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1. INTRODUCTION 
Digital video data, stored in video databases and distributed through 
communication networks, is subject to various kinds of distortions during 
acquisition, compression, processing, transmission, and reproduction. For 
example, lossy video compression techniques, which are almost always used 
to reduce the bandwidth needed to store or transmit video data, may degrade 
the quality during the quantization process. For another instance, the digital 
video bitstreams delivered over error-prone channels, such as wireless 
channels, may be received imperfectly due to the impairment occurred during 
transmission. Package-switched communication networks, such as the 
Internet, can cause loss or severe delay of received data packages, depending 
on the network conditions and the quality of services. All these transmission 
errors may result in distortions in the received video data. It is therefore 
imperative for a video service system to be able to realize and quantify the 
video quality degradations that occur in the system, so that it can maintain, 
control and possibly enhance the quality of the video data. An effective image 
and video quality metric is crucial for this purpose. 

The most reliable way of assessing the quality of an image or video is 
subjective evaluation, because human beings are the ultimate receivers in 
most applications. The mean opinion score (MOS), which is a subjective 
quality measurement obtained from a number of human observers, has been 
regarded for many years as the most reliable form of quality measurement. 
However, the MOS method is too inconvenient, slow and expensive for most 
applications. 

The goal of objective image and video quality assessment research is to design 
quality metrics that can predict perceived image and video quality automatically. 

Generally speaking, an objective image and video quality metric can be 
employed in three ways: 
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1. It can be used to monitor image quality for quality control systems. 
For example, an image and video acquisition system can use the 
quality metric to monitor and automatically adjust itself to obtain the 
best quality image and video data. A network video server can 
examine the quality of the digital video transmitted on the network 
and control video streaming. 

2. It can be employed to benchmark image and video processing systems 
and algorithms. If multiple video processing systems are available for 
a specific task, then a quality metric can help in determining which 
one of them provides the best quality results. 

3. It can be embedded into an image and video processing system to 
optimize the algorithms and the parameter settings. For instance, in a 
visual communication system, a quality metric can help optimal 
design of the prefiltering and bit assignment algorithms at the 
encoder and the optimal reconstruction, error concealment and 
postfiltering algorithms at the decoder. 

Objective image and video quality metrics can be classified according to the 
availability of the original image and video signal, which is considered to be 
distortion-free or perfect quality, and may be used as a reference to compare 
a distorted image or video signal against. Most of the proposed objective 
quality metrics in the literature assume that the undistorted reference signal 
is fully available. Although “image and video quality” is frequently used for 
historical reasons, the more precise term for this type of metric would be 
image and video similarity or fidelity measurement, or full-reference (FR) 
image and video quality assessment. It is worth noting that in many practical 
video service applications, the reference images or video sequences are often 
not accessible. Therefore, it is highly desirable to develop measurement 
approaches that can evaluate image and video quality blindly. Blind or no-
reference (NR) image and video quality assessment turns out to be a very 
difficult task, although human observers usually can effectively and reliably 
assess the quality of distorted image or video without using any reference. 
There exists a third type of image quality assessment method, in which the 
original image or video signal is not fully available. Instead, certain features 
are extracted from the original signal and transmitted to the quality 
assessment system as side information to help evaluate the quality of the 
distorted image or video. This is referred to as reduced-reference (RR) image 
and video quality assessment. 

Currently, the most widely used FR objective image and video 
distortion/quality metrics are mean squared error (MSE) and peak signal-to-
noise ratio (PSNR), which are defined as: 
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where N is the number of pixels in the image or video signal, and  and  
are the i-th pixels in the original and the distorted signals, respectively. L is 
the dynamic range of the pixel values. For an 8bits/pixel monotonic signal, L 
is equal to 255. MSE and PSNR are widely used because they are simple to 
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calculate, have clear physical meanings, and are mathematically easy to deal 
with for optimization purposes (MSE is differentiable, for example). However, 
they have been widely criticized as well for not correlating well with perceived 
quality measurement [1-8]. In the last three to four decades, a great deal of 
effort has been made to develop objective image and video quality assessment 
methods (mostly for FR quality assessment), which incorporate perceptual 
quality measures by considering human visual system (HVS) characteristics. 
Some of the developed models are commercially available. However, image 
and video quality assessment is still far from being a mature research topic. 
In fact, only limited success has been reported from evaluations of 
sophisticated HVS-based FR quality assessment models under strict testing 
conditions and a broad range of distortion and image types [3,9-11].  

This chapter will mainly focus on the basic concepts, ideas and approaches 
for FR image and video quality assessment. It is worth noting that a 
dominant percentage of proposed FR quality assessment models share a 
common error sensitivity based philosophy, which is motivated from 
psychophysical vision science research. Section 2 reviews the background 
and various implementations of this philosophy and also attempts to point 
out the limitations of this approach. In Section 3, we introduce a new way to 
think about the problem of image and video quality assessment and provide 
some preliminary results of a novel structural distortion based FR quality 
assessment method. Section 4 introduces the current status of NR/RR 
quality assessment research. In Section 5, we discuss the issues that are 
related to the validation of image and video quality metrics, including the 
recent effort by the video quality experts group (VQEG) in developing, 
validating and standardizing FR/RR/NR video quality metrics for television 
and multimedia applications. Finally, Section 6 makes some concluding 
remarks and provides a vision for future directions of image and video quality 
assessment. 

2. FULL-REFERENCE QUALITY ASSESSMENT USING ERROR 
SENSITIVITY MEASURES 

An image or video signal whose quality is being evaluated can be thought of 
as a sum of a perfect reference signal and an error signal. We may assume 
that the loss of quality is directly related to the strength of the error signal. 
Therefore, a natural way to assess the quality of an image is to quantify the 
error between the distorted signal and the reference signal, which is fully 
available in FR quality assessment. The simplest implementation of the 
concept is the MSE as given in (41.1). However, there are a number of 
reasons why MSE may not correlate well with the human perception of 
quality: 

1. Digital pixel values on which the MSE is typically computed, may not 
exactly represent the light stimulus entering the eye. 

2. The sensitivity of the HVS to the errors may be different for different 
types of errors, and may also vary with visual context. This difference 
may not be captured adequately by the MSE. 

3. Two distorted image signals with the same amount of error energy 
may have very different types of errors. 
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4. Simple error summation, like the one implemented in the MSE 
formulation, may be markedly different from the way the HVS and the 
brain arrives at an assessment of the perceived distortion. 

In the last three decades, most of the proposed image and video quality 
metrics have tried to improve upon the MSE by addressing the above issues. 
They have followed an error sensitivity based paradigm, which attempts to 
analyze and quantify the error signal in a way that simulates the 
characteristics of human visual error perception. Pioneering work in this area 
was done by Mannos and Sakrison [12], and has been extended by other 
researchers over the years. We shall briefly describe several of these 
approaches in this section. But first, a brief introduction to the relevant 
physiological and psychophysical components of the HVS will aid in the 
understanding of the algorithms better. 

2.1 THE HUMAN VISUAL SYSTEM 

Figure 41.1 schematically shows the early stages of the HVS. It is not clearly 
understood how the human brain extracts higher-level cognitive information 
from the visual stimulus in the later stages of vision, but the components of 
the HVS depicted in Figure 41.1 are fairly well understood and accepted by 
the vision science community. A more detailed description of the HVS may be 
found in [13-15]. 

2.1.1 Anatomy of the HVS 

The visual stimulus in the form of light coming from objects in the 
environment is focussed by the optical components of the eye onto the retina, 
a membrane at the back of the eyes that contains several layers of neurons, 
including photoreceptor cells. The optics consists of the cornea, the pupil (the 
aperture that controls the amount of light entering the eye), the lens and the 
fluids that fill the eye. The optical system focuses the visual stimulus onto 
the retina, but in doing so blurs the image due to the inherent limitations 
and imperfections. The blur is low-pass, typically modelled as a linear space-
invariant system characterized by a point spread function (PSF). 
Photoreceptor cells in the retina sample the image that is projected onto it. 

