• At each pixel in the distorted image, estimate the values of rxy,cxy,Ryy,Kyy from
a neighborhood of size L×L. The value of L is chosen so as to compute stable
correlation values.

• The minimum MSE solution is computed as g∗mse =R−1
yy rxy (after removing mean

from the blocks).
• The StatSSIM-optimal solution is computed as follows,

– α is initialized using (43).
– In a small range around α (chosen above), compute the solution in (41) and

choose the one with the maximum StatSSIM index.

As before, the blurring filter and the power spectral density of the additive noise
component are assumed to be known at the receiver. The procedure used to estimate
the correlation and covariance values for denoising and restoration can be found
in [30]. To find the estimates, the neighborhood of size L×L is unwrapped into a
vector of size L2×1. The results of the image restoration procedure is illustrated in
Figs. 4, 5, 6 and 7. The effectiveness of the StatSSIM-optimal solution is very clear
from these illustrations.

3.4 SSIM-optimal Soft-thresholding

While the previous subsection explored the optimization of a linear system with
respect to the SSIM index, this subsection explores SSIM-optimal soft-thresholding,
a non-linear image denoising solution. A soft-thresholding operator with threshold
λ is defined as

g(y) = sgn(y)(|y|−λ )+, (45)

where sgn(y) is the signum function and (.)+ is the rectifier function.
Soft-thresholding for signal denoising was first proposed by Donoho [15, 16, 14]

and has been extended to image denoising most notably by Chang et al. [9]. These
are risk/cost minimizing solutions where the risk or cost function is the mean
squared error between the estimated source and the noise-free source. In other
words, these solutions find λ that is MSE-optimal. While these solutions were pro-
posed over two decades ago, they continue to be relevant for image denoising. The
soft-thresholding problem has been solved for SSIM optimality [11] and is dis-
cussed next.
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(a) Reference (b) Distorted

(c) MSE-optimal filter (length 7) (d) SSIM-optimal filter (length 7)

Fig. 4 Denoising example 1: Img0039.bmp from the ‘City of Austin’ database. 4(a) Original im-
age. 4(b) Distorted image with σnoise = 35, MSE = 1226.3729, SSIM index = 0.5511. 4(c) Image
denoised with a 7-tap MSE-optimal filter, MSE = 436.6929, SSIM index = 0.6225. 4(d) Image
denoised with a 7-tap SSIM-optimal filter, MSE = 528.0777, SSIM index = 0.6444.

3.4.1 SSIM index in the Wavelet Domain

The soft-thresholding problem is defined and solved in the wavelet domain while
the SSIM index is defined in the space domain. To bridge this gap, the SSIM index
is first expressed in the wavelet domain. This is achieved by expressing the space
domain mean, variance, and cross-covariance terms in terms of wavelet coefficients.
Of the several classes of wavelet transforms, only orthonormal wavelets are energy
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(a) Reference (b) Distorted

(c) MSE-optimal filter (length 7) (d) SSIM-optimal filter (length 7)

Fig. 5 Denoising example 2: 5(a) Original image. 5(b) Distorted image with σnoise = 40, MSE
= 1639.3132, SSIM index = 0.541485. 5(c) Image denoised with the a 7-tap MSE-optimal filter,
MSE = 383.3375, SSIM index = 0.734963. 5(d) Image denoised with a 7-tap SSIM-optimal filter,
MSE = 455.2577, SSIM index = 0.753917.

preserving. This property allows for the space domain variance and covariance terms
to be expressed in terms of the wavelet coefficients in a straightforward manner.

The approximation subband (low-low (LL) subband) of the wavelet decomposi-
tion contains all the information required to calculate the mean of the space domain
signal. A scaling factor k is applied to the mean of the LL subband to find the mean.
Let x denote an image patch of size N×N and X denote the L level wavelet trans-
form of the patch (also of size N×N). Then the mean of x is given by
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(a) Reference (b) Distorted

(c) MSE-optimal filter (d) StatSSIM-optimal filter

Fig. 6 Restoration example 1: Image Img0073.bmp of the ‘City of Austin’ database. 6(a) Original
image. 6(b) Distorted image with σblur = 15,σnoise = 40, MSE = 2264.4425, SSIM index = 0.3250.
6(c) Image restored with a 11-tap MSE-optimal filter, MSE = 955.6455, SSIM index = 0.3728. 6(d)
Image restored with a 11-tap SSIM-optimal filter, MSE = 1035.0551, SSIM index = 0.4215.

