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Abstract Image distortion analysis is a fundamental issue
in many image processing problems, including compression,
restoration, recognition, classification, and retrieval. Tradi-
tional image distortion evaluation approaches tend to be
heuristic and are often limited to specific application envi-
ronment. In this work, we investigate the problem of image
distortion measurement based on the theory of Kolmogorov
complexity, which has rarely been studied in the context
of image processing. This work is motivated by the nor-
malized information distance (NID) measure that has been
shown to be a valid and universal distance metric applica-
ble to similarity measurement of any two objects (Li et al.
in IEEE Trans Inf Theory 50:3250–3264, 2004). Similar to
Kolmogorov complexity, NID is non-computable. A useful
practical solution is to approximate it using normalized com-
pression distance (NCD) (Li et al. in IEEE Trans Inf Theory
50:3250–3264, 2004), which has led to impressive results in
many applications such as construction of phylogeny trees
using DNA sequences (Li et al. in IEEE Trans Inf Theory
50:3250–3264, 2004). In our earlier work, we showed that
direct use of NCD on image processing problems is difficult
and proposed a normalized conditional compression distance
(NCCD) measure (Nikvand and Wang, 2010), which has
significantly wider applicability than existing image similar-
ity/distortion measures. To assess the distortions between two
images, we first transform them into the wavelet transform
domain. Assuming stationarity and good decorrelation of
wavelet coefficients beyond local regions and across wavelet
subbands, the Kolmogorov complexity may be approximated
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using Shannon entropy (Cover et al. in Elements of informa-
tion theory. Wiley-Interscience, New York, 1991). Inspired
by Sheikh and Bovik (IEEE Trans Image Process 15(2):430–
444, 2006), we adopt a Gaussian scale mixture model for
clusters of neighboring wavelet coefficients and a Gaussian
channel model for the noise distortions in the human visual
system. Combining these assumptions with the NID frame-
work, we derive a novel normalized perceptual information
distance measure, where maximal likelihood estimation and
least square regression are employed for parameter fitting.
We validate the proposed distortion measure using three
large-scale, publicly available, and subject-rated image data-
bases, which include a wide range of practical image dis-
tortion types and levels. Our results demonstrate the good
prediction power of the proposed method for perceptual
image distortions.

Keywords Kolmogorov complexity · Normalized
information distance · image quality assessment · Perceptual
information distance

1 Introduction

One of the most successful recent developments in the the-
ory of Kolmogorov complexity is the normalized informa-
tion distance (NID) measure, which has been shown to be
a valid and universal distance metric applicable to the simi-
larity measurement of any two objects [1]. Similar to Kolm-
gorov complexity, the NID is non-computable and a practical
solution is to approximate it using normalized compression
distance (NCD) [1,2], which has led to impressive results in
many applications such as construction of phylogeny trees
using DNA sequences [1]. However, NCD did not achieve
the same level of success in image similarity applications
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[3,4]. A framework of normalized conditional compression
distance (NCCD) was proposed in [3], which shows sig-
nificantly wider applicability than existing image similar-
ity/distortion measures. Kolmogorov complexity of an object
may also be approximated using Shannon entropy, given that
the object is from an ergodic stationary source [5]. The diffi-
culty is that data that arise in practice in the form of images
or complex video are generally non-stationary, and thus it is
cumbersome to replace Kolmogorov complexity with Shan-
non entropy without any advanced transformation and mod-
eling.

In this paper, we propose a framework which takes the
reference image and the distorted image into the wavelet
domain and assumes local independence among image sub-
bands to approximate Kolmogorov complexity by Shannon’s
entropy. Inspired by [6], wavelet-domain Gaussian scale mix-
ture (GSM) model is adopted for natural scene statistics
(NSS), leading to a practical algorithm for entropy calcu-
lations.

2 Kolmogorov complexity-based information distances

The Kolmogorov complexity [7] of an object is defined to
be the length of the shortest program that can produce that
object on a universal Turing machine and halt:

K (x) = min
p:U (p)=x

l(p) . (1)

In [1], the authors assume the existence of a general decom-
pressor that can be used to decompress the presumably short-
est program x∗ to the desired object x . However, they note
that due to the non-computability of this concept, a compres-
sor that does the opposite does not have to exist.