There are two types of photoreceptor cells in the retina: the cone cells and the 
rod cells. The cones are responsible for vision in normal light conditions, 
while the rods are responsible for vision in very low light conditions, and 
hence are generally ignored in the modelling. There are three different types 
of cones, corresponding to three different light wavelengths to which they are 
most sensitive. The L-cones, M-cones and S-cones (corresponding to the 
Long, Medium and Short wavelengths at which their respective sensitivities 
peak) split the image projected onto the retina into three visual streams. 
These visual streams can be thought of as the Red, Green and Blue color 
components of the visual stimulus, though the approximation is crude. The 
signals from the photoreceptors pass through several layers of 
interconnecting neurons in the retina before being carried off to the brain by 
the optic nerve. 

The photoreceptor cells are non-uniformly distributed over the surface of the 
retina. The point on the retina that lies on the visual axis is called the fovea 
(Figure 41.1), and it has the highest density of cone cells. This density falls 
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off rapidly with distance from the fovea. The distribution of the ganglion cells, 
the neurons that carry the electrical signal from the eye to the brain through 
the optic nerve, is also highly non-uniform, and drops off even faster than the 
density of the cone receptors. The net effect is that the HVS cannot perceive 
the entire visual stimulus at uniform resolution. 
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Figure 41.1 Schematic diagram of the human visual system. 

 

The visual streams originating from the eye are reorganized in the optical 
chiasm and the lateral geniculate nucleus (LGN) in the brain, before being 
relayed to the primary visual cortex. The neurons in the visual cortex are 
known to be tuned to various aspects of the incoming streams, such as 
spatial and temporal frequencies, orientations, and directions of motion. 
Typically, only the spatial frequency and orientation selectivity is modelled by 
quality assessment metrics. The neurons in the cortex have receptive fields 
that are well approximated by two-dimensional Gabor functions. The 
ensemble of these neurons is effectively modelled as an octave-band Gabor 
filter bank [14,15], where the spatial frequency spectrum (in polar 
representation) is sampled at octave intervals in the radial frequency 
dimension and uniform intervals in the orientation dimension [16]. Another 
aspect of the neurons in the visual cortex is their saturating response to 
stimulus contrast, where the output of a neuron saturates as the input 
contrast increases. 

Many aspects of the neurons in the primary visual cortex are not modelled 
for quality assessment applications. The visual streams generated in the 
cortex are carried off into other parts of the brain for further processing, such 
as motion sensing and cognition. The functionality of the higher layers of the 
HVS is currently an active research topic in vision science. 
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2.1.2 Psychophysical HVS Features 

Foveal and Peripheral Vision  
As stated above, the densities of the cone cells and the ganglion cells in the 
retina are not uniform, peaking at the fovea and decreasing rapidly with 
distance from the fovea. A natural result is that whenever a human observer 
fixates at a point in his environment, the region around the fixation point is 
resolved with the highest spatial resolution, while the resolution decreases 
with distance from fixation point. The high-resolution vision due to fixation 
by the observer onto a region is called foveal vision, while the progressively 
lower resolution vision is called peripheral vision. Most image quality 
assessment models work with foveal vision; a few incorporate peripheral 
vision as well [17-20]. Models may also resample the image with the sampling 
density of the receptors in the fovea in order to provide a better 
approximation of the HVS as well as providing more robust calibration of the 
model [17,18]. 

Light Adaptation  
The HVS operates over a wide range of light intensity values, spanning 
several orders of magnitude from a moonlit night to a bright sunny day. It 
copes with such a large range by a phenomenon known as light adaptation, 
which operates by controlling the amount of light entering the eye through 
the pupil, as well as adaptation mechanisms in the retinal cells that adjust 
the gain of post-receptor neurons in the retina. The result is that the retina 
encodes the contrast of the visual stimulus instead of coding absolute light 
intensities. The phenomenon that maintains the contrast sensitivity of the 
HVS over a wide range of background light intensity is known as Weber’s 
Law. 

Contrast Sensitivity Functions 
The contrast sensitivity function (CSF) models the variation in the sensitivity 
of the HVS to different spatial and temporal frequencies that are present in 
the visual stimulus. This variation may be explained by the characteristics of 
the receptive fields of the ganglion cells and the cells in the LGN, or as 
internal noise characteristics of the HVS neurons. Consequently, some 
models of the HVS choose to implement CSF as a filtering operation, while 
others implement CSF through weighting factors for subbands after a 
frequency decomposition. The CSF varies with distance from the fovea as 
well, but for foveal vision, the spatial CSF is typically modelled as a space-
invariant band-pass function (Figure 41.2). While the CSF is slightly band-
pass in nature, most quality assessment algorithms implement a low-pass 
version. This makes the quality assessment metrics more robust to changes 
in the viewing distance. The contrast sensitivity is also a function of temporal 
frequency, which is irrelevant for image quality assessment but has been 
modelled for video quality assessment as simple temporal filters [21-24]. 

Masking and Facilitation 
Masking and facilitation are important aspects of the HVS in modelling the 
interactions between different image components present at the same spatial 
location. Masking/facilitation refers to the fact that the presence of one image 
component (called the mask) will decrease/increase the visibility of another 
image component (called the test signal). The mask generally reduces the 
visibility of the test signal in comparison with the case that the mask is 
absent. However, the mask may sometimes facilitate detection as well. 
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Usually, the masking effect is the strongest when the mask and the test 
signal have similar frequency content and orientations. Most quality 
assessment methods incorporate one model of masking or the other, while 
some incorporate facilitation as well [1,18,25]. 

Pooling 
Pooling refers to the task of arriving at a single measurement of quality, or a 
decision regarding the visibility of the artifacts, from the outputs of the visual 
streams. It is not quite understood as to how the HVS performs pooling. It is 
quite obvious that pooling involves cognition, where a perceptible distortion 
may be more annoying in some areas of the scene (such as human faces) 
than at others. However, most quality assessment metrics use Minkowski 
pooling to pool the error signal from the different frequency and orientation 
selective streams, as well as across spatial coordinates, to arrive at a fidelity 
measurement. 

2.1.3 Summary 

Summarizing the above discussion, an elaborate quality assessment 
algorithm may implement the following HVS features: 

1. Eye optics modelled by a low-pass PSF. 
2. Color processing. 
3. Non-uniform retinal sampling. 
4. Light adaptation (luminance masking). 
5. Contrast sensitivity functions. 
6. Spatial frequency, temporal frequency and orientation selective signal 

analysis. 
7. Masking and facilitation. 
8. Contrast response saturation. 
9. Pooling. 
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Figure 41.2 Normalized contrast sensitivity function. 
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2.2 GENERAL FRAMEWORK OF ERROR SENSITIVITY BASED METRICS 

Most HVS based quality assessment metrics share an error-sensitivity based 
paradigm, which aims to quantify the strength of the errors between the 
reference and the distorted signals in a perceptually meaningful way. Figure 
41.3 shows a generic error-sensitivity based quality assessment framework 
that is based on HVS modelling. Most quality assessment algorithms that 
model the HVS can be explained with this framework, although they may 
differ in the specifics. 

Reference
signal

Distorted
signal

Qualtiy/
Distortion
Measure

Channel
Decomposition

Error
Normalization

& Masking
.
.
.

Error
Pooling

Pre-
processing

CSF
Filtering

.

.

.

 
Figure 41.3 Framework of error sensitivity based quality assessment system. 
Note: the CSF feature can be implemented either as “CSF Filtering” or within 
“Error Normalization”. 

Pre-processing 
The pre-processing stage may perform the following operations: alignment, 
transformations of color spaces, calibration for display devices, PSF filtering, 
and light adaptation. First, the distorted and the reference signals need to be 
properly aligned. The distorted signal may be misaligned with respect to the 
reference, globally or locally, for various reasons during compression, 
processing, and transmission. Point-to-point correspondence between the 
reference and the distorted signals needs to be established. Second, it is 
sometimes preferable to transform the signal into a color space that conforms 
better to the HVS. Third, quality assessment metrics may need to convert the 
digital pixel values stored in the computer memory into luminance values of 
pixels on the display device through point-wise non-linear transformations. 
Fourth, a low-pass filter simulating the PSF of the eye optics may be applied. 
Finally, the reference and the distorted videos need to be converted into 
corresponding contrast stimuli to simulate light adaptation. There is no 
universally accepted definition of contrast for natural scenes. Many models 
work with band-limited contrast for complex natural scenes [26], which is 
tied with the channel decomposition. In this case, the contrast calculation is 
implemented later in the system, during or after the channel decomposition 
process. 

CSF Filtering 
CSF may be implemented before the channel decomposition using linear 
filters that approximate the frequency responses of the CSF. However, some 
metrics choose to implement CSF as weighting factors for channels after the 
channel decomposition. 

