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ABSTRACT

Multi-exposure image fusion is considered an effective and efficient
quality enhancement technique widely adopted in consumer elec-
tronics products. Nevertheless, little work has been dedicated to
the quality assessment of fused images created from natural images
captured at multiple exposure levels. In this work, we first build a
database that contains source input images with multiple exposure
levels (≥ 3) together with fused images generated by both classi-
cal and state-of-the-art image fusion algorithms. We then carry out
a subjective user study using a multi-stimulus scoring approach to
evaluate and compare the quality of the fused images. Considerable
agreement between human subjects has been observed. Our results
also show that existing objective image quality models developed for
image fusion applications either poorly or only moderately correlate
with subjective opinions.

Index Terms— subjective image quality assessment, multi-
exposure images, image fusion, objective image quality assessment

1. INTRODUCTION

An effective and efficient approach to obtain images of enhanced
quality is to acquire multiple images at different exposure levels fol-
lowed by multi-exposure image fusion (MEF), which fills the gap
between high dynamic range (HDR) natural scenes and low dynamic
range (LDR) pictures captured by normal digital cameras. MEF
combines multiple input images at different exposure levels and syn-
thesizes an output LDR image that is more informative and percep-
tually appealing than any of the input images [1, 2].

The problem of MEF can be generally formulated as

F (x, y) =

K∑
k=1

Wk(x, y)Ik(x, y) , (1)

where K is the number of input images in the source sequence,
Ik(x, y) and Wk(x, y) represent the intensity value (or coefficient
amplitude in transform domain) and the weight at the pixel located
at (x, y) in the kth exposure image, respectively, and F denotes the
fused image. The weight factor Wk(x, y) is often spatially adaptive
and bears information regarding the relative structural details and
perceptual importance of different exposures. Depending on the spe-
cific models for structural information and perceptual importance,
MEF algorithms differ in the computation of Wk(x, y).

A significant number of MEF algorithms have been proposed,
ranging from simple weighted average to sophisticated methods
based on advanced statistical image models. Local and global en-
ergy weighting approaches are the simplest ones, which employ the
local or global energy in the image to determine Wk. Dated back
to 1984, Burt [1] first employed Laplacian pyramid decomposition
for binocular image fusion. Later in 1994, Burt and Kolczynski

applied this decomposition to MEF, where they selected the local
energy of pyramid coefficients and the correlation between pyramids
within the neighborhood as quality measures. Goshtasby [3] parti-
tioned each source image into several non-overlapping blocks and
selected the block with the highest entropy to construct the fused
image. Mertens et al. [4] adopted proper contrast, high saturation
and well exposure as quality measures to guide the fusion process in
a multiresolution fashion. Bilateral filter is used in [5] to calculate
edge information, which is subsequently employed to compute the
weights. Song et al. [6] first estimated the initial image by maxi-
mizing the visual contrast and scene gradient and synthesized the
fused image by suppressing reversals in image gradients. Zhang et
al. [7] constructed visibility and consistency measures from gradi-
ent information and used them as the weighting factors. A similar
gradient-based MEF method is proposed in [8]. Based on [4], Li
et al. [9] enhanced the details of a given fused image by solving a
quadratic optimization problem. A median filter and recursive filter
based MEF method is developed in [10] by taking local contrast,
brightness and color dissimilarity into consideration. More recently,
Li et al. [11] proposed a guided filter to control the roles of pixel
saliency and spatial consistency when constructing Wk. Shen et
al. [12] embedded perceived local contrast and color saturation into
a conditional random field and derived Wk based on maximum a
posteriori (MAP) estimation.

With multiple fusion algorithms available, a natural question
that follows is which one delivers the best performance. In the litera-
ture, there has been substantial effort on developing objective image
quality assessment (IQA) models for image fusion applications. Qu
et al. [13] combined the mutual information between the fused and
multiple input images to evaluate image quality. Xydeas and Petro-
vic [14] extracted edge information using Sobel operator and em-
ployed edge strength as the main feature in assessing the quality of
fused images. A similar idea was employed in [15], where Wang and
Liu retrieved edge strength using a two-scale Haar wavelet. Zheng
et al. [16] computed spatial frequency using multi-directional gra-
dient filters and estimate the quality of fused images based on ac-
tivity levels. Inspired by the structural similarity (SSIM) index [17]
for general purpose IQA, Piella and Heijmans [18] developed three
models to predict fused image quality based on the universal qual-
ity index (UQI) [19]. Cvejie et al. [20] and Yang et al. [21] also
built their quality measures upon structural information theory. Chen
and Varshney [22] estimated local saliency based on edge intensities
and combined saliency with global contrast sensitive function. Chen
and Blum [23] applied contrast sensitivity filter in the frequency do-
main and then pool local information preservation scores to produce
a global quality measure.

