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Abstract. There has been an increasing consensus in the video distribution industry that the design 
and operation of the full video delivery chain needs to be driven by the quality-of-experience (QoE) 
appropriate to the end-users. Here we propose a new framework that uses a unified end-to-end 
solution to produce consistent QoE scores at all points along the delivery chain under the same 
evaluation criterion. This is a framework that produces a clear picture instantaneously to operation 
engineers, managing executives and content creators about how video QoE degrades along the 
chain, a framework that allows immediate issue identification, localization and resolution, a 
framework that enables quality and resource usage optimization, and a framework that provides 
reliable predictive metrics for long-term strategic resource and infrastructure allocations. The main 
challenge in the implementation of such a framework is to create a unified QoE metric that not only 
accurately predicts human QoE, but is also light-weight and versatile, readily plugged into multiple 
points in the video delivery chain. We show that the SSIMPLUS metric offers the best promise. We 
demonstrate the benefits of the proposed framework and QoE metric using bandwidth optimization 
as an example. 
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Introduction 
Video distribution services have been growing exponentially in the past decade, coinciding with 
the accelerated proliferation of video content and smart mobile devices [1]. The gigantic scale of 
video data transmission has been supported by a vast investment of money and resources, and 
has also helped major industrial players grow their revenue immensely. Nevertheless, typical 
consumers, while enjoying the video content delivered to their TVs, tablets, and smart phones, 
often complain about the quality of the video they are receiving and experiencing. A recent 
survey shows that 39% of video consumers are considering changing their providers in the next 
12 months due to poor video quality [2]. Meanwhile, content producers and providers are 
concerned about whether their creative intent is being properly preserved during the video 
delivery process [3], [4]. 
Quality assurance (QA) or quality control (QC) has long been recognized as an essential 
component to warrant the service of modern video distribution systems. Traditionally, QA/QC 
has been network-centric, focusing on the quality-of-service (QoS) [5] provided to the users, 
where the key metrics are defined by the network service parameters such as bitrate, package 
drop rate, and latency, together with integrity checks that guarantee the videos to be properly 
played at user devices. While QoS metrics are useful for basic QA/QC purposes, they have 
fundamental limitations in tracking what the users are actually experiencing. For example, the 
same video stream displayed on two different types of user devices (e.g., TVs vs. smartphones) 
with different combinations of window sizes and pixel resolutions may lead to very different 
viewer experiences. Any freezing event on the users’ devices could result in a negative impact 
on user experiences. Different perceptual artifacts produced by video compression methods 
could produce annoying visual impairment. All of these are not accounted for by QoS measures. 
Consequently, Quality-of-Experience (QoE) [6], which measures “the overall acceptability of an 
application or service as perceived subjectively by the end-user” [7], has recently been set to 
replace the role of QoS. 
QoE performance measurement is a difficult problem, and the practical usage of the term could 
vary significantly from one solution to another. In practice, some quick remedies are often used 
to replace QoE measurement. For example, device playback behaviors such as statistics on the 
duration and frequency of video freezing events, may be employed to create a crude estimate of 
visual QoE. Such quick remedies only provide a rough idea about how certain components of 
the video delivery system perform, but lack accuracy, comprehensiveness and versatility. Most 
importantly, the perceptual artifacts that affect picture quality are not properly measured, and 
the large perceptual differences due to viewing conditions, such as viewer device, viewing 
resolutions and frame rate are not taken into account. As a result, it becomes difficult to use 
such approaches to precisely localize quality problems, to recover from failures, to optimize 
system performance, and to manage the visual QoE of individual users. 
Another common mistake is to equate bitrate with picture quality or QoE, and use bitrate to 
define the level of services. However, encoding two different videos with the same bitrate could 
result in a substantial difference in perceived picture quality, meaning bitrate and picture 
quality/QoE cannot be used interchangeably. This is in addition to the large differences in 
performance between different encoders/transcoders with different configurations. Even worse, 
the actual user QoE varies depending on the device being used to display the video, another 
factor that cannot be taken into account by bitrate-driven video delivery strategies. 
Here we propose to use a unified end-to-end framework to tackle the QoE monitoring, 
optimization and management problems as a whole. The principle of the framework is to “begin 
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with the end in mind”, because the visual QoE of end users, and whether such user experience 
faithfully reflects the creative intent of content producers, determine the ultimate overall 
performance of a video delivery system. Keeping this principle in mind, any design and resource 
allocation in the video distribution system, regardless of if it is for an individual component at the 
head-end, media data center, network, access server, user device, or the whole system, should 
be evaluated, compared and optimized for one criterion, i.e., the impact on end users’ QoE. To 
make such a system work properly, the most challenging task is to devise a highly accurate, 
efficient and versatile QoE metric. Once such a metric is deployed throughout the video 
distribution system, many optimization solutions come into play naturally. 
 