Channel Decomposition 
Quality metrics commonly model the frequency selective channels in the HVS 
within the constraints of application and computation. The channels serve to 
separate the visual stimulus into different spatial and temporal subbands. 
While some quality assessment algorithms implement sophisticated channel 
decompositions, simpler transforms such as the wavelet transform, or even 
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the Discrete Cosine Transform (DCT) have been reported in the literature 
primarily due to their suitability for certain applications, rather than their 
accuracy in modelling the cortical neurons. 

While the cortical receptive fields are well represented by 2D Gabor functions, 
the Gabor decomposition is difficult to compute and lacks some of the 
mathematical conveniences that are desired for good implementation, such 
as invertibility, reconstruction by addition, etc. Watson constructed the 
cortex transform [27] to model the frequency and orientation selective 
channels, which have similar profiles as 2D Gabor functions but are more 
convenient to implement. Channel decomposition models used by Watson, 
Daly [28,29], Lubin [17,18] and Teo and Heeger [1,25,30] attempt to model 
the HVS as closely as possible without incurring prohibitive implementation 
difficulties. The subband configurations for some of the models described in 
this chapter is given in Figure 41.4. Channels tuned to various temporal 
frequencies have also been reported in the literature [5,22,31,32]. 
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Figure 41.4 Frequency decompositions of various models. 

Error Normalization and Masking 
Error normalization and masking is typically implemented within each 
channel. Most models implement masking in the form of a gain-control 
mechanism that weights the error signal in a channel by a space-varying 
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visibility threshold for that channel [33]. The visibility threshold adjustment at 
a point is calculated based on the energy of the reference signal (or both the 
reference and the distorted signals) in the neighbourhood of that point, as 
well as the HVS sensitivity for that channel in the absence of masking effects 
(also known as the base-sensitivity). Figure 41.5(a) shows how masking is 
typically implemented in a channel. For every channel the base error 
threshold (the minimum visible contrast of the error) is elevated to account 
for the presence of the masking signal. The threshold elevation is related to 
the contrast of the reference (or the distorted) signal in that channel through 
a relationship that is depicted in Figure 41.5(b). The elevated visibility 
threshold is then used to normalize the error signal. This normalization 
typically converts the error into units of Just Noticeable Difference (JND), 
where a JND of 1.0 denotes that the distortion at that point in that channel is 
just at the threshold of visibility. Some methods implement masking and 
facilitation as a manifestation of contrast response saturation. Figure 41.6 
shows a set of curves each of which may represent the saturation 
characteristics of neurons in the HVS. Metrics may model masking with one 
or more of these curves. 
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(b) Visibility threshold model 

Figure 41.5 (a) Implementation of masking effect for channel based HVS 
models. (b) Visibility threshold model (simplified): threshold elevation versus 
mask contrast. 

Error Pooling 
Error pooling is the process of combining the error signals in different 
channels into a single distortion/quality interpretation. For most quality 
assessment methods, pooling takes the form: 
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Figure 41.6 Non-linear contrast response saturation effects. 

2.3 IMAGE QUALITY ASSESSMENT ALGORITHMS 

Most of the efforts in the research community have been focussed on the 
problem of image quality assessment, and only recently has video quality 
assessment received more attention. Current video quality assessment 
metrics use HVS models similar to those used in many image quality 
assessment metrics, with appropriate extensions to incorporate the temporal 
aspects of the HVS. In this section, we present some image quality 
assessment metrics that are based on the HVS error sensitivity paradigm. 
Later we will present some video quality assessment metrics. A more detailed 
review of image quality assessment metrics may be found in [2,36]. 

The visible differences predictor (VDP) by Daly [28,29] aims to compute a 
probability-of-detection map between the reference and the distorted signal. 
The value at each point in the map is the probability that a human observer 
will perceive a difference between the reference and the distorted images at 
that point. The reference and the distorted images (expressed in luminance 
values instead of pixels) are passed through a series of processes: point non-
linearlity, CSF filtering, channel decomposition, contrast calculation, 
masking effect modelling, and probability-of-detection calculation. A modified 
cortex transform [27] is used for channel decomposition, which transforms 
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the image signal into five spatial levels followed by six orientation levels, 
leading to a total of 31 independent channels (including the baseband). For 
each channel, a threshold elevation map is computed from the contrast in 
that channel. A psychometric function is used to convert error strengths 
(weighted by the threshold elevations) into a probability-of-detection map for 
each channel. Pooling is then carried out across the channels to obtain an 
overall detection map. 

Lubin’s algorithm [17,18] also attempts to estimate a detection probability of 
the differences between the original and the distorted versions. A blur is 
applied to model the PSF of the eye optics. The signals are then re-sampled to 
reflect the photoreceptor sampling in the retina. A Laplacian pyramid [37] is 
used to decompose the images into seven resolutions (each resolution is one-
half of the immediately higher one), followed by band-limited contrast 
calculations [26]. A set of orientation filters implemented through steerable 
filters of Freeman and Adelson [38] is then applied for orientation selectivity 
in four orientations. The CSF is modelled by normalizing the output of each 
frequency-selective channel by the base-sensitivity for that channel. Masking 
is implemented through a sigmoid non-linearity, after which the errors are 
convolved with disk-shaped kernels at each level before being pooled into a 
distortion map using Minkowski pooling across frequency. An additional 
pooling stage may be applied to obtain a single number for the entire image. 

Teo and Heeger’s metric [1,25,30] uses PSF modelling, luminance masking, 
channel decomposition, and contrast normalization. The channel 
decomposition process uses quadrature steerable filters [39] with six 
orientation levels and four spatial resolutions. A detection mechanism is 
implemented based on squared error. Masking is modelled through contrast 
normalization and response saturation. The contrast normalization is 
different from Daly’s or Lubin’s method in that they take the outputs of 
channels at all orientations at a particular resolution to perform the 
normalization. Thus, this model does not assume that the channels at the 
same resolution are independent. Only channels at different resolutions are 
considered to be independent. The output of the channel decomposition after 
contrast normalization is decomposed four-fold by passing through four non-
linearities of shapes as illustrated in Figure 41.6, the parameters for which 
are optimized to fit the data from psychovisual experiments. 

Watson’s DCT metric [40] is based on an 8×8 DCT transform commonly used 
in image and video compression. Unlike the models above, this method 
partitions the spectrum into 64 uniform subbands (8 in each Cartesian 
dimension). After the block-based DCT and the associated subband contrasts 
are computed, a visibility threshold is calculated for each subband coefficient 
within each block using the base-sensitivity for that subband. The base 
sensitivities are derived empirically. The thresholds are corrected for 
luminance and texture masking. The error in each subband is weighted by 
the corresponding visibility threshold and pooled using Minkowski pooling 
spatially. Pooling across subbands is then performed using the Minkowski 
formulation with a different exponent. 

Safranek-Johnston’s perceptual image coder [41] incorporates a quality 
metric using a similar strategy as in Watson’s DCT metric. The channel 
decomposition uses a generalized quadrature mirror filter (GQMF) [42] for 
analysis and synthesis. This transform splits the spectrum into 16 uniform 
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subbands (four in each Cartesian dimension). Masking and pooling methods 
are similar to those in Watson’s DCT metric. 

Bradley [43] reports a wavelet visible difference predictor (WVDP), which is a 
simplification of Daly’s VDP described above. He uses Watson’s derivation of 
9/7 Wavelet quantization-noise detection thresholds [44] for a 9/7 
biorthogonal wavelet [45] and combines it with a threshold elevation and 
psychometric detection probability scheme similar to Daly’s. Another wavelet 
based metric has been proposed by Lai and Kuo [6]. Their metric is based on 
the Haar Wavelet and their masking model can account for channel 
interactions as well as suprathreshold effects. 

The quality metrics proposed above are scalar valued metrics. Damera-
Venkata et al. proposed a metric for quantifying performance of image 
restoration systems, in which the degradation is modelled as a linear 
frequency distortion and additive noise injection [46]. Two complementary 
metrics were developed to separately quantify these distortions. They 
observed that if the additive noise is uncorrelated with the reference image, 
then an error measure from an HVS based metric will correlate well with the 
subjective judgement. Using a spatially adaptive restoration algorithm [47] 
(which was originally designed for inverse-halftoning), they isolate the effects 
of noise and linear frequency distortion. The noise is quantified using a 
multichannel HVS based metric. A distortion measure quantifies the spectral 
distortion between the reference and the model restored image. 