µx = (k)L
µX,LL, (46)

where k is the known scaling factor, and µX,LL is the mean of the LL subband of X.
The fact that orthonormal wavelets obey Parseval’s Theorem is used to calcu-

late the variance and covariance terms in the SSIM index. Let x,y represent image
patches of size N×N and X,Y be their respective orthonormal wavelet transforms.
From Parseval’s Theorem, it follows that
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(a) Reference (b) Distorted

(c) MSE-optimal filter (d) StatSSIM-optimal filter

Fig. 7 Restoration example 3: A 128×128 block of Barbara image. 7(a) Original image. 7(b)
Distorted image with σblur = 1,σnoise = 40, MSE = 1781.9058, SSIM index = 0.5044. 7(c) Image
restored with a 11-tap MSE-optimal filter, MSE = 520.1322, SSIM index = 0.6302. 7(d) Image
restored with a 11-tap SSIM-optimal filter, MSE = 584.9232, SSIM index = 0.6568.

σ
2
x =

1
N2

N−1

∑
i=0

N−1

∑
j=0

X2
i, j− ((k)L

µX,LL)
2, (47)

σxy =
1

N2

N−1

∑
i=0

N−1

∑
j=0

Xi, jYi, j− ((k)L
µX,LL)((k)L

µY,LL). (48)
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(a) Reference (b) Distorted

(c) MSE-optimal filter (d) StatSSIM-optimal filter

Fig. 8 Restoration example 4: A 512×512 block of Mandrill image. 8(a) Original image. 8(b)
Distorted image with σblur = 5,σnoise = 50, MSE = 3065.31, SSIM index = 0.1955. 8(c) Image
restored with a 7-tap MSE-optimal filter, MSE = 863.85, SSIM index = 0.3356. 8(d) Image restored
with a 7-tap SSIM-optimal filter, MSE = 908.47, SSIM index = 0.3446.

The SSIM index can now be written in terms of the wavelet coefficients as

(49)SSIM(x,y)

=

(
2((k)LµX,LL)((k)LµY,LL) +C1

((k)LµX,LL)2 + ((k)LµY,LL)2 +C1

)
2 1

N2

N−1
∑

i=0

N−1
∑
j=0

Xi, jYi, j − ((k)LµX,LL)((k)LµY,LL) +C2

1
N2

N−1
∑

i=0

N−1
∑
j=0

X2
i, j + Y 2

i, j − k2L(µ2
X,LL + µ2

Y,LL) +C2

 .
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3.4.2 Problem Formulation

The soft-thresholding problem is now formulated in terms of the wavelet domain
SSIM index defined in (49). Let x denote a pristine image patch of size N×N, n be
zero mean Gaussian noise, and y = x + n be the noisy observation of x. Let X,Y rep-
resent an L level orthonormal wavelet transform of x,y respectively. Since an L level
orthogonal transform consists of 3L subbands it leads to the design of 3L thresh-
olds (one per subband). Let the threshold vector be denoted by Λ = [λ1,λ2, . . . ,λ3L]
where each element corresponds to the threshold of one subband. It should be noted
that the approximation band is not thresholded. Let X̂ be the soft thresholded output,
and let x̂ denote the space domain version of X̂.

As with the StatSSIM-optimal equalizer design, it is assumed that the noise vari-
ance is known to the receiver. The receiver has only the observation y and therefore
a direct evaluation of the SSIM index between x and x̂ is not possible. In order to
estimate the SSIM index, a Gaussian source model is applied to the pristine wavelet
coefficients. Since the noise is assumed to be zero mean, the mean of the pristine
image patch and the thresholded estimate are identical (since the approximation sub-
band is not thresholded). This results in the mean term of the SSIM index becoming
unity. Further, since the noise is additive, the source variance can be estimated to be
the difference between the variance of the observation σ2

y and the noise variance σ2
n

as

σ
2
x ≈ σ

2
y −σ

2
n (50)