Despite the increasing interests in developing fusion and objec-
tive IQA models for various image fusion applications, systematic
and comprehensive evaluation and comparison of these models has
been largely lacking. In most cases, the performance of existing
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Fig. 1. Source images in the database.

methods were demonstrated using limited examples only. Because
human eyes are the ultimate receivers in most applications, subjec-
tive user study is considered as the most reliable approach to eval-
uate the quality of fused images and the performance of objective
IQA approaches. Toet and Franken [24] examined the perceptual
quality of multi-scale image fusion schemes, where only night-time
outdoor scenes and very simple fusion methods were included in
the study. Vladimir [25] reported subjective assessment results for
multi-sensor image fusion algorithms. However, the number of in-
put images was limited to 2 and most test images were monochrome
aerial pictures. Moreover, state-of-the-art image fusion algorithms
are missing from the experiment. To demonstrate the effectiveness
of their fusion algorithm, Song et al. [6] conducted two groups of
paired comparison tests through both on-site and a Web platform,
where the subjective experimental results only include few exam-
ples. Shen et al. [12] reported subjective evaluation results in terms
of global contrast, details, colors, and overall appearance, which all
appeared to be important contributing factors of perceptual quality.
The paper also suggested that specific fusion parameters should be
adapted to individual applications. Nevertheless, the main purpose
of the user-study is still for demonstrating the performance of spe-
cific fusion algorithms. To the best of our knowledge, comprehen-
sive studies that compare a wide variety of image fusion algorithms
and fusion IQA models have not been reported in the literature.

In this work, we first build a database that contains images of
multiple exposure levels, together with fused images produced by
different MEF algorithms. A subjective user study is then conducted
using the database. The significance of the database and the subjec-
tive experiment is three-fold. First, it provides useful data to study
human behaviors in evaluating fused image quality; Second, it sup-

plies a test set to evaluate and compare the relative performance of
classical and state-of-the-art MEF algorithms; Third, it is useful to
validate and compare the performance of existing objective IQA al-
gorithms in predicting the subjective quality of fused images. This
will in turn provide insights on potential ways to improve them.

2. SUBJECTIVE QUALITY ASSESSMENT

2.1. MEF Image Database

Seventeen high-quality natural images of maximum size of 512 ×
768 are selected to cover diverse image content including natural
sceneries, indoor and outdoor views, and man-made architectures.
All source images are shown in Fig. 1. Note that the multi-exposure
source image sequences typically contain more than 3 input images
that are either underexposed or overexposed. For visualization pur-
pose, in Fig. 1, we selected the best quality fused image in terms of
subjective evaluations to represent each source image.

Eight fusion algorithms are selected, which include simple op-
erators such as 1) local energy weighted linear combination and
2) global energy weighted linear combination, as well as advanced
MEF algorithms such as 3) Raman09 [5], 4) Gu12 [8], 5) ShutaoLi12
[10], 6) ShutaoLi13 [11], 7) Li12 [9], and 8) Mertens07 [4]. These
algorithms are chosen to cover a diverse types of MEF methods in
terms of methodology and behavior. In all cases, default parameter
settings are adopted without tuning for better quality. Eventually, a
total of 136 fused images are generated, which are divided into 17
image sets of 8 images each, where the images in the same set are
created from the same source image sequence. An example is shown
in Fig. 2, which includes a source image sequence at three exposure
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levels Fig. 2(a1-a3) and the fused images generated by eight fusion
algorithms Fig. 2(b-i).

2.2. Subjective Study

The subjective testing environment was setup as a normal indoor of-
fice workspace with ordinary illumination level, with no reflecting
ceiling walls and floor. All image are displayed on an LCD mon-
itor at a resolution of 2560 × 1600 pixel with Truecolor (32bit) at
60Hz. The monitor was calibrated in accordance with the recom-
mendations of ITU-T BT.500 [26]. The display is controlled by a
desktop PC with Intel(R) Core(TM) i7-2600 dual 3.40GHz CPU. A
customized Matlab figure window was used to render the images on
the screen. During the test, all 8 fused images are shown to the sub-
ject at the same time on one computer screen at actual pixel resolu-
tion but in random spatial order. The study adopted a multi-stimulus
quality scoring strategy without showing the reference image. A to-
tal of 25 naı̈ve observers, including 15 male and 10 female subjects
aged between 22 and 30, participated in the subjective experiment.
The subjects are allowed to move their positions to get closer or fur-
ther away from the screen for better observation. All subject ratings
were recorded with pen and paper during the study. To minimize the
influence of fatigue effect, the length of a session was limited to a
maximum of 30 minutes.

