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ABSTRACT

Research on Screen Content Images (SCIs) becomes impor-
tant as they are increasingly used in multi-device communi-
cation applications. In this paper, we present a study of sub-
jective quality assessment for distorted SCIs, and investigate
which part (text or picture) contributes more to the overall
visual quality. We construct a large-scale Screen Image Qual-
ity Assessment Database (SIQAD) consisting of 20 source
and 980 distorted SCIs. The 11-category Absolute Category
Rating (ACR) is employed to obtain three subjective quality
scores corresponding to the entire image, textual and pictorial
regions respectively. Based on the subjective data, we investi-
gate the applicability of 12 state-of-the-art Image Quality As-
sessment (IQA) methods for objectively assessing the qual-
ity of SCIs. The results indicate that existing IQA methods
are limited in predicting human quality judgement of SCIs.
Moreover, we propose a prediction model to account for the
correlation between the subjective scores of textual and pic-
torial regions and the entire image. The current results make
an initial move towards objective quality assessment of SCIs.

1. INTRODUCTION

Inspired by various Internet-based applications [1–3], such as
virtual screen sharing, cloud computing and gaming, video
conferencing, etc., an increasing amount of visual content is
shared between different digital devices (computers, tablets
or smart phones). In these applications, visual content (e.g.,
web pages, slide files and computer screens) is typically pre-
sented in the form of Screen Content Images (SCIs), which
render texts, graphics and natural pictures together. For effi-
cient sharing among different devices, it is important to effi-
ciently acquire, compress, store or transmit SCIs. Numerous
solutions have been proposed for processing SCIs, especially
for SCI compression [4–8]. Lately, MPEG/VCEG calls for
proposals to efficiently compress screen content image/videos
as an extension of the HEVC standard [9].

When processing SCIs, various distortions may be in-
volved, such as blurring and compression artifacts. Generally,
Peak Signal-to-Noise Ratio (PSNR) is adopted to evaluate the

quality of the processed images. However, it is know that
PSNR is not consistent with human visual perception [10–
12]. Although other many IQA methods have been proposed
to evaluate quality of distorted natural images [13], whether
these IQA methods are applicable to distorted SCIs is still
an open question, since SCIs are a specific type of images
including texts and pictures concurrently. In real applica-
tions, specified objective metrics are more desired to predict
quality of processed SCIs, based on which we can control
the processing of SCIs more efficiently. Before using the
objective metrics, we need to verify whether these metrics are
consistent with human visual perception when judging SCI
quality. Hence, it is meaningful to investigate both subjective
and objective methods in the quality evaluation of distorted
SCIs. To the best of our knowledge, this has not yet been
carefully studied in the literature.

In this work, we aim to carry out the first in-depth study
on subjective quality assessment of SCIs by building a large-
scale Screen Image Quality Assessment Database (SIQAD).
Based on the user study on this database, we propose a predic-
tion model to investigate the impact of textual and pictorial re-
gions to the overall image quality. In particular, 20 reference
images are selected from the Internet with various content
styles, and 980 distorted images are generated from seven dis-
tortion processes at seven degradation levels: Gaussian Nois-
ing (GN), Gaussian Blurring (GB), Contrast Change (CC),
JPEG, JPEG2000 and Layer Segmentation based Compres-
sion (LSC) [7]. The 11-category Absolute Category Rating
(ACR) method [14] is adopted to obtain the subjective quality
scores of images in SIQAD. Three subjective quality scores
are obtained for the entire, textual and pictorial regions of
each image. Based on these scores, a prediction model is con-
structed to account for the correlation between the three parts.
Finally, to investigate the applicability of existing objective
IQA metrics, 12 advanced IQA approaches are employed to
evaluate the quality of images in SIQAD. Through detailed
analysis, we found that existing IQA methods are limited in
predicting the quality of the distorted images. The results and
observations inspire the development of new objective quality
assessment models for SCIs.
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2. THE SCREEN IMAGE QUALITY ASSESSMENT
DATABASE (SIQAD)

To investigate quality evaluation for SCIs, we construct a
large-scale screen content image database (i.e., SIQAD) with
seven distortion types, each with seven degradation levels.
Totally, 20 reference and 980 distorted SCIs are included
in the SIQAD. Subjective evaluation of these SCIs is then
conducted by human subjects.