=
1

N2

N−1

∑
i=0

N−1

∑
j=0

Y 2
i, j− (kL

µY,LL)
2−σ

2
n . (51)

The SSIM index is now expressed as

SSIM(x, x̂) =


2 1

N2

N−1
∑

i=0

N−1
∑
j=0

Xi, jX̂i, j− (kLµY,LL)
2 +C2

1
N2

N−1
∑

i=0

N−1
∑
j=0

Y 2
i, j + X̂2

i, j−2(kLµY,LL)2−σ2
n +C2

 . (52)

It should be noted that since the noise is additive, 1
N2

N−1
∑

i=0

N−1
∑
j=0

Xi, jX̂i, j ≈ (σ2
Y −σ2

n +

µ2
y ).

The SSIM-optimal soft-thresholding problem is formulated as:

Λ
∗ = argmax

Λ∈R3L
+

SSIM(x, x̂) (53)
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3.4.3 Solution

The objective function is nonlinear in Λ and maps a 3L-dimensional vector to a one-
dimensional scalar. The optimization is constrained by the requirement for Λ to be
non-negative. The quasi-Newton optimization method provides a good tradeoff be-
tween complexity and performance in finding local optima. The Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [3] is one such method that was employed here
to find local optima. As a consequence, this solution is locally optimal and no guar-
antees on global optimality can be made. The application of this solution to the
image data is presented in the following steps.

• The noisy image is divided into non-overlapping blocks of size 32×32
• Apply a L level orthonormal wavelet transform to each block
• For each wavelet transformed block, compute its subband statistics
• Find a locally optimal Λ∗ using the BFGS algorithm. The search can be initial-

ized to the MSE-optimal soft thresholding solution from Chang et al. [9].
• Using Λ∗ to soft-threshold the corresponding wavelet subband coefficients
• The denoised coefficients are then transformed back to the pixel domain by ap-

plying the inverse wavelet transform on a block by block basis

To perform a qualitative and quantitative comparison, the locally SSIM-optimal so-
lution is compared with the MSE-optimal solution by Chang et al. [9]. The denois-
ing results are presented in Fig. 9. It can be observed that the SSIM-based solution
retains more image detail and has a better perceptual quality compared to the MSE-
optimal solution. This method provides conclusive evidence that optimization for
perceptual quality is a worthwhile endeavor indeed.

4 Local SSIM-optimal Approximation

We now study whether a perceptual criterion such as SSIM can be used for best-
basis approximation. This section follows the treatment in [5].

The Minimal Mean Square Error approximation problem is

x̂ = arg min
z∈A
‖x− z‖2

2, (54)

where x is the image patch to be approximated, x̂ is the best approximation and A is
a constraint that represents some prior knowledge on x.

A very successful and popular image prior is based on sparse representation.
Sparsity is the image model that assumes that any image patch can be represented
by a linear combination of a few atomic elements. If the matrix Ψ is a dictionary of
basis elements that is multiplied by coefficients c, then a sparsity constraint is ‖c‖0≤
K, which means that there are K or fewer non-zero elements of c. We enumerate the
columns of Ψ as (ψ1,ψ2, . . . ,ψP). The set A is then the span of Ψ:
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(a) Original (b) Noisy

(c) MSE-optimal (d) SSIM-based

Fig. 9 9(a) Undistorted Mandrill image. 9(b) Noisy image with σn = 50, MSE = 2492.49, SSIM
index = 0.2766. 9(c) MSE-optimal soft thresholding, MSE = 509.16, SSIM index = 0.4835. 9(d)
SSIM-based soft thresholding, MSE = 577.54, SSIM index = 0.4954.

A = span{ψ1,ψ2, · · · ,ψP}. (55)

The optimization of the mean square error can be interpreted in two different
ways: either 1) a perfect approximation is assumed, except for a stochastic additive
white Gaussian noise part, or 2) an imperfect approximation is assumed, but with
the mean squared error as a model of dissimilarity. As it is empirically observed
that images are not exactly sparse, but more accurately compressible, that is almost
sparse, the first assumption cannot be valid. Moreover, as the mean squared error is
a poor model of perception, the second assumption should also be dismissed.
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The best approximation problem should instead be posed in term of a perceptual
measure. We solve this problem below for the SSIM index case. But before embark-
ing into SSIM-based approximation, it will be useful to recall L2-based approxima-
tion results. As we will see later on, the two problems share striking characteristics.