Some researchers have attempted to measure image quality using single-
channel models with the masking-effect models specifically targeting certain 
types of distortions, such as the blocking artifact. Blocking is recognized as 
one of the most annoying artifacts in block-DCT based image/video 
compression such as JPEG, especially at high compression ratios. In [48] and 
[49], Karunasekera and Kingsbury proposed a quality metric for blocking 
artifacts. Edge detection is performed first on the error image. An activity 
map is calculated from the reference image in the neighbourhood of the 
edges, and an activity-masked edge image is computed such that edges that 
occur in high activity areas are de-emphasized. The activity-masked edge 
image is adjusted for luminance masking. A non-linear transformation is 
applied before pooling. The parameters for the model are obtained from 
experiments that measure the sensitivity of human observers to edge 
artifacts embedded in narrow-band test patterns. 

In [50], Chou and Li defined a peak signal to perceptible noise ratio (PSPNR), 
which is a single-channel metric. They model luminance masking and activity 
masking to obtain a JND profile. The PSPNR has the same definition as given 
in (41.2) except that the MSE expression is adjusted for the JND profile. 

Another single-channel metric is the objective picture quality scale (PQS) by 
Miyahara [51], a number of features that can capture various distortions are 
combined into one score. The method has also been extended for video 
quality assessment [52]. 

2.4 VIDEO QUALITY ASSESSMENT ALGORITHMS 

One obvious way to implement video quality metrics is to apply a still image 
quality assessment metric on a frame-by-frame basis. However, a more 
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sophisticated approach would model the temporal aspects of the HVS in the 
design of the metric. A number of algorithms have been proposed to extend 
the HVS features into the dimensions of time and motion [5,22,24,32,52-54]. 
A survey of video coding distortions can be found in [55]. A review of HVS 
modelling for video quality metrics is presented in [56]. 

In [53], Tan et al. implemented a Video Distortion Meter by using an image 
quality assessment metric followed by a “cognitive emulator” that models 
temporal effects such as smoothing and temporal masking of the frame 
quality measure, saturation and asymmetric tracking. Asymmetric tracking 
models the phenomenon that humans tend to notice a quality transition from 
good to poor more readily than a quality transition from poor to good. 

Van den Branden Lambrecht et al. has extended the HVS modelling into the 
time dimension by modelling the temporal dimension of the CSF, and by 
generating two visual streams tuned to different temporal aspects of the 
stimulus from the output of each spatial channel [21,22,31,32]. The two 
streams model the transient and the sustained temporal mechanisms in the 
HVS. His proposed moving picture quality metric (MPQM) consists of a 
channel decomposition into four scales, four orientations and two temporal 
streams. The resulting channel outputs are subtracted to create the error 
signal. Masking is implemented by normalization of the channel errors by the 
stimulus dependent visibility thresholds (similar to those used in still image 
quality assessment metrics). Motion rendering quality assessment has also 
been proposed by extending the MPQM by extraction of motion information 
[32]. 

In [5], Winkler presented a quality assessment metric for color video. The 
algorithm uses a color space transformation and applies the quality 
assessment metric on each transformed color channel. Two temporal streams 
are generated using IIR filters, with spatial decomposition into five subband 
levels and four orientations. Channels are weighted by the corresponding 
CSF, and masking is implemented based on the excitatory-inhibitory 
masking model proposed by Watson and Solomon [33]. 

Watson’s digital video quality (DVQ) metric operates in the DCT domain and 
is therefore more attractive from an implementation point of view [24,57] 
since the DCT is efficient to implement and most video coding standards are 
based on the DCT. A three-dimensional visibility threshold model for 
spatiotemporal DCT channels was proposed. The DVQ algorithm first takes 
the DCT of the reference and the distorted signals, respectively. It then 
computes local contrast, applies temporal CSF filtering, and converts the 
results into JND units by normalizing them with the visibility thresholds, 
following which the error signal is computed. Finally, masking and pooling 
are applied to the error signal. DVQ implements color transformation before 
applying the metric to each of the chrominance dimensions. 

Another metric that models the temporal aspects of HVS is presented by Tan 
and Ghanbari [54], which aims to evaluate the quality of MPEG video and 
combines a typical error-sensitivity based perceptual model with a blockiness 
measurement model. The perceptual model consists of display gamma 
correction, point non-linearity, contrast calculation, spatial CSF filtering, 
temporal filtering, frequency decomposition into two channels (diagonal and 
horizontal/vertical), contrast response non-linearity, error averaging, 
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masking, pooling, temporal averaging and motion masking. The blockiness 
detector is based on harmonic analysis of the block-edge signal, combined 
with a visual masking model. The final quality score is either the perceptual 
model score or the blockiness detector score, based on the amount of 
blockiness artifact detected. 

In [58], Yu et al. propose a video quality metric based on the extension of the 
perceptual distortion metric by Winkler [5] to a perceptual blocking distortion 
metric. The parameters for the models are obtained by minimizing the error 
in quality predictions for video sequences obtained from VQEG subjective 
testing database. This is in contrast to most methods that obtain parameters 
to fit threshold psychovisual experiments with simple patterns. They 
specifically address the blocking artifact by pooling spatially over those areas 
where blocking effects are dominant. 

There are several implementation issues that need to be considered before 
developing a practical video quality assessment system. One important factor 
affecting the feasibility of a quality metric for video is its computational 
complexity. While complex quality assessment methods may model the HVS 
more accurately, their computational complexity may be prohibitively large 
for many platforms, especially for real-time quality assessment of high-
resolution video. Memory requirements are another important issue. For 
example, in order to implement temporal filtering, a large memory space may 
be needed to store a number of video frames, which is expensive on many 
platforms. Another problem of HVS based metrics might be their dependence 
on viewing configurations, which include the resolution of the display 
devices, the non-linear relationships between the digital pixel values and the 
output luminance values, and the viewing distance of the observers. Most 
models either require that viewing configurations be known or simply assume 
a fixed set of configurations. How these metrics would perform when the 
configurations are unknown or the assumptions about the configurations do 
not hold is another issue that needs to be studied. 

2.5 LIMITATIONS 

The underlying principle of visual error sensitivity based algorithms is to 
predict perceptual quality by quantifying perceptible errors. This is 
accomplished by simulating the perceptual quality related functional 
components of the HVS. However, the HVS is an extremely complicated, 
highly non-linear system, and the current understanding of the HVS is 
limited. How far the error sensitivity based framework can reach is a question 
that may need many years to answer. 

It is worth noting that most error sensitivity based approaches, explicitly or 
implicitly, make a number of assumptions. The following is an incomplete list 
(Note: a specific model may use a subset of these assumptions): 

1. The reference signal is of perfect quality. 

2. Light adaptation follows the Weber’s law. 

3. After light adaptation, the optics of the eye can be modelled as a 
linear time-invariant system characterized by a PSF. 
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4. There exist frequency, orientation and temporal selectivity visual 
channels in the HVS, and the channel responses can be modelled by 
a discrete set of linear decompositions. 

5. Although the contrast definitions of simple patterns used in 
psychovisual experiments and the contrast definitions of complex 
natural images may be different, they are consistent with each other. 

6. The relative visual error sensitivity between different spatial and/or 
temporal frequency channels can be normalized using a bandpass or 
lowpass CSF. 

7. The channel decomposition is lossless or nearly lossless in terms of 
visual importance, in the sense that the transformed signals maintain 
most of the information needed to assess the image quality. 

8. The channel decomposition effectively decorrelates the image 
structure, such that the inter- and intra-channel interactions between 
transformed coefficients can be modelled using a masking model, in 
which the strength of the mask is determined by the magnitudes (not 
structures) of the coefficients. After masking, the perceived error of 
each coefficient can be evaluated individually. 

9. For a single coefficient in each channel, after error normalization and 
masking, the relationship between the magnitude of the error, , 

and the distortion perceived by the HVS, d , can be modelled as a 

non-linear function: 

kle ,

kl ,

β
klkl ed ,, = . 

10. The overall perceived distortion monotonically increases with the 
summation of the perceived errors of all coefficients in all channels. 

11. The overall framework covers a complete set of dominant factors (light 
adaptation, PSF of the eye optics, CSF of the frequency responses, 
masking effects, etc.) that affect the perceptual quality of the observed 
image. 