2.1. Introduction of the SIQAD

We select reference SCIs with various layout styles, including
different sizes, positions and ways of textual/pictorial region
combination. Meanwhile, pictorial or textual regions are also
diverse in contents. In total, twenty SCIs are collected from
webpages, slides, PDF files and digital magazines through
screen snapshot. The reference SCIs are cropped from these
twenty images to proper sizes for natively displaying on com-
puter screens in the subjective test that follows.

Seven distortion types which usually appear on SCIs are
applied to generate distorted images. Gaussian Noise (GN)
is often involved in image acquisition, and is included in
most existing image quality databases [15, 16]. Gaussian
Blur (GB) and Motion Blur (MB) are also considered due to
their common present in practical applications. For exam-
ple, when capturing SCIs using digital cameras, hand-shake,
out-of-focus or object moving would bring blur into images.
Contrast Change (CC) is also an important item affecting
peculiarities of the HVS. Different settings of brightness and
contrast of screens will result in various visual experiences
of viewers. As compression of SCIs is an crucial issue in
most multimedia processing applications, three commonly
used compression algorithms are utilized to encode the refer-
ence SCIs: JPEG, JPEG2000 and Layer Segmentation based
Coding (LSC) [7]. The JPEG and JPEG2000 are two widely
used methods to encode images, and have been introduced
into many quality assessment databases. We include LSC as
another codec due to its efficient compression for SCIs.

For all distortion types, seven levels are set to generate
images from low to high degradation levels. These distortions
are meant to creat a broad range of image impairment types,
such as blurring, blocking, structured distortion and misclas-
sification artifacts. The detailed configuration of these algo-
rithms is given in the related supporting files in SIQAD [17].

2.2. Subjective Testing Methodology

Subjective testing methodologies for assessing image quality
have been recommended by ITU-R BT.500-13 [14], including
Absolute Category Rating (ACR), double-stimulus impair-
ment scale and paired comparison. In this study, 11-category
ACR is employed. Given one image displayed on the screen,
a human subject is asked to give one score (from 0 to 10: 0
is the worst, and 10 is the best) on the image quality based

Fig. 1. Graphical user interface in the subjective test. The red
tooltip will change if subjects need to judge different regions.

on her/his visual perception. This methodology is chosen
because the viewing experience of subjects is close to that
in practice, where there is no access to the reference images.
The subjective tests are performed using identical desktops,
each of which has 16 GB RAM and 64-bit Windows op-
erating system. The desktops with calibrated 24-inch LED
monitors are placed in a laboratory with normal indoor light.

In this study, we would like to investigate which part
(text or picture) contributes more to the overall visual quality.
Hence, subjects were required to give three scores to each test
image, corresponding to overall, textual and pictorial regions,
respectively. In this test, each image was shown three times,
and subjects gave one score to one specific region at a time.
The graphical user interface is shown in Fig.1. When judg-
ing one image, three aspects are mainly considered: content
recognizability, clearity and viewing comfortability. All the
reference images are also included in the test. We generate
a random permutation of 1000 images for each round, and
make sure that every two consecutive images are not gener-
ated from the same reference image. According to [14], the
execution time of one test session should not exceed 30 min-
utes to avoid fatigue. Thus, we split each permutation into
8 groups and assign one group of images to one subject at a
time. Each subject finished the evaluation of several groups.
Totally, 96 subjects took part in the study, and each image is
evaluated by at least 30 subjects.