The conditional Kolmogorov complexity of x relative to
y is denoted by K (x |y). An information distance between x
and y can then be defined as:

ID(x, y) = max{K (x |y), K (y|x)} (2)

which is the maximum of the length of the shortest program
that computes x from y and y from x . To convert it to a nor-
malized symmetric metric, a novel NID measure was intro-
duced in [1]:

NID(x, y) = max{K (x |y∗), K (y|x∗)}
max{K (x), K (y)} . (3)

It was proved that NID is a valid distance metric that sat-
isfies the identity and symmetry axioms and the triangular
inequality [1]. The real-world application of NID is diffi-
cult because Kolmogorov complexity is a non-computable
quantity [7]. By using the fact that K (xy) = K (y|x∗) +
K (x) = K (x |y∗) + K (y) (subject to a logarithmic term),
and by approximating Kolmogorov complexity K using a

practical data compressor C , a normalized compression dis-
tance (NCD) was proposed in [1] as:

NCD(x, y) = C(xy) − min{C(x), C(y)}
max{C(x), C(y)} . (4)

NCD has been proved to be an effective approximation of
NID and achieves superior performance in bioinformatics
applications such as the construction of phylogeny trees using
DNA sequences [1].

When NCD was used to quantify image similarities, it did
not achieve the same level of success as in other application
fields. For example, it was reported in [4] that NCD works
well when parts are added or subtracted from an image, but
struggles when image variations involve form, material, and
structure.

To overcome the difficulties in applying NCD for image
similarity applications, normalized conditional compression
distance (NCCD) was proposed in [3]. NCCD uses a general
conditional compressor framework to describe the simplest
transformation between two images:

K (y|x) ≈ CT (y|x) and K (x |y) ≈ CT (x |y). (5)

This leads to a normalized conditional compression distance
(NCCD) measure given by

NCCD(x, y) = max{CT (x |y), CT (y|x)}
max{C(x), C(y)} . (6)

and the conditional compressor CT is defined as follows: Let
{Ti |i = 1, . . . , N } be the set of transformations, let Ti (x)

represents the transformed image when applying the i-th
transform to image x , and let p(Ti , x) denotes the para-
meters used in the transformation. Each type of transforma-
tion is also associated with a parameter compressor, and C p

i
denotes the parameter compressor of the i-th transformation.
The conditional compressor can be defined as:

CT (y|x) = min
i

{C[y − Ti (x)]
+C p

i [p(Ti , x)] + log2(N )} , (7)

where C remains to be a practical image compressor which
encodes the difference between y and the transformed image
Ti (x), and the log2(N ) term computes the number of bits
required to encode the selection of one out of N potential
transformations.

3 Proposed method

Assuming stationarity and ergodicity for a source with prob-
ability measure μ, the following theorem applies [5]:

lim
n→∞

K (xn)

n
= H(μ) (8)
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Fig. 1 Natural image scene statistics (NSS) is corrupted by a distortion
channel (D) and then passes through the human visual system (HVS).
Mutual information between A and E quantifies the amount of informa-

tion extracted by the HVS from an original image, and mutual informa-
tion between A and F quantifies the amount of information extracted
from a distorted image [6].

Where xn is an object of the source X and n shows the length
of the object, with K (xn) being Kolmogorov complexity of
the object. However, stationarity and ergodicity are not good
assumptions of image signals in spatial domain; thus, we are
interested in transform domain representations of images,
where more reasonable assumptions may be made. Specifi-
cally, we transform the reference and distorted images into
the wavelet domain and assume stationarity, decorrelation,
and local independence among the image subbands. Based
on these assumptions, we have:

K (x |y) =
n∑

i=1

K (xn|yn) (9)

where K stands for Kolmogorov complexity of the images
and xn and yn are the corresponding wavelet subbands of the
reference and distorted image, respectively. Based on (9), the
NID can be reformulated into:

NID(x, y) = max{∑n
i=1 K (xn|yn),

∑n
i=1 K (yn|xn)}

max{∑n
i=1 K (xn),

∑n
i=1 K (yn)} (10)

Based on the stationarity and independence assumptions for
wavelet coefficients, we may rewrite (10) in Shannon entropy
framework based on (8):

NIDs(x, y)

= max{∑n
i=1 H(xn|yn),

∑n
i=1 H(yn|xn)}

max{∑n
i=1 H(xn),

∑n
i=1 H(yn)} (11)

Since GSM is capable of modeling important statistical fea-
tures of natural images, such as heavy-tailed marginal dis-
tributions of the wavelet coefficients of natural images and
nonlinear dependencies among them [8], we adopt a wavelet-
domain Gaussian scale mixture (GSM) model for natural
scene statistics. This is also consistent with visual informa-
tion fidelity (VIF) method introduced in [6]. We also use the
same distortion and human visual system (HVS) models used
in [6].