12. Higher level processes happening in the human brain, such as 
pattern matching with memory and cognitive understanding, are less 
important for predicting perceptual image quality. 

13. Active visual processes, such as the change of fixation points and the 
adaptive adjustment of spatial resolution because of attention, are 
less important for predicting perceptual image quality. 

Depending on the application environment, some of the above assumptions 
are valid or practically reasonable. For example, in image and video 
compression and communication applications, assuming a perfect original 
image or video signal (Assumption 1) is acceptable. However, from a more 
general point of view, many of the assumptions are arguable and need to be 
validated. We believe that there are several problems that are critical for 
justifying the usefulness of the general error-sensitivity based framework. 

The Suprathreshold Problem  
Most psychophysical subjective experiments are conducted near the 
threshold of visibility, typically using a 2-Alternative Forced-Choice (2AFC) 
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method [14,59]. The 2AFC method is used to determine the values of stimuli 
strength (also called the threshold strength) at which the stimuli are just 
visible. These measured threshold values are then used to define visual error 
sensitivity models, such as the CSF and the various masking effect models. 
However, there is not sufficient evidence available from vision research to 
support the presumption that these measurement results can be generalized 
to quantify distortions much larger than just visible, which is the case for a 
majority of image processing applications. This may lead to several problems 
with respect to the framework. One problem is that when the error in a visual 
channel is larger than the threshold of visibility, it is hard to design 
experiments to validate Assumption 9. Another problem is regarding 
Assumption 6, which uses the just noticeable visual error threshold to 
normalize the errors between different frequency channels. The question is: 
when the errors are much larger than the thresholds, can the relative errors 
between different channels be normalized using the visibility thresholds? 

The Natural Image Complexity Problem  
Most psychovisual experimental results published in the literature are 
conducted using relatively simple patterns, such as sinusoidal gratings, 
Gabor patches, simple geometrical shapes, transform basis functions, or 
random noise patterns. The CSF is obtained from threshold experiments 
using single frequency patterns. The masking experiments usually involve 
two (or a few) different patterns. However, all such patterns are much simpler 
than real world images, which can usually be thought of as a superposition 
of a large number of different simple patterns. Are these simple-pattern 
experiments sufficient for us to build a model that can predict the quality of 
complex natural images? Can we generalize the model for the interactions 
between a few simple patterns to model the interactions between tens or 
hundreds of patterns? 

The Minkowski Error Pooling Problem  
The widely used Minkowski error summation formula (41.3) is based on 
signal differencing between two signals, which may not capture the structural 
changes between the two signals. An example is given in Figure 41.7, where 
two test signals, test signals 1 (up-left) and 2 (up-right), are generated from 
the original signal (up-center). Test signal 1 is obtained by adding a constant 
number to each sample point, while the signs of the constant number added 
to test signal 2 are randomly chosen to be positive or negative. The structural 
information of the original signal is almost completely lost in test signal 2, 
but preserved very well in test signal 1. In order to calculate the Minkowski 
error metric, we first subtract the original signal from the test signals, leading 
to the error signals 1 and 2, which have very different structures. However, 
applying the absolute operator on the error signals results in exactly the 
same absolute error signals. The final Minkowski error measures of the two 
test signals are equal, no matter how the β  value is selected. This example 
not only demonstrates that “structure-preservation” ability is an important 
factor in measuring the similarity between signals, but also shows that 
Minkowski error pooling is inefficient in capturing the structures of errors 
and is a “structural information lossy” metric. Obviously, in this specific 
example, the problem may be solved by applying a spatial frequency channel 
decomposition on the error signals and weighting the errors differently in 
different channels with a CSF. However, the decomposed signals may still 



Chapter 41 1058

exhibits different structures in different channels (for example, assume that 
the test signals in Figure 41.7 are from certain channels instead of the 
spatial domain), then the “structural information lossy” weakness of the 
Minkowski metric may still play a role, unless the decomposition process 
strongly decorrelates the image structure, as described by Assumption 8, 
such that the correlation between adjacent samples of the decomposed signal 
is very small (in that case, the decomposed signal in a channel would look 
like random noise). However, this is apparently not the case for a linear 
channel decomposition method such as the wavelet transform. It has been 
shown that a strong correlation or dependency exists between intra- and 
inter-channel wavelet coefficients of natural images [60,61]. In fact, without 
exploiting this strong dependency, state-of-the-art wavelet image 
compression techniques, such as embedded zerotree wavelet (EZW) coding 
[62], set partitioning in hierarchical trees (SPIHT) algorithm [63], and 
JPEG2000 [64] would not be successful. 
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Figure 41.7 Illustration of Minkowski error pooling. 

 

The Cognitive Interaction Problem  
It is clear that cognitive understanding and active visual process (e.g., change 
of fixations) play roles in evaluating the quality of images. For example, a 
human observer will give different quality scores to the same image if s/he is 
instructed with different visual tasks [2,65]. Prior information regarding the 
image content, or attention and fixation, may also affect the evaluation of the 
image quality [2,66]. For example, it is shown in [67] that in a video 
conferencing environment, “the difference between sensitivity to foreground 
and background degradation is increased by the presence of audio 
corresponding to speech of the foreground person” [67]. Currently, most 
image and video quality metrics do not consider these effects. How these 
effects change the perceived image quality, how strong these effects compare 
with other HVS features employed in the current quality assessment models, 
and how to incorporate these effects into a quality assessment model have 
not yet been deeply investigated. 
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3. FULL-REFERENCE QUALITY ASSESSMENT USING 
STRUCTURAL DISTORTION MEASURES 

The paradigm of error sensitivity based image and video quality assessment 
considers any kind of image distortions as being certain types of errors. Since 
different error structures will have different effects on perceived image 
quality, the effectiveness of this approach depends on how the structures of 
the errors are understood and represented. Linear channel decomposition is 
the most commonly used way to decompose the error signals into a set of 
elementary components, and the visual error sensitivity models for these 
elementary components are relatively easily obtained from psychovisual 
experiments. As described in Section 2.5, because linear channel 
decomposition methods cannot fully decorrelate the structures of the signal, 
the decomposed coefficients still exhibit strong correlations with each other. 
It has been argued in Section 2.5 that the Minkowski error metric cannot 
capture these structural correlations. Therefore, the error sensitivity based 
paradigm relies on a very powerful masking model, which must cover various 
kinds of intra- and inter-channel interactions between the decomposed 
coefficients. Current knowledge about visual masking effects is still limited. 
At this moment, it is not clear whether building a comprehensive masking 
model is possible or not, but it is likely that even if it were possible, the 
model would be very complicated. 

In this section, we propose an alternative way to think about image quality 
assessment: it is not necessary to consider the difference between an original 
image and a distorted image as a certain type of error. What we will now 
describe as structural distortion measurement may lead to more efficient and 
more effective image quality assessment methods. 

3.1 NEW PHILOSOPHY  

In [8] and [68], a new philosophy in designing image and video quality 
metrics has been proposed: 

The main function of the human visual system is to extract structural 
information from the viewing field, and the human visual system is highly 
adapted for this purpose. Therefore, a measurement of structural distortion 
should be a good approximation of perceived image distortion. 

The new philosophy can be better understood by comparison with the error 
sensitivity based philosophy: 

First, a major difference of the new philosophy from the error sensitivity 
based philosophy is the switch from error measurement to structural distortion 
measurement. Although error and structural distortion sometimes agree with 
each other, in many circumstances the same amount of error may lead to 
significantly different structural distortion. A good example is given in 
Figures 41.8 and 41.9, where the original “Lena” image is altered with a wide 
variety of distortions: impulsive salt-pepper noise, additive Gaussian noise, 
multiplicative speckle noise, mean shift, contrast stretching, blurring, and 
heavy JPEG compression. We tuned all the distorted images to yield the same 
MSE relative to the original one, except for the JPEG compressed image, 
which has a slightly smaller MSE. It is interesting to see that images with 
nearly identical MSE have drastically different perceptual quality. Our 
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subjective evaluation results show that the contrast stretched and the mean 
shifted images provide very high perceptual quality, while the blurred and the 
JPEG compressed images have the lowest subjective scores [7,68]. This is no 
surprise with a good understanding of the new philosophy since the 
structural change from the original to the contrast stretched and mean 
shifted images is trivial, but to the blurred and JPEG compressed images the 
structural modification is very significant. 