3. CORRELATION ANALYSIS OF QUALITY
SCORES OF DIFFERENT REGIONS

The raw scores given by subjects are used to compute Dif-
ference of Mean Opinion Scores (DMOS) values of test im-
ages [15]. More detailed interpretations of the computation
results will be reported in the experimental session. For each
test image, we obtain three DMOS values (QE, QT and QP),
corresponding to the quality of the entire image, textual and
pictorial regions, respectively. The problem we would like to
investigate is how the three scores are correlated, or which
partial evaluation (QT or QP) contributes more to the overall
quality (QE). Through in-depth investigation of this correla-
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tion, more efficient objective metrics for assessing quality of
SCIs can be carried out. Here we make some initial investiga-
tions on the combination method of QT and QP and propose a
prediction model QEp, which is of good correlation with the
subjective score QE .

There are many factors affecting human vision when
viewing SCIs, including area ratio and region distribution of
textual regions, size of characters, and content of pictorial
regions, etc. In the proposed model, we investigate a statisti-
cal property of SCIs that reflects impairments of test images,
rather than any specific factor. Image activity reflects the
variation of image contents, which is not only useful in dif-
ferentiating images, but also important to quality estimation
[18, 19]. Based on the activity measure and the segmentation
algorithm proposed in [20], we propose a novel model to
compute two weights (Wt and Wp) that can measure the ef-
fect of textual and pictorial regions to the quality of the entire
image. In particular, given one reference SCI, based on its
activity map, the segmentation algorithm can separate textual
regions from pictorial regions with an index map It in which
textual pixels are marked by one and pictorial pixels by zero.
Meanwhile, we calculate the activity map A of the distorted
SCI. Based on It and A, the activity map Mt and Mp for the
textual and pictorial regions are obtained. Considering the
viewing characteristic of human vision (Points closed to the
center are important, and points far away are relatively in-
significant), a Gaussian mask G is used to weight the activity
values. Based on the weighted activity map, we obtain two
activity values for the textual and pictorial parts respectively,
which are subsequently employed as weights to combine the
quality scores of the two parts.

The prediction model is constructed as a linear combina-
tion of QT and QP as follows.

QEp =Wt ∗QT +Wp ∗QP (1)

where

Wt =

∑M
i=1

∑N
j=1(A ∗ It ∗G)i,j∑M

i=1

∑N
j=1(It)i,j

(2)

Wp =

∑M
i=1

∑N
j=1(A ∗ (1− It) ∗G)i,j∑M

i=1

∑N
j=1(1− It)i,j

(3)

are weights for textual and pictorial regions perspectively. M
and N represent the sizes of the test image. The performance
of the proposed model is assessed by calculating the correla-
tion between the predicted score QEp and QE.

4. EXPERIMENTAL RESULTS

In this session, we first verify the reliability of the subjec-
tive DMOS values, and then test the effectiveness of the pro-
posed prediction model. Finally, 12 existing IQA methods
are applied to images in SIQAD to investigate whether exist-
ing objective quality metrics designed for natural images are
applicable to SCIs.

4.1. Reliability of DMOS

When processing the raw subjective scores, we examine
the consistency of all subjects’ judgements for each image.
According to [14], the consistency can be measured by the
confidence interval that is derived from the number and stan-
dard deviation of scores for each image. Generally, with a
probability of 95% confidence level, the distribution of the
scores can be regarded as reliable. After outlier rejection,
DMOS values of all images are computed and their con-
fidence intervals are obtained. In Fig.2, two examples of
DMOS distribution with 95% confidence interval are shown,
which demonstrate the agreement of subjects on the visual
quality of images. The DMOS values may be further regarded
as the ground truth for performance evaluation of objective
quality metrics.
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Fig. 2. Distribution of DMOS values of two examples. The
error bars indicate the confidence intervals of related scores.

Generally, the quality scales of the distorted SCIs in the
database should exhibit good separation of perceptual quality
and span the entire range of visual quality (from distortion
imperceptible to severely annoying) [21]. Fig.3 shows the
histogram of the DMOS values (0:100) of all distorted images
in the database. It can be observed that the DMOS values of
images range from low to high, and have a good spread at
different levels.
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Fig. 3. Histogram of DMOS values of images in the SIQAD.
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Table 1. Correlation analysis of the obtained quality scores
for the entire images, textual and pictorial regions.