4.1 L2-based Approximation

The solution of the L2-based sparse approximation problem can be divided into three
cases: orthogonal basis, linear redundant basis and non-linear approximation.

The L2-based expansion of x in this basis is, of course,

x =
N

∑
k=1

akψk, ak = ψ
T
k x, 1≤ k ≤ N. (56)

The expansions of the approximation x̂ will be denoted as

x̂ =
N

∑
k=1

ckψk, (57)

where (c1,c2, . . . ,cN) are unknown coefficients.

4.1.1 Orthogonal Basis

In the orthogonal case, the approximation spaces A in (54) will be the span of subsets
of the set of basis functions {ψk}N

k=1. At this point, we do not exactly specify which
other ψk basis functions will be used but consider all possible subsets of M < N
basis functions:

A = span{ψγ(1),ψγ(2), · · · ,ψγ(M)}, (58)

where γ(i) ∈ {1,2, · · · ,N} and cγ(M+1) = · · ·= cγ(N) = 0.
The well-known L2-based optimal approximation is summarized in the following

theorem:

Theorem 4.1 For a given x ∈ RN , the M coefficients ck of the optimal L2-based
approximation y ∈ A to x are given by the M Fourier coefficients ak = 〈x,ψk〉 of
greatest magnitude, i.e.

cγ(k) =

{
aγ(k) = ψT

γ(k)x, 1≤ k ≤M,

0, M+1≤ k ≤ N.
(59)

where |aγ(1)|≥ |aγ(2)|≥ . . .≥ |aγ(M)|≥ |al | with l ∈ {1,2, · · · ,N}\{γ(1), · · · ,γ(M)}.
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4.1.2 Linear Redundant Basis

A redundant or over-complete basis of RN consists of P ≥ N column vectors Ψ =
{ψk}P

k=1 such that N of them are linearly independent. Given x in RN , we search
for an approximation x̂ of x with the help of the first M < N linearly independent
vectors of a redundant basis:

x̂ =
M

∑
k=1

ckψk. (60)

We seek the coefficients c = [c1,c2, . . . ,cM] that will minimize the L2-error:

‖x− x̂‖2
2 = (x−

M

∑
j=1

c jψ j)
T (x−

M

∑
k=1

ckψk) (61)

The solution is the well-known normal equation,

M

∑
j=1

c jψ
T
j ψk = ψ

T
k x, 1≤ k ≤M. (62)

Thus, to find the optimal coefficients c, we need to solve a M×M linear system of
equations Φc = a with φ j,k := ψT

j ψk and a = [a1,a2, . . . ,aM] where ak = ψT
k x. In

practice, c is found by multiplying the pseudo-inverse Ψ+ of the dictionary matrix
Ψ with x:

c = (ΨT
Ψ)−1

Ψ
T x (63)

= Ψ
+x. (64)

This pseudo-inverse can be computed from the singular value decomposition UΣV T

of Ψ:

Ψ
+ = V Σ

+UT , (65)

where Σ+ is the diagonal matrix whose positive elements are the reciprocal of the
non-zero elements of Σ.

4.1.3 Non-Linear Approximation

The problem can be written as

argmin‖x− x̂‖2
2 subject to ‖c‖0≤ K, (66)

where x is the signal to be approximated,
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x̂ := Ψc =
P

∑
k=1

ckψk (67)

is the approximation and

‖c‖0:=
P

∑
k=1

c0
k = #{k : |ck|> 0} (68)

is the 0-pseudonorm. We follow the convention that 00 = 0. Thus for a non-linear
approximation, we choose the M best vectors from the P≥N vectors Ψ = {ψk}P

k=1.
We solve a linear system in a manner similar to the linear case (see (62)) in order to
determine the coefficients c. There are P!

(P−M)!M! possibilities, which grow exponen-
tially with P. In fact, it has been shown that finding the sparse approximation that
minimizes ‖x− x̂‖2

2 is an NP-hard problem [13].
Two approaches have been adopted to avoid the NP-hard problem: Matching

Pursuit (MP) and Basis Pursuit.