A Gaussian scale mixture (GSM) is a random field which
is represented as a product of a zero-mean Gaussian random
vector U , and an independent scalar random field, S. In this

sense, the GSM, A is defined to be A = {−→A i : i ∈ I }, where
I is the set of spatial indices for the random field [6], and:

A = SU = {Si
−→
U i : i ∈ I } (12)

where S = {Si : i ∈ I } is a field of random scalars and U =
{−→U i : i ∈ I } is the random field of Gaussian vectors. It is
easy to show that with the above assumption, the

−→
A i vectors

are normally distributed and independent given the random
scalar s, which makes GSM easier to use in modeling clusters
of coefficients of image subbands. It has also been shown that
GSM is capable of modeling important statistical features of
natural images, such as heavy-tailed marginal distributions
of the wavelet coefficients of natural images and nonlinear
dependencies among them [6]. This makes the GSM model
more appealing for our application.

In the case that A is a GSM representing a cluster of coef-
ficients in a natural image, we have:

E = A + N (13)

F = D + N ′ (14)

where N and N ′ are random fields of uncorrelated multivari-
ate Gaussian noise that represents the internal neural noise
in the HVS. D is a distortion model comprised of a signal
gain and additive noise:

D = g A + ν = gsU + ν (15)

and E and F are the clusters of coefficients in the reference
and the distorted images, respectively [6]. Figure 1 shows a
graphical representation of this model.

Let
−→
A j = (

−→
A1, . . . ,

−→
AN ) j represents N elements of a

subband A j , and
−→
D j ,

−→
E j ,

−→
F j be defined correspondingly.

Assuming that SN = s N and is given for all the variables,1

then NIDS becomes:

1 Hence ·|s N is dropped in all notations.
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NIDs(E, F)

= max{∑n
j=1 H(

−→
E j |−→F j ),

∑n
j=1 H(

−→
F j |−→E j )}

max{∑n
j=1 H(

−→
E j ),

∑n
j=1 H(

−→
F j )}

(16)

which can be further simplified into:

NIDs(E, F) = 1 −
∑

j I (
−→
E j ;−→

F j )

max{∑ j H(
−→
E j ),

∑
j H(

−→
F j )}

(17)

Since both
−→
E j and

−→
F j are continuous random variables,

direct calculation of their entropies is difficult while their
differential entropies do not provide adequate measures of
their information content. To overcome this problem, we use
the information content contained in the source

−→
A j as the

baseline and replace H(
−→
E j ) and H(

−→
F j ) with I (

−→
A j ;−→

E j )

and I (
−→
A j ;−→

F j ), respectively, which quantify the informa-
tion content that is perceived by the HVS in the original and
distorted images. We then define a normalized perceptual
information distance (NPID) as:

NPID(E, F)

= 1 −
∑

j I (
−→
E j ;−→

F j )

max{∑ j I (
−→
E j ;−→

A j ),
∑

j I (
−→
F j ;−→

A j )}
(18)

A normalized perceptual information similarity (NPIS) can
be defined as:

NPIS(E, F) = 1 − NPID(E, F)

=
∑

j I (
−→
E j ;−→

F j )

max{∑ j I (
−→
E j ;−→

A j ),
∑

j I (
−→
F j ;−→

A j )}
(19)

(19) can be further simplified by using the fact that
−→
E j

and
−→
F j are Gaussian for given s and the mutual informa-

tion of correlated Gaussians can be calculated based on the
determinants of the covariances [9]:

I (
−→
E j ;−→

F j ) = 1

2
log

[ |CE ||CF |
|C(F,E)|

]
(20)

I (
−→
E j ;−→

A j ) = 1

2
log

[ |CA||CE |
|C(A,E)|

]
(21)

I (
−→
F j ;−→

A j ) = 1

2
log

[ |CA||CF |
|C(A,F)|

]
(22)

Covariance matrices of A, D, E , and F are, respectively,
computed to be [9]:

CA = s2CU (23)

CD = g2s2CU + σ 2
ν I (24)

CE = s2CU + σ 2
n I (25)