 

  

  
Figure 41.8 Evaluation of “Lena” images with different types of noise. Top-
left: Original “Lena” image, 512×512, 8bits/pixel; Top-right: Impulsive salt-
pepper noise contaminated image, MSE=225, Q=0.6494; Bottom-left: Additive 
Gaussian noise contaminated image, MSE=225, Q=0.3891; Bottom-right: 
Multiplicative speckle noise contaminated image, MSE=225, Q=0.4408. 

 
Second, another important difference of the new philosophy is that it 
considers image degradation as perceived structural information loss. For 
example, in Figure 41.9, the contrast stretched image has a better quality 
than the JPEG compressed image simply because almost all the structural 
information of the original image is preserved, in the sense that the original 
image can be recovered via a simple pointwise inverse linear luminance 
transform. Apparently, a lot of information in the original image is 
permanently lost in the JPEG compressed image. The reason that a 
structural information loss measurement can be considered as a prediction 
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of visual perception is based on the assumption that the HVS functions 
similarly  it has adapted to extract structural information and to detect 
changes in structural information. By contrast, an error sensitivity based 
approach estimates perceived errors to represent image degradation. If it 
works properly, then a significant perceptual error should be reported for the 
contrast stretched image because its difference (in terms of error) from the 
original image is easily discerned. 

 

  

  
Figure 41.9 Evaluation of “Lena” images with different types of distortions. 
Top-left: Mean shifted image, MSE=225, Q=0.9894; Top-right: Contrast 
stretched image, MSE=225, Q=0.9372; Bottom-left: Blurred image, MSE=225, 
Q=0.3461; Bottom-right: JPEG compressed image, MSE=215, Q=0.2876. 

 
Third, the new philosophy uses a top-down approach, which starts from the 
very top level  simulating the hypothesized functionality of the overall HVS. 
By comparison, the error sensitivity based philosophy uses a bottom-up 
approach, which attempts to simulate the function of each relevant 
component in the HVS and combine them together, in the hope that the 
combined system will perform similarly to the overall HVS. 

How to apply the new philosophy to create a concrete image and video quality 
assessment method is an open issue. There may be very different 
implementations, depending on how the concepts of “structural information” 
and “structural distortion” are interpreted and quantified. Generally 
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speaking, there may be two ways of implementing a quality assessment 
algorithm using the new philosophy. The first is to develop a feature 
description framework of natural images, which covers most of the useful 
structural information of an image signal. Under such a description 
framework, structural information changes between the original and the 
distorted signals can be quantified. The second is to design a structure 
comparison method that can compare structural similarity or structural 
difference between the original and the distorted signals directly. As a first 
attempt to implement this new philosophy, a simple image quality indexing 
approach was proposed in [7,68], which conforms to the second approach. 

3.2 AN IMAGE QUALITY INDEXING APPROACH 

Let  and },2,1|{ Nixi L==x },2,1|{ Nixi L==y  be the original and the 
test image signals, respectively. The proposed quality index is defined as: 
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The dynamic range of Q is [−1, 1]. The best value 1 is achieved if and only if 
 for all . The lowest value of −1 occurs when ii xy = Ni L,2,1= ii xxy −= 2 , 
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This quality index models any distortion as a combination of three factors: 
loss of correlation, mean distortion, and contrast distortion. In order to 
understand this, we rewrite the definition of Q as the product of three 
components: 
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The first component is the correlation coefficient between  and x y , which 
measures the degree of linear correlation between  and x y , and its dynamic 

range is [−1, 1]. The best value 1 is obtained when baxi +yi =  for all 

, where a and b are constants and a . We consider the linear 
correlation coefficient as a very important factor in comparing the structures 
of two signals. Notice that a pointwise linearly changed signal can be 
recovered exactly with a simple pointwise inverse linear transform. In this 
sense, the “structural information” is preserved. Furthermore, a decrease in 
the linear correlation coefficient gives a quantitative measure of how much 

Ni L,2,1= 0>



Objective Video Quality Assessment 1063

the signal is changed nonlinearly. Obviously, even if  and x y  are linearly 
correlated, there still may be relative distortions between them, which are 
evaluated in the second and third components. The second component, with 
a range of [0, 1], measures how similar the mean values of  and x y  are. It 

equals 1 if and only if yx = . xσ  and yσ  can be viewed as rough estimate of 

the contrast of  and x y , so the third component measures how similar the 
contrasts of the images are. Its range of values is also [0, 1], where the best 
value 1 is achieved if and only if yx σσ = . 

jQ

∑
=

M

j 1

Image signals are generally non-stationary and image quality is often 
spatially variant. In practice it is usually desired to evaluate an entire image 
using a single overall quality value. Therefore, it is reasonable to measure 
statistical features locally and then combine them together. We apply our 
quality measurement method to local regions using a sliding window 
approach. Starting from the top-left corner of the image, a sliding window of 
size B×B moves pixel by pixel horizontally and vertically through all the rows 
and columns of the image until the bottom-right corner is reached. At the j-th 
step, the local quality index  is computed within the sliding window. If 

there are a total of M steps, then the overall quality index is given by 

= jQ
M

Q 1
       (41.6) 

It has been shown that many image quality assessment algorithms work 
consistently well if the distorted images being compared are created from the 
same original image and the same type of distortions (e.g., JPEG 
compression). In fact, for such comparisons, the MSE or PSNR is usually 
sufficient to produce useful quality evaluations. However, the effectiveness of 
image quality assessment models degrades significantly when the models are 
employed to compare the quality of distorted images originating from 
different types of original images with different types of distortions. Therefore, 
cross-image and cross-distortion tests are very useful in evaluating the 
effectiveness of an image quality metric. 

The images in Figures 41.8 and 41.9 are good examples for testing the cross-
distortion capability of the quality assessment algorithm. Obviously, the MSE 
performs very poorly in this case. The quality indices of the images are 
calculated and given in Figures 41.8 and 41.9, where the sliding window size 
is fixed at B=8. The results exhibit surprising consistency with the subjective 
measures. In fact, the ranks given by the quality index are the same as the 
mean subjective ranks of our subjective evaluations [7,68]. We noticed that 
many subjects regard the contrast stretched image to have better quality 
than the mean shifted image and even the original image. This is no surprise 
because contrast stretching is often an image enhancement process, which 
often increases the visual quality of the original image. However, if we 
assume that the original image is the perfect one (as our quality 
measurement method does), then it is fair to give the mean shifted image a 
higher quality score. 
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Figure 41.10 Evaluation of blurred image quality. Top-left: Original “Woman” 
image; Top-right: Blurred “Woman” image, MSE=200, Q=0.3483; Middle-left: 
Original “Man” image; Middle-right: Blurred “Man” image, MSE=200, 
Q=0.4123; Bottom-left: Original “Barbara” image; Bottom-right: Blurred 
“Barbara” image, MSE=200, Q=0.6594. 
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Figure 41.11 Evaluation of JPEG compressed image quality. Top-left: 
Original “Tiffany” image; Top-right: compressed “Tiffany” image, MSE=165, 
Q=0.3709; Middle-left: Original “Lake” image; Middle-right: compressed 
“Lake” image, MSE=167, Q=0.4606; Bottom-left: Original “Mandrill” image; 
Bottom-right: compressed “Mandrill” image, MSE=163, Q=0.7959. 
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In Figures 41.10 and 41.11, different images with the same distortion types 
are employed to test the cross-image capability of the quality index. In Figure 
41.10, three different images are blurred, such that they have almost the 
same MSE with respect to their original ones. In Figure 41.11, three other 
images are compressed using JPEG, and the JPEG compression quantization 
steps are selected so that the three compressed images have similar MSE in 
comparison with their original images. Again, the MSE has very poor 
correlation with perceived image quality in these tests, and the proposed 
quality indexing algorithm delivers much better consistency with visual 
evaluations. 

Interested users may refer to [69] for more demonstrative images and an 
efficient MATLAB implementation of the proposed quality indexing algorithm. 

The proposed quality indexing method is only a rudimentary implementation 
of the new paradigm. Although it gives promising results under the current 
limited testings, more extended experiments are needed to validate and 
optimize the algorithm. More theoretical and experimental connections with 
respect to human visual perception need to be established. Another 
important issue that needs to be explored is how to apply it for video quality 
assessment. In [70], the quality index was calculated frame by frame for a 
video sequence and combined with other image distortion features such as 
blocking to produce a video quality measure. 