For each image set, the subject was asked to give an integer score
that best reflects the perceptual quality of each fused image. The
score ranges from 1 to 10, where 1 denotes the worst quality and
10 is the best. Compared with paired-comparison and ranking-based
testing strategies, the advantages of this method is manifold. First, it
has high efficiency because multiple images are shown on the same
screen and multiple scores are collected at one time. Second, it re-
duces memory effect because a full set of images are evaluated on
one screen, making it easier for the subjects to apply the same scor-
ing strategy to all images, as opposed to the case when images from
the same set are shown on different screen views at different times
in a test session, and the subjects may forget their scoring strate-
gies used previously. Third, the results have broad usage in perfor-
mance evaluation, because the absolute category ratings being col-
lected also inherently contain ranking information. As a result, both
linear and rank-order correlation evaluations can be directly applied
in data analysis stage. Finally, the results also have broad usage in
algorithm development, because quality comparison across source
images of different content is more meaningful, which is helpful in
the development of objective IQA models to test and improve their
generalization capabilities.

3. ANALYSIS AND DISCUSSION

3.1. Subjective Data Analysis

After the subjective user study, 2 outlier subjects were removed
based on the outlier removal scheme in [26], resulting in 23 valid
subjects. The final quality score for each individual image is com-
puted as the average of subjective scores, namely the mean opinion
score (MOS), from all valid subjects. Considering the MOS as the
“ground truth”, the performance of individual subjects can be evalu-
ated by 1) comparing their quality measure with the “ground truth”
for all test images, and 2) calculating the correlation coefficient
between individual subject ratings and MOS values for each image
set, and then averaging the correlation coefficients of all image sets.

Pearson linear correlation coefficient (PLCC) and Spearman’s
rand-order correlation coefficient (SRCC) are employed as the eval-

Table 1. Consistency between individual and average subject scores

Subject PLCC SRCC Subject PLCC SRCC
1 0.8743 0.8631 13 0.8411 0.7989
2 0.8245 0.7984 14 0.8781 0.8743
3 0.7102 0.6735 15 0.8988 0.8924
4 0.8093 0.8182 16 0.7413 0.7313
5 0.6785 0.6649 17 0.7347 0.6488
6 0.6544 0.6567 18 0.7797 0.7486
7 0.8198 0.8030 19 0.6732 0.6814
8 0.8951 0.8849 20 0.7854 0.7643
9 0.7961 0.7835 21 0.6045 0.5638

10 0.6924 0.6826 22 0.6213 0.6121
11 0.8298 0.8275 23 0.7976 0.7558
12 0.6145 0.5795 Average 0.7633 0.7438

uation criteria. Both criteria range from 0 to 1, where higher values
indicate better performance. Table 2 listed the PLCC and SRCC re-
sults for all individual subjects. Although the behaviors of individual
subjects varies, there is generally a considerable agreement between
them on the quality of fused images.

To further investigate the performance of individual subjects, we
compute PLCC and SRCC values for each image set. As such, for
each individual subject, we obtain their PLCC and SRCC results for
17 image sets. The mean and standard deviation (std) of these results
are depicted in Fig. 3. It can be seen that each individual subject per-
forms quite consistently with relatively low variations for different
image content. The average performance across all individual sub-
jects is also given in the rightmost column of Fig. 3. This provides
a general idea about the performance of an average subject (Here an
“average subject” should not be confused with the MOS values of
all subjects. An “average subject” is used to summarize the behavior
of a typical subject, whose behavior is expected to deviate from the
average behavior of all subjects).

3.2. Performance of MEF Algorithms

We use the MOS values given to the 8 MEF algorithms described in
Section 2.1 to evaluate and compare their performance. The mean
and std of MOS values over all 17 image sets are summarized in
Fig. 4. It is worth mentioning that this only provides a rough com-
parison of the relative performance of the MEF algorithms, where
default parameters are used without fine tuning. Besides, computa-
tional complexity is not a factor under consideration.

From the subjective test results, we have several observations.
First, from the sizes of the error bars, we observe that subjects agree
with each other to a significant extent on the performance of any
individual MEF algorithm, but the performance difference between
different MEF algorithms is sometimes small (when compared with
the error bars). Second, Mertens’s method [4] achieves the best per-
formance on average, while Li’s method [9], which is the second
best on average, is actually a detail-enhanced algorithm built upon
Mertens’s method [4]. It has very similar average performance and
a larger error-bar than Mertens’s method [4]. This suggests that de-
tail enhancement might be useful to create perceptually appealing
results on some images, but may also create unwanted artifacts in
some other images, and the overall performance gain is not reliable
in the current approaches. Third, comparing local energy weight-
ing with global energy weighting approaches, the former focuses
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(a1) Under Exposure (a2) Normal Exposure (a3) Over Exposure

(b) Global Energy Weighted (c) Gu12

(e) Li12 (f) Li13

(d) Local Energy Weighted

(g) Mertens07

(h) Raman09 (i) ShutaoLi12

Fig. 2. An example of multi-exposure input images (a1, a2, a3) and fused images (b)-(i) created by different MEF algorithms.