Distortions PLCC RMSE SROCC PLCC RMSE SROCC
GN 0.9749 2.7974 0.9571 0.9777 2.7885 0.9393
GB 0.9835 2.3815 0.9571 0.9665 3.0782 0.9482
MB 0.9749 2.1825 0.9475 0.9380 3.1350 0.9032
CC 0.9217 3.8243 0.8446 0.9457 3.0667 0.8746

JPEG 0.9542 2.3801 0.9000 0.8967 3.1158 0.8596
JPEG2000 0.9144 3.1033 0.8625 0.9082 3.1530 0.8589

LSC 0.9187 2.6754 0.8196 0.9002 2.9464 0.8464
Overall 0.9338 4.8067 0.9148 0.8833 6.2471 0.8620

QE and QT QE and QP

4.2. Verification of the Proposed Prediction Model

Firstly, we analyze the correlations of the obtained three
quality scores (QE, QT and QP ) in terms of Pearson Linear
Correlation Coefficient (PLCC), Root Mean Squared Error
(RMSE) and Spearman rank-order correlation coefficient
(SROCC) [22]. As such, we can roughly know which part
attracts more attention of observers. Meanwhile, correlations
for each distortion type are also calculated to estimate human
visual perception to different distortion types. The correlation
measures are reported in Table 1. From Table 1, we can ob-
serve that the textual part has higher overall correlation with
the entire image than the pictorial part. However, for different
distortion types, the results vary to some extent. For example,
in the case of contrast change (CC), the contrast variation
of pictorial regions affect human vision more compared to
that of textual regions. The reason may be that, observers
prefer to give high scores to texts of high shape integrity
and clearity, even though their colors change significantly.
For pictorial regions, severe contrast change would result in
uncomfortable viewing experience. Therefore, in this case,
pictorial regions contribute more to the quality of the entire
image. By contrast, in the case of motion blurring (MB), tex-
tual regions attract more attention. The integrity and clearity
of texts are easier to be affected by motion blurring. For other
distortions, the correlation results also vary from case to case.
Consequently, it is a challenging problem to build an unified
formula to account for the correlation among the three scores.

As an initial attempt towards solving this problem, we
propose a prediction model for estimating the quality of the
entire image based on the quality of textual and pictorial re-
gions, as described in Sec.3. The performance of the proposed
model is measured by computing the correlation between the
estimated and ground truth scores. Meanwhile, we compare
with a simple averaging combination method of textual and
pictorial scores. Table 2 reports the comparison results. It
shows that the results of the proposed model are more con-
sistent with visual perception. Although there is still space to
improve the performance, the proposed prediction model re-
flects the contributions of textual and pictorial regions with a
high reliability.

Table 2. Comparison of two combination methods

Distortions PLCC RMSE SROCC PLCC RMSE SROCC
GN 0.9048 5.2572 0.8707 0.9847 2.2691 0.9607
GB 0.9032 5.4064 0.8654 0.9833 2.3888 0.9554
MB 0.9005 5.8983 0.8464 0.9798 1.9622 0.9464
CC 0.8577 6.0412 0.8168 0.9573 2.7777 0.8732

JPEG 0.8609 6.0150 0.8382 0.9458 2.4178 0.9018
JPEG2000 0.8373 6.6196 0.8329 0.9372 2.6148 0.8946

LSC 0.8120 6.9176 0.8136 0.9141 2.6838 0.8536
Overall 0.8674 5.9514 0.8433 0.9472 3.8577 0.9234

Average combination Proposed prediction model

4.3. Applicability of Traditional IQA Methods to SCIs

Aiming to investigate the effectiveness of state-of-the-art
objective IQA methods in quality evaluation of distorted
SCIs, the following 12 IQA metrics [13] are applied to
SIQAD: PSNR, SSIM, MSSIM, VIF, IFC, UQI, NQM,
VSNR, WSNR, FSIM, GSIM and GMSD. Most of them
are implemented using the toolbox [23] and the codes of oth-
ers are from their public websites. We apply all the metrics to
the grayscale version of images, and compute the correlations
between the predicted values and the DMOS values in terms
of PLCC, RMSE and SROCC. Meanwhile, the correlations
for specific distortions are calculated, to investigate the effec-
tiveness of IQA methods for different distortion types. We
report the correlation results in Table 3, where the ones of the
best performance are marked with bold fonts.