4. NO-REFERENCE AND REDUCED-REFERENCE QUALITY 
ASSESSMENT 

The quality metrics presented so far assume the availability of the reference 
video to compare the distorted video against. This requirement is a serious 
impediment to the feasibility of video quality assessment metrics. Reference 
videos require tremendous amounts of storage space, and in many cases, are 
impossible to provide for most applications. 

Reduced-reference (RR) quality assessment does not assume the complete 
availability of the reference signal, only that of partial reference information 
that is available through an ancillary data channel. Figure 41.12 shows how 
a RR quality assessment metric may be deployed. The server transmits side-
information with the video to serve as a reference for an RR quality 
assessment metric down the network. The bandwidth available to the RR 
channel depends upon the application constraints. The design of RR quality 
assessment metrics need to look into what information is to be transmitted 
through the RR channel so as to provide minimum prediction errors. 
Needless to say, the feature extraction from the reference video at the server 
would need to correspond to the intended RR quality assessment algorithm. 

Perhaps the earliest RR quality assessment metric was proposed by Webster 
et al. [71] and is based on extracting localized spatial and temporal activity 
features. A spatial information (SI) feature measures the standard deviation 
of edge-enhanced frames, assuming that compression will modify the edge 
statistics in the frames. A temporal information (TI) feature is also extracted, 
which is the standard deviation of difference frames. Three comparison 
metrics are derived from the SI and TI features of the reference and the 
distorted videos. The features for the reference video are transmitted over the 
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RR channel. The metrics are trained on data obtained from human subjects. 
The size of the RR data depends upon the size of the window over which SI & 
TI features are calculated. The work was extended in [72], where different 
edge enhancement filters are used, and two activity features are extracted 
from 3D windows. One feature measures the strength of the edges in the 
horizontal/vertical directions, while the second feature measures the 
strength of the edges over other directions. Impairment metric is defined 
using these features. Extensive subjective testing is also reported. 
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Figure 41.12 Deployment of a reduced-reference video quality assessment 
metric. Features extracted from the reference video are sent to the receiver to 
aid in quality measurements. The video transmission network may be lossy 
but the RR channel is assumed to be lossless. 

 

Another approach that uses side-information for quality assessment is 
described in [73], in which marker bits composed of random bit sequences 
are hidden inside frames. The markers are also transmitted over the ancillary 
data channel. The error rate in the detection of the marker bits is taken as an 
indicator of the loss of quality. In [74], a watermarking based approach is 
proposed, where a watermark image is embedded in the video, and it is 
suggested that the degradation in the quality of the watermark can be used 
to predict the degradation in the quality of the video. Strictly speaking, both 
these methods are not RR quality metrics since they do not extract any 
features from the reference video. Instead, these methods gauge the 
distortion processes that occur during compression and the communication 
channel to estimate the perceptual degradation incurred during transmission 
in the channel. 

Given the limited success that FR quality assessment has achieved, it should 
come as no surprise that designing objective no-reference (NR) quality 
measurement algorithms is very difficult indeed. This is mainly due to the 
limited understanding of the HVS and the corresponding cognitive aspects of 
the brain. Only a few methods have been proposed in the literature [75-80] 
for objective NR quality assessment, yet this topic has attracted a great deal 
of attention recently. For example, the video quality experts group (VQEG) 
[81] considers the standardization of NR and RR video quality assessment 
methods as one of its future working directions, where the major source of 
distortion under consideration is block DCT-based video compression. 



Chapter 41 1068

The problem of NR quality assessment (sometimes called blind quality 
assessment) is made even more complex due to the fact that many 
unquantifiable factors play a role in human assessment of quality, such as 
aesthetics, cognitive relevance, learning, visual context, etc., when the 
reference signal is not available for MOS evaluation. These factors introduce 
variability among human observers based on each individual’s subjective 
impressions. However, we can work with the following philosophy for NR 
quality assessment: all images and videos are perfect unless distorted during 
acquisition, processing or reproduction. Hence, the task of blind quality 
measurement simplifies into blindly measuring the distortion that has 
possibly been introduced during the stages of acquisition, processing or 
reproduction. The reference for measuring this distortion would be the 
statistics of “perfect” natural images and videos, measured with respect to a 
model that best suits a given distortion type or application. This philosophy 
effectively decouples the unquantifiable aspects of image quality mentioned 
above from the task of objective quality assessment. All “perfect images” are 
treated equally, disregarding the amount of cognitive information in the 
image, or its aesthetic value [82,83]. 

The NR metrics cited above implicitly adhere to this philosophy of quantifying 
quality through blind distortion measurement. Assumptions regarding 
statistics of “perfect natural images” are made such that the distortion is well 
separated from the “expected” signals. For example, natural images do not 
contain blocking artifacts, and any presence of periodic edge discontinuity in 
the horizontal and vertical directions with a period of 8 pixels, is probably a 
distortion introduced by block-DCT based compression techniques. Some 
aspects of the HVS, such as texture and luminance masking, are also 
modelled to improve prediction. Thus NR quality assessment metrics need to 
model not only the HVS but also natural scene statistics. 

Certain types of distortions are quite amenable to blind measurement, such 
as blocking artifacts. In wavelet-based image coders, such as the JPEG2000 
standard, the wavelet transform is often applied to the entire image (instead 
of image blocks), and the decoded images do not suffer from blocking artifact. 
Therefore, NR metrics based on blocking artifacts would obviously fail to give 
meaningful predictions. The upcoming H.26L standard incorporates a 
powerful de-blocking filter. Similarly post-processing may reduce blocking 
artifacts at the cost of introducing blur. In [82], a statistical model for natural 
images in the wavelet domain is used for NR quality assessment of 
JPEG2000 images. Any NR metric would therefore need to be specifically 
designed for the target distortion system. More sophisticated models of 
natural images may improve the performance of NR metrics and make them 
more robust to various distortion types. 

5. VALIDATION OF QUALITY ASSESSMENT METRICS 
Validation is an important step towards successful development of practical 
image and video quality measurement systems. Since the goal of these 
systems is to predict perceived image and video quality, it is essential to build 
an image and video database with subjective evaluation scores associated 
with each of the images and video sequences in the database. Such a 
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database can then be used to assess the prediction performance of the 
objective quality measurement algorithms. 

In this section, we first briefly introduce two techniques that have been 
widely adopted in both the industry and the research community for 
subjective evaluations for video. We then review the quality metric 
comparison results published in the literature. Finally, we introduce the 
recent effort by the video quality experts group (VQEG) [81], which aims to 
provide industrial standards for video quality assessment. 

5.1 SUBJECTIVE EVALUATION OF VIDEO QUALITY  

Subjective evaluation experiments are complicated by many aspects of 
human psychology and viewing conditions, such as observer vision ability, 
translation of quality perception into ranking score, preference for content, 
adaptation, display devices, ambient light levels etc. The two methods that we 
will present briefly are single stimulus continuous quality evaluation 
(SSCQE) and double stimulus continuous quality scale (DSCQS), which have 
been demonstrated to have repeatable and stable results, provided consistent 
viewing configurations and subjective tasks, and have consequently been 
adopted as parts of an international standard by the international 
telecommunications union (ITU) [84]. If the SSCQE and DSCQS tests are 
conducted on multiple subjects, the scores can be averaged to yield the mean 
opinion score (MOS). The standard deviation between the scores may also be 
useful to measure the consistency between subjects. 

Single Stimulus Continuous Quality Evaluation  
In the SSCQE method, subjects continuously indicate their impression of the 
video quality on a linear scale that is divided into five segments, as shown in 
Figure 41.13. The five intervals are marked with adjectives to serve as guides. 
The subjects are instructed to move a slider to any point on the scale that 
best reflects their impression of quality at that instant of time, and to track 
the changes in the quality of the video using the slider. 

 

EXCELLENT

GOOD

FAIR

POOR

BAD
 

Figure 41.13 SSCQE sample quality scale. 