Matching Pursuit

The MP algorithm from Mallat and Zhang [20] greedily adds vectors one at a time
until a M- vector approximation is found. For the first vector, we minimize

‖x− cγ(1)ψγ(1)‖2
2= ‖x‖2

2−2cγ(1)aγ(1)+a2
γ(1). (69)

By taking partial derivatives and setting them to zero, we find that the solution is
exactly the same as the orthogonal case. We choose the index that maximizes |am|=
|ψT

mx|.
For the K-th vector, the L2-error is

‖x−
K

∑
k=1

cγ(k)ψγ(k)‖2
2 = ‖x−

K−1

∑
k=1

cγ(k)ψγ(k)‖2
2+c2

γ(K)ψ
T
γ(K)ψγ(K)

−2cγ(K)ψ
T
γ(K)(x−

K−1

∑
k=1

cγ(k)ψγ(k)). (70)

The error will be minimized when |ψT
m(x−∑

K−1
k=1 cγ(k)ψγ(k))| is maximized. Note

that in the orthogonal basis case, the matching pursuit algorithm coincides with the
optimal algorithm which chooses the M largest basis coefficients.

Orthogonal Matching Pursuit

The Orthogonal Matching Pursuit (OMP) [26] combines the MP with a Gram-
Schmidt procedure in order to obtain an orthogonal basis.
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Given a linearly independent basis {ψ1,ψ2, . . . ,ψN} of RN , the Gram-Schmidt
procedure successively projects the basis to an orthogonal subspace

G1 = ψ1 (71)

G2 = ψ2−
GT

1 ψ2

GT
1 G1

G1 (72)

...

GN = ψN−
N−1

∑
j=1

GT
j ψN

GT
j G j

G j. (73)

The basis is then normalized with gk = Gk/‖Gk‖2.
The OMP algorithm thus alternates between finding the best matching vector and

the orthonormalization process. The trade-off is a convergence with a finite number
of iterations against an extra computational cost for the orthonormalization.

For the numerical implementation, the naive approach of computing an orthonor-
mal basis is well known to be unstable. A more reliable way to perform the OMP is
with the following algorithm [33]:

1. Initialize: I =∅,r := x and a := 0.
2. While ‖r‖2> T , do
3. k∗ := argmaxk|ψT

k r|;
4. Add k∗ to the set of indices I;
5. aI := Ψ

+
I x;

6. r := x−ΨIaI ;
7. end while.

Here, aI and ΨI represent the restriction of, respectively, a and Ψ to the elements or
columns of indices I. Note that since the pseudo-inverse of Ψ has to be computed for
incrementally larger matrices, there are ways to make computations more efficient
with the help of Cholesky factorization (see [33]).

It is not immediately clear whether this algorithm really performs the OMP. To
see this, note that since g = [g1,g2, . . . ,gK ] is an orthonormal basis, the change of
basis,

K

∑
j=1

a jψ j =
K

∑
j=1

gT
j xg j, (74)

is performed via

a = (ΨT
Ψ)−1

Ψ
T ggT x (75)

= Ψ
+x. (76)

Thus, the residual r can be computed from the original basis Ψ and the orthonor-
malization is hidden in the computation of the coefficients a.
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Basis Pursuit

In Basis Pursuit, the non-linear approximation problem is replaced by an L1-
regularization problem:

argmin‖x− x̂‖2
2 subject to ‖c‖1≤ T, (77)

for some constant T . The choice of the L1-norm makes the problem convex. Details
on techniques to solve this problem are given in [12].

4.2 SSIM-based Approximation

The problem now can be stated as follows:

Given x and Ψ, find the z = Ψc that maximizes S := SSIM(x,z).

This problem was first solved for the orthogonal case in [6] before being generalized
to the redundant case in [32] and [31].