more on enhancing local structures while the latter emphasizes more
on global spatial consistency. The large performance gap between
them indicates that maintaining spatial consistency may be an indis-
pensable factor in determining the quality of fused image. Fourth, it
is somewhat surprising that some of the advanced algorithms, such
as Raman09 [5] and Gu12 [8], perform similarly to simple global
energy-based weighting. Fifth, not a single algorithm produces the
fused images with the best perceptual quality for all image sets. This
suggests that there is still room for future improvement, and proper
combination of the ideas used in different MEF algorithms has the
potential to further improve the performance.

3.3. Performance of Objective IQA Models

We test 9 objective IQA models for image fusion, for which Sec-
tion 1 only provides a rough introduction. An excellent survey can

be found in [27]. All models tested here are designed for general-
purpose image fusion, not specifically for MEF. The algorithms were
elaborated with the source sequence containing two input images
only. Fortunately, most of these algorithms can be directly extended
to the cases of multiple input images. Models that cannot be ex-
tended such as [20, 21] are excluded. For the purpose of fairness, all
models are tested using their default parameter settings. Note that to
obtain a reasonable result, we take the absolute value of the objective
score in [16].

Table 2 summarizes the evaluation results, which is somewhat
disappointing because state-of-the-art IQA models do not seem to
provide adequate predictions of perceived quality of fused images.
Even the models with the best performance, such as Xydeas’s [14]
and Wang’s [15] methods, are only moderately correlated with sub-
jective scores. Somewhat surprisingly, some models even give neg-
ative correlations. The scatter plots of MOS versus the four objec-
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Fig. 3. PLCC and SRCC between individual subject and MOS.
Rightmost column: performance of an average subject.

Fig. 4. Mean and std of subjective rankings of individual image
fusion algorithms across all image sets.

tive models associated with the best performance are given in Fig 5,
where each point denotes one test image. The widespread of the
scatter plots suggests that there is still a long way to go in the devel-
opment of IQA models that are useful in image fusion applications.

The above test results also provide some useful insights regard-
ing the general approaches used in IQA models. First, models based
on entropy computations of pixel intensity values and transform co-

Fig. 5. MOS versus the objective IQA models (Xydeas’ [14],
Wang’s [15], Zheng’s [16], Piella’s [18]) of the best performance.

Table 2. Performance evaluation of objective IQA models

IQA model PLCC SRCC
µ σ µ σ

Hossny’s [28] -0.2939 0.2054 -0.2784 0.2803
Cvejic’s [29] 0.0604 0.4311 0.0590 0.4968
Wang’s [30] -0.2992 0.2008 -0.2524 0.2976

Xydeas’s [14] 0.6949 0.1655 0.6198 0.2452
Wang’s [15] 0.6356 0.1634 0.5771 0.1761
Zheng’s [16] 0.4332 0.2317 0.4614 0.1820
Piella’s [18] 0.3798 0.2409 0.4131 0.1725
Chen’s [22] -0.5544 0.4089 -0.5611 0.4640
Chen’s [23] 0.2667 0.4830 0.3274 0.4628

efficients [28, 29] have poor correlation with perceptual quality. The
reason may be that the quality of fused images is highly content de-
pendent and only entropy of image intensity/coefficient histogram
is insufficient in capturing the perceptual distortions introduced by
MEF processes. Second, local structure-preservation based mod-
els, such as SSIM and gradient based approaches applied in spatial
or transform domain [14, 15, 16, 18], provide the most promising
results so far. However, they are often unsuccessful in capturing
the degradations of spatial consistency across the image space. This
suggests that more accurate objective IQA models may be developed
by achieving a good compromise between assessing local structure
preservation and evaluating global spatial consistency.

4. CONCLUSION

Image fusion has been an active research topic in the past decade,
and a significant number of image fusion and objective IQA meth-
ods have been proposed. However, comprehensive validation and
comparison of these algorithms are lacking. In this study, we made
one of the first attempts dedicated to the evaluation and comparison
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of classical and state-of-the-art MEF and relevant IQA algorithms. A
new MEF image database is established and subjective tests are con-
ducted. Our results suggest that human subjects generally have sig-
nificant agreement with each other. The subjective scores are used to
test the performance of existing MEF algorithms and provide useful
insights on the perceptual relevance of the specific approaches used
in these algorithms. Perhaps the most important finding of the cur-
rent work is that none of the classical and state-of-the-art objective
IQA models developed for image fusion achieves good correlation
with subjective opinions. This motivates us to design advanced ob-
jective quality models for image fusion, for which we learned from
this study that a good balance between global spatial consistency and
local structure preservation is desirable.
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