CF = g2s2CU + (σ 2
ν + σ 2

n )I (26)

and we also have:

|C(E,F)| =
∣∣∣∣

CE CE F

CF E CF

∣∣∣∣ , (27)

|C(A,E)| =
∣∣∣∣

CA CAE

CE A CE

∣∣∣∣ , (28)

|C(A,F)| =
∣∣∣∣

CA CAF

CF A CF

∣∣∣∣ . (29)

It can be easily shown that: CA = s2CU , CE F = CF E =
gs2CU, CAE = CE A = s2CU and CAF = CF A = gs2CU.
Thus, (27)–(29) can be written as:

|C(E,F)| =
∣∣∣
[(

σ 2
ν + σ 2

n

)
s2 + σ 2

n g2s2
]

CU

+σ 2
n

(
σ 2

ν + σ 2
n

)
I
∣∣∣ (30)

|C(A,E)| =
∣∣∣σ 2

n s2CU

∣∣∣ (31)

|C(A,F)| =
∣∣∣
(
σ 2

ν + σ 2
n

)
s2CU

∣∣∣ (32)

Since CU is a symmetric matrix, a further eigenvalue decom-
position can be applied, which gives CU = Q�QT , where Q
is an orthogonal matrix and � is a diagonal matrix with eigen-
values λk for k = 1, 2, . . . , K along the diagonal entries.
(23), (25), (26) can then be expressed as:

CA = Q{s2�}QT (33)

CE = Q{s2� + σ 2
n I}QT (34)

CF = Q{g2s2� + (σ 2
ν + σ 2

n )I}QT (35)

(30) – (32) become:

|C(E,F)| = |Q{[σ 2
ν + (1 + g2)σ 2

n ]s2�

+σ 2
n (σ 2

ν + σ 2
n )I}QT | (36)

|C(A,E)| = |Q{σ 2
n s2�}QT | (37)

|C(A,F)| = |Q{(σ 2
ν + σ 2

n )s2�}QT | (38)

Since Q is orthogonal and the middle matrices between
Q’s in (36),(37), and (38) are diagonal, calculation of the
desired determinants can be simplified to a great extent [9]:

|CE,F | =
K∏

k=1

{[
σ 2

ν + (1 + g2)σ 2
ν

]
s2λk + σ 2

n

(
σ 2

ν + σ 2
n

)}

(39)

|CA,E | =
K∏

k=1

{
σ 2

n s2λk

}
(40)

|CA,F | =
K∏

k=1

{(
σ 2

ν + σ 2
n

)
s2λk

}
(41)

Thus, the mutual information relations (20), (21), and (22)
are simplified:
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I (
−→
A j ; −→

E j ) = 1

2

N∑

i=1

K∑

k=1

log2

(
1 + s2

i λk

σ 2
n

)
(42)

I (
−→
A j ; −→

F j ) = 1

2

N∑

i=1

K∑

k=1

log2

(
1 + g2s2

i λk

σ 2
n + σ 2

ν

)
(43)

I (
−→
E j ; −→

F j ) = 1

2

N∑

i=1

K∑

k=1

log2

×
( [

g2s2
i λk + (

σ 2
ν + σ 2

n

)] (
s2

i λk + σ 2
n

)
[(

σ 2
ν + σ 2

n

)
s2

i + σ 2
n g2s2

i

]
λk + σ 2

n

(
σ 2

n + σ 2
ν

)
)

(44)

To finish the computation of NPIS, we conclude by esti-
mating a set of parameters involved in the calculations,
including CU, s2, g and σ 2

v . We follow the same path taken
by [6,9]:

ĈU = 1

N

N∑

i=1

Ai AT
i (45)

where N is the number of evaluation windows in the corre-
sponding subband and Ai is the i th neighborhood coefficient.
The multiplier s is estimated using a maximum-likelihood
estimator [9]:

ŝ2 = 1

K
AT C−1

U A (46)

Least square optimization may be used to estimate the para-
meters g and σ 2

v :

ĝ = arg min
g

‖D − gA‖2
2 (47)

Take the derivative of the squared error cost function and let
it be zero, we have:

ĝ = AT D

AT A
(48)

by substituting (48) into (15), we can estimate σν
2 by:

σ̂ 2
ν = 1

K
(DT D − ĝAT D) (49)

In practice, when calculating the NPIS, we apply a five-
scale Laplacian pyramid decomposition [10] to the origi-
nal and distorted images, and compute the respective mutual
information according to (42), (43), and (44) using a slid-
ing 3 × 3 window that runs across each subband. At each
location, the window contains a spatial neighborhood of ten
coefficients (3 × 3 neighboring coefficients and one parent
coefficient, thus K = 10).