4.2.1 Linear Approximation

In a linear approximation, the choice of dictionary vectors Ψ = (ψ1,ψ2, . . . ,ψM)
is already fixed and we need only to find the coefficients c = (c1,c2, . . . ,cM) that
maximize the SSIM. To do that, we search for the stationary points of the partial
derivatives of SSIM with respect to ck. First, we write the mean, the variance and
the covariance of z in terms of c:

µz =
M

∑
k=1

ckψ̄k, (78)

(N−1)σ2
z =

M

∑
j=1

M

∑
k=1

c jckψ
T
j ψk−Nµ

2
z ,

(N−1)σx,z =
M

∑
k=1

ckψ
T
k x−Nµxµz. (79)

Next, we find the partial derivatives:

∂ µz

∂ck
= ψ̄k; (80)

(N−1)
∂σ2

z

∂ck
= 2

M

∑
j=1

c jψ
T
j ψk−2Nµxψ̄k; (81)

(N−1)
∂σx,z

∂ck
= ψ

T
k x−Nµxψ̄k. (82)
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The logarithm of SSIM can be written as

logS = log(2µxµz +C1)− log(µ2
x +µ

2
z +C1)

+ log(2σx,z +C2)− log(σ2
x +σ

2
z +C2). (83)

So for all 1≤ k ≤M,

1
S

∂S
∂ck

=
2µxψ̄k

2µxµz +C1
− 2µzψ̄k

µ2
x +µ2

z +C1

+
2ψT

k x−2Nx̄ψ̄k

(N−1)(2σx,z +C2)
−

2∑
M
j=1 c jψ

T
j ψk−2Nµzψ̄k

(N−1)(σ2
x + s2

z +C2)
. (84)

Solution for Oscillatory Basis

In the particular case where the basis is comprised of normalized oscillatory func-
tions, we have

ψ̄k = 0 and ‖ψk‖= 1 for 1≤ k ≤M. (85)

This leads to

µz = 0, (86)

(N−1)σ2
z =

M

∑
j=1

M

∑
k=1

c jckψ
T
j ψk (87)

(N−1)σx,z =
M

∑
k=1

ckψ
T
k x. (88)

Therefore the partial derivative in (84) becomes

∂S
∂ck

= S

[
2ψT

k x
(N−1)(2σx,z +C2)

−
2∑

M
j=1 c jψ

T
j ψk

(N−1)(σ2
x +σ2

z +C2)

]
. (89)

We now search for stationary points:

∂S
∂ck

= 0⇒
ψT

k x
∑

K
j=1 c jψ

T
j ψk

=
2σx,z +C2

σ2
x +σ2

z +C2
=:

1
α
, for 1≤ k ≤M. (90)

We can rewrite this equation as

M

∑
j=1

c jψ
T
j ψk = αψ

T
k x, for 1≤ k ≤M. (91)
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This equation is very similar to (62) for the optimal coefficients for the L2-based
approximation. In fact, since the equations (62) and (91) are identical up to a scaling
factor and since the solution of the linear system is unique, we have

ck = αak. (92)

Now, we seek to find an expression for α . Starting from the right hand side of
(90), we replace σ2

z and σx,z by their basis expansion (86) and then employ (92) for
the ck to obtain

α =
α2A+B
αC+D

, (93)

where

A =
1

N−1

M

∑
j=1

M

∑
k=1

a jakψ
T
j ψk, (94)

B = σ
2
x +C2, (95)

C =
2

N−1

M

∑
k=1

a2
k , (96)

D = C2. (97)

Equation (93) is a quadratic equation in α with solutions,

α =
−D±

√
D2 +4(C−A)B

2(C−A)
(98)

=
−C2±

√
C2

2 +2C(σ2
x +C2)

C
. (99)

Note that C−A = C/2 = A, since the ak’s are found by solving the linear system
(62).

Flat Approximation Case

We now consider the case in which a flat basis function ψ0 ≡ 1 is added to the
oscillatory basis. In this case,

µz = c0. (100)

The coefficient c0 is the stationary point of (84):
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∂S
∂c0

= S

[
2µxψ̄0

2µxc0 +C1
− 2c0ψ̄0

µ2
x + c2

0 +C1
+

2ψT
0 x−2Nµxψ̄0

(N−1)(2σx,z +C2)
−

2∑
M
j=0 c jψ

T
j ψ0−2Nc0ψ̄0

(N−1)(σ2
x +σ2

z +C2)

]

= S
[

2µx

2µxc0 +C1
− 2c0

µ2
x + c2

0 +C1

]
. (101)

Solving for the stationary point leads to the following quadratic equation in c0:

c2
0x̄+C1c0−µx(µ

2
x +C1) = 0. (102)

Its solution is

c0 =
−C1±

√
C2

1 +4µ2
x (µ

2
x +C1)

2µx
. (103)

We choose the positive branch to maximize the SSIM index, which is simply c0 =
µx, as expected. The other coefficients are found as in the oscillatory basis case.