It is shown from Tables 3 that the VIF achieves the high-
est correlation with the DMOS values in terms of the three
measures. Correlations between the VIF and DMOS scores
for different distortion types are distinct from each other, as
most of the other metrics. Particularly, it has much higher
values for the first three distortions (i.e., GN, GB and MB)
than others. The reason is that observers are sensitive to such
kinds of distortions that are allocated in the entire image, and
are able to distinguish the images with different distortion
levels. Meanwhile, most IQA metrics are effective to de-
tect these three distortions. However, for the remaining four
types, especially for the CC case, the correlation results of
the VIF scores and the DMOS values are not as good. For
example, the SROCC value of VIF for the CC case is only
0.7607, which indicates the severe inconsistency between the
predicted scores and the visual quality of the contrast changed
SCIs. The reason may be that contrast change only affects the
intensity of texts, but not the integrity of texts about which
subjects care more. By contrast, the IQA metrics take the in-
tensity variation into account, resulting in the inconsistency
with DMOS values.

From Tables 3, we can also find that the overall cor-
relation results are much lower than the distortion specified
results. Although the VIF method achieves the highest overall
correlation with the DMOS values (PLCC = 0.8429, SROCC
= 0.8183 and RMSE = 7.2295), this result only represents
a limited success in predicting human visual perception.
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Table 3. Correlation results of the DMOS values and the objective scores given by 12 IQA methods.
Distortions PSNR SSIM MSSIM VIF IFC UQI NQM WSNR VSNR FSIM GSIM GMSD

PLCC 0.9748 0.9668 0.9626 0.9682 0.9727 0.9707 0.9717 0.9748 0.9722 0.9476 0.9636 0.9640
GB 0.9802 0.9780 0.9755 0.9797 0.9788 0.9811 0.9803 0.9800 0.9802 0.9771 0.9757 0.9808
MB 0.9631 0.9648 0.9604 0.9664 0.9676 0.9656 0.9689 0.9678 0.9657 0.9039 0.9596 0.9660
CC 0.8542 0.9284 0.9276 0.8806 0.9321 0.9300 0.8891 0.8462 0.8710 0.8632 0.9203 0.9225

JPEG 0.9403 0.9231 0.9169 0.9245 0.9301 0.9154 0.9032 0.9332 0.9006 0.9208 0.9207 0.9194
J2K 0.9096 0.9063 0.9103 0.9090 0.9113 0.9066 0.9176 0.9003 0.8852 0.9068 0.9095 0.9082
LSC 0.9169 0.9192 0.9169 0.9275 0.9292 0.9189 0.8396 0.9013 0.9075 0.9002 0.9147 0.9164

Overall 0.6244 0.7977 0.6508 0.8429 0.6736 0.5351 0.6346 0.6787 0.6217 0.6073 0.6161 0.7542
GN 0.9375 0.9393 0.9411 0.9393 0.9321 0.9375 0.9321 0.9357 0.9321 0.9286 0.9446 0.9393
GB 0.9411 0.9464 0.9536 0.9429 0.9411 0.9482 0.9429 0.9411 0.9411 0.9357 0.9375 0.9411
MB 0.9375 0.9393 0.9018 0.9393 0.9393 0.9357 0.9411 0.9393 0.9393 0.8804 0.9268 0.9411
CC 0.7589 0.7196 0.7821 0.7607 0.8304 0.7804 0.7554 0.7107 0.7321 0.7071 0.7625 0.8071