End-to-End Visual QoE Monitoring, Optimization and Management 
A general framework of modern video distribution systems is shown in Fig. 1. When a video 
distributor receives a source video, it passes the video through a sophisticated video delivery 
chain consisting of a series of processing, encoding, transcoding, packaging, routing, streaming, 
decoding, and rendering stages before it is presented on the screen of individual users’ viewing 
devices. As far as QA/QC is concerned, the user experience measured at the very end of the 
chain is what matters. However, only measuring QoE at the very end would not be sufficient to 
help localize problems that could occur at any point along the chain. Therefore, to ensure the 
video is faithfully and smoothly delivered to the consumer device, the ideal QA/QC method 
would be to have inspectors deployed at the very end and also at each of the transition points 
along the chain. Ideally, all of these inspectors would be humans, as illustrated on the top 
section of Fig. 1, so that any quality issue can be identified instantaneously. In practice, 
however, this is not feasible because it requires thousands of source video streams and millions 
of derivative streams (the actual scale of many real-world systems) to be evaluated continuously 
by human inspectors, who are a constrained and non-scalable resource that may behave 
inconsistently over time. 
To overcome the problem with a viable solution, we propose to replace humans with objective 
QoE monitoring probes, which constantly predict human QoEs at the corresponding inspection 
spots, as shown in the middle section of Fig. 1. There are two essential properties of such QoE 
monitoring probes: 

• First, The QoE probes “see” and “behave” like human inspectors. More specifically, they 
observe all the actual pixels of all video frames like humans, and produce QoE scores 
just like what humans would say about the quality when seeing the same video streams. 

• Second, the QoE probes provide a “unified end-to-end” monitoring solution in the sense 
that the QoE evaluation methods at all transition points along the video delivery chain 
are designed under the same evaluation framework and compatible methodologies to 
produce consistent quality scores that are directly comparable. 

Having QoE monitoring probes deployed throughout the video delivery chain, QoE data is 
collected with statistics at different time-scales (minutes, hours, days, weeks, months, years), 
resulting in a valuable source for big data analytics and strategic intelligence. 
Adopting the framework introduced above leads to many benefits. 

• First, operation engineers will gain instantaneous awareness about how video QoE 
degrades along the chain, such that problems can be immediately identified, localized 
and resolved. 
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Figure 1. Unified end-to-end QoE monitoring, optimization and management framework in a 
video distribution system. 
 

• Second, design engineers may closely observe the QoE of the input and output of 
individual components, and perform better design and optimization, and be confident 
about the impact of their new design and optimization on the final user QoE.  

• Third, managing executives will have a clear picture about how video quality evolves 
throughout the video delivery system and over long time scales. Meanwhile, when long-
time large-scale data has been collected, big data analytics can be performed, so as to 
make intelligent strategic decisions to manage user QoE. 
 

Objective QoE Assessment Method 
At the core of the end-to-end QoE monitoring framework is the QoE quality metric, which is also 
the most challenging technical problem to solve. Objective QoE prediction is difficult because it 
not only requires deep understanding of the human visual system (HVS), but also advanced 
computational models and algorithms, smart design and efficient implementation of the 
algorithms and systems. Traditional approaches such as peak signal-to-noise-ratio (PSNR) 
have been shown to have poor correlations with perceptual video quality. More advanced 
methods such as the structural similarity index (SSIM) [8], [9], multi-scale SSIM (MS-SSIM) [10], 
information content-weighted SSIM (IW-SSIM) [11], video quality model (VQM) [12] and video 
multi-method assessment fusion (VMAF) [13] significantly improve QoE predictions but are still 
limited in prediction accuracy. More importantly, these traditional approaches have fundamental 
limitations in their application scopes, functionalities and computational cost. These limitations 
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largely impede these methods from being deployed broadly in real-world video distribution 
systems. The disadvantages of these traditional methods become even more pronounced when 
they are faced with the unified end-to-end QoE monitoring challenge we are targeting here. 
An objective QoE metric that meets the challenge in a unified end-to-end QoE monitoring 
system requires the following features: 