Orthogonal Basis

In the orthogonal case, the constants in the equation for α (99) simplify to

α =
−C2±

√
C2

2 +( 4
N−1 ∑

M
k=1(ψ

T
k x)2)(σ2

x +C2)

2
N−1 ∑

M
k=1(ψ

T
k x)2

. (104)

The SSIM index is maximized with the positive branch. If C2 = 0, then

α =
sx√

1
N−1 ∑

M
k=1(ψ

T
k x)2

, (105)

=

(
∑

N
k=1 a2

k

∑
M
k=1 a2

k

)1/2

, (106)

where the second equality follows from Parseval’s Theorem. Thus the coefficients
are adjusted in order to preserve the variance of the original signal.

4.3 Non-Linear Approximation

Similar to the L2-case, the problem is to find, given a dictionary Ψ ∈ RP×N and a
signal x ∈ RN , the coefficients c ∈ RP with ‖c‖0= M < N such that

SSIM(x,Ψc) (107)

is maximized.
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SSIM-based matching pursuit

From Section 4.2.1, we know how to find the best coefficients given a set of vectors.
It remains to determine which vectors to choose. We assume an oscillatory dictio-
nary which contains a flat element ψ0 = e. This flat element is always included in
the approximation so that, by (103), c0 = µx and S1(x,z) = 1. It remains to optimize
S2.

First, we want to find ψγ0 and cγ0 that will maximize S2(x,cγ0ψγ0). The second
component of the simplified SSIM index is written as

S2(x,cγ0ψγ0) =
2cγ0ψT

γ0
(x−µxe)+C2(N−1)

‖x−µxe‖2+c2
γ0
+C2(N−1)

. (108)

For any fixed ck, the SSIM will be maximized when |ψT
k (x−µxe)|= |ψT

k x| is max-
imized. We thus choose

γ0 = arg max
1≤k≤P

|ψT
k x| (109)

and

cγ0 = αψ
T
γ0

x. (110)

In general, we want to find ψγK and cγK that will maximize

S2(x,
K−1

∑
k=0

cγk ψγk + cγK ψγK ). (111)

For every choice of ψγK , we would need to find {aγk}0≤k≤K , i.e. we have to solve
a K×K linear system of equations and compute the SSIM with cγk =αaγk , then pick
the basis ψγK that yields the maximum value. In practice this procedure is intractable
given that a potentially large linear system has to be solved for every possible basis
of the dictionary and at every iteration of the greedy algorithm.

SSIM-based Orthogonal Matching Pursuit

According to the MP algorithm, the choice of the first basis that maximizes the
SSIM index is the same as that of the optimal L2-basis. Indeed, (108) is maximized
when |ψT

k x| is maximized.
For the choice of the K-th basis, we seek to maximize
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S2(x,
K−1

∑
j=1

cγ j ψγ j + cγK ψγK ) = S(x,
M−1

∑
j=1

cγ j gγ j + cγM gγM ) (112)

=
2∑

K−1
j=1 (g

T
γ j

x)cγ j +(gT
γK

x)cγK +(N−1)C2

‖x−µxe‖2+∑
K
j=1 c2

γ j
+(N−1)C2

.(113)

The choice of basis that will maximize the SSIM index is

γK = arg max
1≤k≤P

|gT
k x|. (114)

Note that

gT
k x = (ψk−

K−1

∑
j=1

(ψT
k g j)g j)

T x (115)

= ψ
T
k (x−

K−1

∑
j=1

(ψT
k g j)g j) (116)

= ψ
T
k r. (117)

Thus, the optimal basis for the SSIM-based and the L2-based algorithms are exactly
the same. Indeed, the SSIM-based coefficients will be simply a scaling of the L2-
based coefficients. The difference will be in the stopping criterion: the SSIM-OMP
stopping criterion will depend on the SSIM index instead of the L2-error.