JPEG 0.8625 0.8554 0.8482 0.8536 0.8536 0.8393 0.8107 0.8661 0.8321 0.8589 0.8536 0.8482
J2K 0.8696 0.8679 0.8714 0.8661 0.8661 0.8714 0.8482 0.8714 0.8607 0.8339 0.8429 0.8679
LSC 0.8268 0.8250 0.8196 0.8268 0.8161 0.8214 0.7268 0.7893 0.8036 0.8232 0.7982 0.8071

Overall 0.6020 0.7897 0.6345 0.8183 0.6347 0.4607 0.6377 0.6947 0.5933 0.5669 0.5832 0.7243
GN 2.8622 3.2204 3.4264 3.1413 2.9685 3.0238 2.9522 2.8470 2.9364 3.7938 3.3648 3.3401
GB 2.5150 2.6001 2.7949 2.5691 2.6505 2.4115 2.5284 2.5482 2.5417 2.6528 2.7525 2.4724
MB 2.8209 2.7770 2.8931 2.7163 2.6476 2.7484 2.6265 2.6463 2.7122 3.5739 2.9539 2.7289
CC 5.4663 3.9241 3.6132 4.8653 3.7642 3.7398 4.4100 5.4407 4.6796 4.8120 3.8398 3.5697

JPEG 2.6938 2.8237 2.8978 2.8235 2.7733 2.9504 2.9246 2.7616 3.0444 2.8437 2.8771 2.8636
J2K 3.1672 3.2362 3.1532 3.1791 3.1239 3.2382 3.0965 3.2240 3.3721 3.2697 3.1761 3.2101
LSC 2.5319 2.5445 2.5881 2.4075 2.3897 2.6098 3.3314 2.8701 2.8048 2.6829 2.6014 2.5996

Overall 10.6303 8.1220 10.3000 7.2295 9.9235 11.3322 10.3900 9.9495 10.6568 10.4559 10.6430 8.7898

PLCC

SROCC

RMSE

The objective metrics generally capture the practical varia-
tions occurring in the distorted images, without considering
human’s perception when viewing SCIs with different distor-
tions. For instance, in the subjective test, most subjects prefer
to give low scores to blurred images. This phenomenon can
be observed from Fig.2, where most of the DMOS values for
blurred images (from the first eight to the twenty-one points)
are higher than other images. Some image examples with
their related quality scores are shown in Fig.4 to illustrate this
phenomenon. Comparing (c)(d) with (f)(g), although there
are no obvious noise artifacts appear in (c) and (d), most sub-
jects have a bad impression to the blurring effect at first sight,
and give low scores to the blurred images. Besides, we can
observe that the three measures (PSNR, SSIM and VIF) can-
not achieve high consistency with the DMOS values. In (b)
and (c), there is not much visual quality difference between
these two images, but the SSIM gives a much lower score to
(b). This inconsistency also appears in (e) to (h): the visual
quality of (e) is much better than the other three images in
(f)-(g), but the PSNR and SSIM give lower scores to (e). In
conclusion, there is a large room to improve and objective
measures that can accurately predict the quality of SCIs are
still yet to be developed.

5. CONCLUSION

In this paper, we constructed a new large-scale image database,
SIQAD, to investigate the subjective quality assessment of
SCIs. DMOS values of images in the database are obtained

via subjective testing, and their reliability is verified. In the
subjective test, three scores were given to the entire image and
the textual and pictorial regions, respectively, based on which
we find that textual regions contributes more to the quality of
the entire image in most of the distortion cases. In addition, a
prediction model is proposed to account for this relationship.
Through the correlation analysis of 12 IQA models (designed
for natural images) and the obtained DMOS values, we found
that existing IQA methods cannot achieve high consistency
with human visual perception when judging the quality of
SCIs. In the future, we will investigate the prediction model
and use it to guide the construction of objective assessment
metrics for distorted SCIs.
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