• Accurate and light-weight. The QoE metric must produce quality scores that 
accurately predict human visual QoE. The metric needs to be verified using 
independent, large-scale subject-rated video databases with diverse content and 
distortion types, and show high correlations with mean subjective opinions. Meanwhile, 
the metric needs to be light-weight (software implementation preferred), allowing for real-
time computations of high resolution videos (e.g., UHD videos) with moderate hardware 
configurations. Such light-weight and speed requirement is critical in large-scale video 
distribution systems to reduce the overall cost and to maximize the flexibilities in terms of 
deployment, integration, customization, and scalability. 

• Easy-to-understand and easy-to-use. The QoE metric must be easy-to-understand, 
directly producing QoE scores that linearly scale with what an average viewer would say 
about the video quality. For example, if the quality score range of the metric is between 0 
and 100, then the total scale range may be divided into five evenly spaced segments 
corresponding to five perceptual QoE categories of bad (0-20), poor (21-40), fair (41-60), 
good (61-80), and excellent (81-100), respectively. The QoE metric must be associated 
with a clearly defined implementation structure and a carefully designed easy-to-use 
user interface (UI), where the main presentation is simple and intuitive, focusing on the 
most important trends and alert information. Such an easy-to-understand and easy-to-
use QoE metric needs to define an easy-to-grasp language, under which engineers can 
identify and fix quality problems, and executives are able to make critical business 
decisions. An illustration of the structure is given in Fig. 2, which provides a smooth 
transition between operational/tactical and business/strategic usage of the QoE metric.   

• Applicable and consistent across resolutions, frame rates, dynamic ranges, user 
devices and contents. In addition to accuracy and speed, another critical problem that 
hinders the wide usage of existing well-known video quality metrics (PSNR, SSIM, MS-
SSIM, IW-SSIM, VQM, VMAF) is their limited applicability. In particular, when videos are 
of different resolutions, frame rates, and dynamic ranges, these metrics are not 
applicable, because all of them require pixel-to-pixel correspondence. Moreover, when 
the same video stream is displayed on different viewing devices, the perceptual QoE 
could be significantly different. However, these metrics produce only one quality score, 
and thus fail to make device-dependent QoE predictions. Furthermore, these quality 
metrics often produce inconsistent scores across different content types (e.g., sports vs. 
news vs. animations). As a result, when two videos with different content obtain similar 
quality scores, their perceived QoE may be very different. Such inconsistency strongly 
constrains the usefulness of such QoE metrics in large-scale distribution systems that 
operate on thousands of video service channels to make resource allocation decisions 
across the systems. Therefore, to implement a unified end-to-end QA/QC framework for 
real-world video distribution systems (e.g., for multi-screen and ABR video delivery 
networks), consistent and cross-resolution, cross-frame rate, cross-dynamic range, 
cross-viewing device, and cross-content QoE assessments are essential. 
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Figure 2. Hierarchical structure (top) and user interfaces at enterprise (bottom-left), region 
(bottom-middle) and service and stream (bottom-right) levels, that allow for a natural transition 
between operational/tactical and business/strategic usage of the QoE metric. 
  

• Versatile for usage in single-ended, double-ended and more sophisticated 
scenarios. Single-ended and double-ended video quality assessments refer to the 
different application scenarios where a reference video may or may not be available 
when assessing the quality of a test video. Double-ended quality measures are 
essentially fidelity measures and PSNR, SSIM, MS-SSIM, IW-SSIM, VQM and VMAF all 
belong to this category, which assumes the reference video is accessible and of perfect 
quality. Double-ended quality measures typically have higher quality prediction accuracy 
than single-ended approaches, but are more difficult to apply. Very often, the reference 
videos are completely inaccessible. Even when they are accessible, for example, at 
video transcoders, the reference videos are often not well aligned with the test videos 
both in space and time. Even worse, the source videos received from content providers 
are often distorted themselves, creating more complex scenarios where the reference 
videos are already degraded. In order to provide consistent QoE assessment at all 
points along the video delivery chain, the QoE metric has to be extremely versatile. The 
QoE metric needs to be easily plugged into single-ended, double-ended and more 
sophisticated scenarios. It also needs to make the best use of all resources to produce 
the most accurate QoE prediction. For example, at the transcoder, the QoE metric needs 
to precisely align the source and test videos before applying double-ended fidelity 
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assessment. It also needs to appropriately handle the case when the reference video 
quality is already degraded. 