In [9], the authors propose an optimal pooling strategy
for IQA algorithms using a multi-scale information con-
tent weighting approach based on a GSM model of nat-
ural images. The information weighting scheme is based on
estimating the total perceptual information content for the
reference and distorted images from evaluation of local infor-
mation content of the images. It is shown that information

content weighting often leads to significant improvements in
performance of IQA methods. To incorporate this scheme,
we first define a local-NPIS (L-NPIS) measure by:

L-NPISi = I (
−→
E i ;−→

F i )

max{I (
−→
E i ;−→

A i ), I (
−→
F i ;−→

A i )}
(50)

We can then compute an information content-weighted NPIS
(IW-NPIS) measure using:

IW-NPIS j =
∑

i ω j,i L-NPISi∑
i ω j,i

(51)

where w j,i is the weight assigned to the L-NPIS value
calculated at the i th location at j th scale, and the value
of w j,i is calculated based on the information content
model given in [9]. Using the coarse-to-fine scale weights
{β1, β2, β3, β4, β5} = {0.0448, 0.2856, 0.3001, 0.2363,

0.1333} from [11], we have:

IW-LNPIS =
M∏

j=1

(IW-LNPIS j )
β j (52)

4 Results

To evaluate the performance of the proposed method, we test
it using Laboratory for Image and Video Engineering (LIVE)
[12], Tampere Image Database 2008 (TID2008) [13], and
Categorial Image Quality (CSIQ) [14] databases and com-
pare the results with a series of widely known and state-of-
the-art IQA algorithms, including peak signal-to-noise ratio
(PSNR) [9], Structural Similarity Index Measure (SSIM)
[15], Information-Weighted Structural Similarity Index Mea-
sure (IW-SSIM) [9], visual information fidelity (VIF) [6],
visual signal-to-noise ratio (VSNR) [16], HVS-based PSNR
[17], information-weighted PSNR (IW-PSNR) [9], and most
apparent distortion (MAD) [18].

The LIVE database consists of 29 original reference
images contaminated by five types of distortions at different
distortion levels. The distortion types include JPEG compres-
sion, JPEG2000 compression, white noise, Gaussian blur,
and fast fading channel distortion of JPEG2000 compressed
bitstream. A total of 982 subject-rated images are created
from these distortions and the subjective scores of all images
are adjusted according to an alignment process in which a
cross-comparison of mixed images from all distortion types
was done [12,9].

The TID2008 database consists of 25 original reference
images contaminated by 17 distortion types at 4 different
distortion levels. A total of 1,700 distorted images are gener-
ated and rated by subjects. The distortion types include addi-
tive Gaussian noise, additive noise where the noise in color
components is more intensive than the noise in luminance
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components, spatially correlated noise, masked noise, high-
frequency noise, impulse noise, quantization noise, Gaussian
blur, image denoising, JPEG compression, JPEG2000 com-
pression, JPEG transmission errors, JPEG2000 transmission
errors, non-eccentricity pattern noise, local block-wise dis-
tortions of different intensity, mean shift, and contrast change
[13,9].

The CSIQ database consists of 866 distorted images
created from 30 original reference images using six types
of distortions at four to five distortion levels. CSIQ images
are subjectively rated based on a linear displacement of the
images across four calibrated LCD monitors placed side
by side with equal viewing distance to the observer. The
database contains 5000 subjective ratings from 35 different
observers, and ratings are reported in the form of DMOS. The
distortion types include JPEG compression, JPEG2000 com-
pression, global contrast decrements, additive pink Gaussian
noise, and Gaussian blurring [14,9].

Five evaluation metrics are used to compare the IQA
measures. Pearson linear correlation coefficient (PLCC),
mean absolute error (MAE), root mean-squared error (RMS),
Spearman’s rank correlation coefficient (SRCC), and Kendall
rank correlation coefficient (KRCC). A thorough explana-
tion of these metrics is found in [9]. Among these metrics,
PLCC, MAE, and RMS are adopted to evaluate prediction
accuracy, and SRCC and KRCC are employed to assess pre-
diction monotonicity. A better objective IQA measure should
have higher PLCC, SRCC, and KRCC while lower MAE and
RMS values [9].