 

Double Stimulus Continuous Quality Scale  
The DSCQS method is a form of discrimination based method and has the 
extra advantage that the subjective scores are less affected by adaptation and 
contextual effects. In the DSCQS method, the reference and the distorted 
videos are presented one after the other in the same session, in small 
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segments of a few seconds each, and subjects evaluate both sequences using 
sliders similar to those for SSCQE. The difference between the scores of the 
reference and the distorted sequences gives the subjective impairment 
judgement. Figure 41.14 demonstrates the basic test procedure. 

 
grey “A” Video A grey “B” grey “A” grey “B”Video B Video A Video B grey

Voting time

Video A = Reference or distorted

Video B = Reference or distorted

1s 1s1s 1s 1s 1s 1s 1s8s8s8s

 
Figure 41.14 DSCQS testing procedure recommended by VQEG FR-TV 
Phase-II test. 

5.2 COMPARISON OF QUALITY ASSESSMENT METRICS  

With so many quality assessment algorithms proposed, the question of their 
relative merits and demerits naturally arises. Unfortunately, not much has 
been published in comparing these models with one another, especially 
under strict experimental conditions over a wide range of distortion types, 
distortion strengths, stimulus content and subjective evaluation criterion. 
This is compounded by the fact that validating quality assessment metrics 
comprehensively is time-consuming and expensive, not to mention that many 
algorithms are not described explicitly enough in the literature to allow 
reproduction of their reported performance. Most comparisons of quality 
assessment metrics are not broad enough to be able to draw solid 
conclusions, and their results should only be considered in the context of 
their evaluation criterion. 

In [3] and [65], different mathematical measures of quality that operate 
without channel decompositions and masking effect modelling are compared 
against subjective experiments, and their performance is tabulated for 
various test conditions. Li et al. compare Daly’s and Lubin’s models for their 
ability to detect differences [85] and conclude that Lubin’s model is more 
robust than Daly’s given their experimental procedures. In [86] three metrics 
are compared for JPEG compressed images: Watson’s DCT based metric [87], 
Chou and Li’s method [50] and Karanusekera and Kingsbury’s method [49]. 
They conclude that Watson’s method performed best among the three. 

Martens and Meesters have compared Lubin’s metric (also called the Sarnoff 
model) with the root mean squared error (RMSE) [9] metric on transformed 
luminance images. The metrics are compared using subjective experiments 
based on images corrupted with noise and blur, as well as images corrupted 
with JPEG distortion. The subjective experiments are based on dissimilarity 
measurements, where subjects are asked to assess the dissimilarity between 
pairs of images from a set that contains the reference image and several of its 
distorted versions. Multidimensional scaling (MDS) technique is used to 
compare the metrics with the subjective experiments. MDS technique 
constructs alternate spaces from the dissimilarity data, in which the 
positions of the images are related to their dissimilarity (subjective or 
objective) with the rest of the images in that set. Martens and Meesters then 
compare RMSE and Lubin’s method with subjective experiments, with and 
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without MDS, and report that “in none of the examined cases could a clear 
advantage of complicated distance metrics (such as the Sarnoff model) be 
demonstrated over simple measures such as RMSE” [9]. 

5.3 VIDEO QUALITY EXPERTS GROUP 

The video quality experts group [81] was formed in 1997 to develop, validate 
and standardize new objective measurement methods for video quality. The 
group is composed of experts from various backgrounds and organizations 
around the world. They are interested in FR/RR/NR quality assessment for 
various bandwidth videos for television and multimedia applications. 

VQEG has completed its Phase I test for FR video quality assessment for 
television in 2000 [10,11]. In Phase I test, 10 proponent video quality models 
(including several well-known models and PSNR) were compared with the 
subjective evaluation results on a video database, which contains video 
sequences with a wide variety of distortion types and stimulus content. A 
systematic way of evaluating the prediction performance of the objective 
models was established, which is composed of three components: 

1. Prediction accuracy  the ability to predict the subjective quality 
ratings with low error. (Two metrics, namely the variance-weighted 
regression correlation [10] and the non-linear regression correlation 
[10], were used.) 

2. Prediction monotonicity  the degree to which the model’s predictions 
agree with the relative magnitudes of subjective quality ratings. (The 
Spearman rank order correlation [10] was employed.) 

3. Prediction consistency  the degree to which the model maintains 
prediction accuracy over the range of video test sequences. (The 
outlier ratio [10] was used.) 

The result was, in some sense, surprising, since except for 1 or 2 proponents 
that did not perform properly in the test, the other proponents performed 
statistically equivalent, including PSNR [10,11]. Consequently, VQEG did not 
recommend any method for an ITU standard [10]. VQEG is continuing its 
work on Phase II test for FR quality assessment for television, and RR/NR 
quality assessment for television and multimedia. 

Although it is hard to predict whether VQEG will be able to supply one or a 
few successful video quality assessment standards in the near future, the 
work of VQEG is important and unique from a research point of view. First, 
VQEG establishes large video databases with reliable subjective evaluation 
scores (the database used in the FR Phase I test is already available to the 
public [81]), which will prove to be invaluable for future research on video 
quality assessment. Second, systematic approaches for comparing subjective 
and objective scores are being formalized. These approaches alone could 
become widely accepted standards in the research community. Third, by 
comparing state-of-the-art quality assessment models in different aspects, 
deeper understanding of the relative merits of different methods will be 
achieved, which will have a major impact on future improvement of the 
models. In addition, VQEG provides an ideal communication platform for the 
researchers who are working in the field. 
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6. CONCLUSIONS AND FUTURE DIRECTIONS 
There has been increasing interest in the development of objective quality 
measurement techniques that can automatically predict the perceptual 
quality of images and video streams. Such methods are useful tools for video 
database systems and are also desired for a broad variety of applications, 
such as video acquisition, compression, communication, displaying, analysis, 
watermarking, restoration and enhancement. In this chapter, we reviewed 
the basic concepts and methods in objective image and video quality 
assessment research and discussed various quality prediction approaches. 
We also laid out a new paradigm for quality assessment based on structural 
distortion measures, which has some promising advantages over traditional 
perceptual error sensitivity based approaches. 

After decades of research work, image and video quality assessment is still an 
active and evolving research topic. An important goal of this chapter is to 
discuss the challenges and difficulties encountered in developing objective 
quality assessment approaches, and provide a vision for future directions. 

For error sensitivity based approaches, the four major problems discussed in 
Section 2.5 also laid out the possible directions that may be explored to 
provide improvements of the current methods. One of the most important 
aspects that requires the greatest effort is to investigate various 
masking/facilitation effects, especially the masking and facilitation 
phenomena in the suprathreshold range and in cases where the background 
is composed of  broadband natural image (instead of simple patterns). For 
example, the contrast matching experimental study on center-surround 
interactions [88] may provide a better way to quantitatively measure the 
image distortions at the suprathreshold [89] level. The Modelfest phase one 
dataset [90] collected simple patterns such as Gabor patches as well as some 
more complicated broadband patterns including one natural image. 
Comparing and analysing the visual error prediction capability of different 
error sensitivity based methods with these patterns may help researchers to 
better understand whether HVS features measured with simple patterns can 
be extended to predict the perceptual quality of complex natural images. 

The structural distortion based framework is at a very preliminary stage. The 
newly proposed image quality indexing approach is attractive not only 
because of its promising results, but also its simplicity. However, it is 
perhaps too simple and the combination of the three factors is ad-hoc. More 
theoretical analysis and subjective experimental work is needed to provide 
direct evidence on how it is connected with visual perception and natural 
image statistics. Many other issues may also be considered, such as 
multiscale analysis, adaptive windowing and space-variant pooling using a 
statistical fixation model. Furthermore, under the new paradigm of structural 
distortion measurement, other approaches may emerge that could be very 
different from the proposed quality indexing algorithm. The understanding of 
“structural information” would play a key role in these innovations. 

Another interesting point is the possibility of combining the advantages of the 
two paradigms. This is a difficult task without a deeper understanding of 
both. One possible connection may be as follows: use the structural 
distortion based method to measure the amount of structural information 
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loss, and the error sensitivity based approach to help determine whether 
such information loss can be perceived by the HVS. 

The fields of NR and RR quality assessment are very young, and there are 
many possibilities for the development of innovative metrics. The philosophy 
of doing NR or RR quality assessment will continue to be that of blind 
distortion measurement with respect to features that best separate the 
undistorted signals from the distortion. The success of statistical models for 
natural scenes that are more suited to certain distortion types and 
applications will drive the success of NR and RR metrics in the future. A 
combination of natural scene models with HVS models may also prove 
beneficial for NR and RR quality assessment. 
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