4.4 Variational SSIM

Otero et al. [24, 25, 23] have explored the direction of SSIM-optimal algorithm
design directly in the pixel domain. They exploit the quasi-convexity properties for
zero-mean signals (see Section 2). Based on these observations, several optimization
problems are formulated and solved using a simple bisection method. Because of
space limitations, we omit a detailed discussion of these methods in this chapter and
simply refer readers to [24, 25, 23].

5 Image-wide Variational SSIM Optimization

Block-based schemes find a perceptually optimal solution locally, but blockiness ar-
tifacts might appear when combining these local solutions to form an image. Several
ad hoc methods such as taking the central pixel or averaging overlapping blocks are
possible, but they might not be perceptually optimal.

We propose a solution based on convex or quasi-convex optimization. Let Ri be
the block extraction operator, which from an image x gets the i-th block. Let zi
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be the local perceptually optimal estimator corresponding to the i-th image block.
Finally, let d be a quasi-convex dissimilarity measure and let A be a convex set.
Then the solution of the following optimization problem is the desired image-wide
perceptually optimal estimator:

x̂ = min
x∈A

max
i

d(Ri(x),zi). (118)

Since Ri is a linear function and d is quasi-convex, d(Ri(x),zi) is also quasi-convex.
As summarized in Section 2, the maximum of quasi-convex is also quasi-convex.
Since A is a convex set, the optimization problem can thus be solved using the
bisection method.

In the special case of image denoising, A takes the form of ‖x−y‖2
2≤ α , where

α is a parameter controlling how close to the noisy image y the restored image x
will be. Alternatively, the estimator could be written in a variational form as

x̂ = max
i

d(Ri(x),zi)+β‖x−y‖2
2, (119)

where β is a parameter controlling the balance between the fit to the local perceptual
estimator and the global information from the noisy input.

These optimization problems can be compared to the one defined in [31]:

argmax
x
{SSIM(w,x)+λSSIM(x,y)} . (120)

There are two major differences: 1) the mean SSIM score is optimized instead of
the minimal SSIM score, 2) the Structural Similarity between the noisy data and the
global solution is taken instead of the Mean Squared Error. We argue that the new
formulation (119) is not only more convenient mathematically, but also conceptually
more preferable.

Indeed, it is mathematically convenient since we can prove the existence and
uniqueness of a solution (assuming that d is not-flat) and we have a (bisection)
method to compute the optimal solution that will always converge to the global
minimum. It is also justifiable conceptually, since the maximum dissimilarity cor-
responds to the most salient feature, the one that will be the most perceptually an-
noying. (However, if the image quality is non-uniform the maximum might put too
much weight on a single location.) Moreover, taking the mean-squared error be-
tween the noisy image and the restored image is justified by the model of distortion
(additive noise), not the model of perception.

6 Conclusions

In this chapter, we have discussed the problem of optimizing the perceptual quality
of images by employing perceptual quality measures in the optimization problem
as opposed to traditional distance measures, e.g. MSE/RMSE. The SSIM index was
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considered to be the cost function in this discussion. The mathematical properties of
the SSIM index were first presented, most notably its quasi-convexity. Subsequently,
the classical problem of image restoration was reformulated with the statistical ver-
sion of SSIM index as the cost function. The solution to this problem demonstrated
the gains to be had by explicitly optimizing for perceptual quality metrics. Corrobo-
rative evidence to this claim was shown in the form of a soft-thresholding solution,
again optimized with respect to the SSIM index. Subsequently, a methodology for
constructing SSIM-optimal basis functions was discussed and variations to popu-
lar pursuit algorithms such as matching pursuit and basis pursuit were presented.
Through these discussions, a set of SSIM-optimal solutions that address popular
image processing problems ranging from denoising and restoration to dictionary
construction were presented. These solutions provide a platform to address a larger
set of problems that could be reduced to one of these forms. Furthermore, these solu-
tions demonstrate that optimization of perceptual quality is indeed the way forward
in building next generation multimedia systems.
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