The test results using the three databases are reported in
Tables 1, 2, and 3. Figure 2 shows a sample scatter plot
of NPIS versus three different subjective quality evaluation
databases, where the subjective scores are given by Mean
Opinion Score (MOS) or Difference of Mean Opinion Score
(DMOS) between a distorted image and its corresponding
original reference image. Each point in the scatter plot rep-
resents one image in the corresponding database. Figure 3
shows a similar scatter plot for IW-NPIS. Tables 1, 2, and 3

Table 1 Performance comparison based on LIVE [12] database

Model PLCC MAE RMS SRCC KRCC

PSNR 0.8723 10.51 13.36 0.8756 0.6865

SSIM [15] 0.9449 6.933 8.946 0.9479 0.7963

IW-SSIM [9] 0.9556 6.212 8.047 0.9570 0.8197

VIF [6] 0.9598 6.148 7.667 0.9632 0.8270

VSNR [16] 0.9229 8.089 10.52 0.9271 0.7610

PSNR-HVS-M [17] 0.9251 7.966 10.37 0.9295 0.7659

MAD [18] 0.9394 7.293 9.368 0.9438 0.7920

NPIS 0.9211 7.458 8.491 0.9093 0.7514

IW-NPIS 0.9339 7.013 8.011 0.9376 0.7891

Table 2 Performance comparison based on TID2008 [13] database

Model PLCC MAE RMS SRCC KRCC

PSNR 0.5223 0.8683 1.1435 0.5531 0.4027

SSIM [15] 0.7732 0.6546 0.8511 0.7749 0.5768

IW-SSIM [9] 0.8579 0.5276 0.6895 0.8559 0.6636

VIF [6] 0.8090 0.5990 0.7888 0.7496 0.5863

VSNR [16] 0.6820 0.6908 0.9815 0.7046 0.5340

PSNR-HVS-M [17] 0.5519 0.8036 1.1190 0.5612 0.4509

MAD [18] 0.7480 0.6641 0.8907 0.7708 0.5734

NPIS 0.7855 0.6239 0.8111 0.7682 0.5013

IW-NPIS 0.8244 0.5846 0.7637 0.8167 0.5819

Table 3 Performance comparison based on CSIQ [14] database

Model PLCC MAE RMS SRCC KRCC

PSNR 0.7512 0.1366 0.1733 0.8058 0.6084

SSIM [15] 0.8612 0.0992 0.1334 0.8756 0.6907

IW-SSIM [9] 0.9144 0.0801 0.1063 0.9213 0.7529

VIF [6] 0.9277 0.0743 0.0980 0.9195 0.7537

VSNR [16] 0.7355 0.1335 0.1779 0.8109 0.6248

PSNR-HVS-M [17] 0.7725 0.1290 0.1667 0.8222 0.6529

MAD [18] 0.8202 0.1258 0.1502 0.8988 0.7272

NPIS 0.8999 0.1024 0.1188 0.8643 0.5920

IW-NPIS 0.9023 0.0923 0.1070 0.8985 0.6413

provide a comparison of the proposed methods with PSNR
and state-of-the-art methods. The results of the proposed
methods are in bold face. It can be observed that the pro-
posed methods perform significantly and consistently better
than PSNR and are in general comparable to many state-
of-the-art algorithms. It takes roughly 5.62 s to calculate IW-
NPIS for a typical set of 512×512 images on an Intel Core i3
M380 CPU at clock speed of 2.53 GHz, which is a moderate
increase in computation time over 2.16 s required to calcu-
late VIF on the same machine. This is impressive as an early
attempt to use Kolmogorov complexity and NID theories for
image quality assessment, where many existing methods are
in their mature stages.

5 Conclusion

In this paper, we extend the application of Kolmogorov
complexity and NID to image distortion and quality assess-
ment by employing a wavelet-domain Gaussian scale mix-
ture model of images and by estimating Kolmogorov com-
plexity based on Shannon entropy approach. We show that
the resulting image similarity measure is competitive with
respect to state-of-the-art image quality assessment algo-
rithms when tested using publicly available subject-rated
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Fig. 2 Scatter plots of NPIS versus subjective scores for LIVE [12]
TID2008 [13] and CSIQ [14] databases by NPIS Fig. 3 Scatter plots of IW-NPIS versus subjective scores for LIVE [12]

TID2008 [13] and CSIQ [14] databases by IW-NPIS
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large-scale image databases. The proposed method draws
some connections between the theories of Kolmogorov Com-
plexity, NID, Shannon entropy, statistical image modeling,
and real-world image processing applications.
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