All of the above are must-have features for a QoE metric to work effectively in a unified end-to-
end quality monitoring framework. Conventional and well-known video quality metrics (PSNR, 
SSIM, MS-SSIM, IW-SSIM, VQM, VMAF), however, are too far from meeting these 
requirements (and in most cases not applicable, regardless of accuracy and speed), and thus 
their usage is typically limited to lab-testing environments or restricted to small-scale use cases 
for testing certain individual components and time segments in the video delivery system. 
The large gap between the limited performance and functionality of the well-known video quality 
metrics and the essential requirements of large-scale unified end-to-end QoE monitoring 
systems has motivated the development of the SSIMPLUS video QoE metric, which has been 
set to meet all the requirements throughout its design and implementation phases [14]. A recent 
study using 10 independent publicly-available subject-rated video databases (created from a 
collection of hundreds of thousands subjective ratings) evaluates conventional and state-of-the-
art video quality metrics (including PSNR, SSIM, MS-SSIM, VMAF, SSIMPLUS and several 
other metrics), by comparing the quality predictions of these metrics against subjective mean 
opinion scores (MOS) [15]. The results showed that SSIMPLUS achieves the highest QoE 
prediction performance in terms of its correlation coefficients against MOS. It appears to be the 
only QoE metric that achieves an average correlation coefficient higher than 0.9. The same 
study also found that the SSIMPLUS metric to be 16.4 times faster than the VMAF metric, 
allowing SSIMPLUS to be computed in real-time in real-world applications [15]. The SSIMPLUS 
metric is applicable and produces consistent scores across resolutions, frame rates, dynamic 
ranges and content types. For every single video stream, it generates multiple QoE scores 
corresponding to a wide spectrum of viewing devices, from small screens on cellphones to 
large-size TVs. When applied to ABR encoding, SSIMPLUS simultaneously computes single-
ended QoE scores of the source video input, together with double-ended scores for all the 
derivative video output produced by transcoders with different bitrates and resolutions. As well, 
it provides the absolute QoE scores of the derivative streams considering that the source input 
does not have perfect quality. At the client side, SSIMPLUS can combine picture presentation 
quality with the impact of switching and stalling events to produce an overall QoE assessment 
for each individual user on a per-view basis [16], [17]. All of these computations are done at a 
speed faster than real-time. Due to these features, SSIMPLUS has been successfully deployed 
in large-scale operational environments, running 24/7 reliably.   
 

QoE-Driven Bandwidth Optimization 
Once a unified end-to-end QoE monitoring solution is in place, many benefits come as a natural 
next step, as described earlier. Many of such benefits involve optimization, and one widely 
recognized example is bandwidth optimization. Although a significant number of solutions have 
been proposed in the industry for saving bandwidth, talking about bandwidth reductions without 
maintaining the right level of visual QoE makes little sense. Due to the lack of proper QoE 
assessment tools, existing bandwidth saving approaches, whether it is applied to 
encoding/transcoding or streaming optimization, result in unstable results. To perform 
bandwidth optimization properly, the first step has to be adopting a trusted QoE metric with 
powerful functionalities, e.g., accurate, meaningful and consistent quality assessment cross 
resolutions, frame rates, dynamic ranges, viewing device and video content. Below we give an 
illustrative example using SSIMPLUS as the example QoE metric to demonstrate how large 
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bandwidth savings can be achieved in live and file-based operations by making use of such a 
QoE metric. 
Significant bandwidth savings can be obtained by adopting a QoE measure that produces 
consistent QoE assessment across content, resolution, and user device, each of which could 
lead to significant gain. A step-by-step example is given in Fig. 3. Firstly, because of the 
difference in encoding difficulty of different content (Title 1 and Title 2 shown in the top graph of 
Fig. 3), to reach a guaranteed QoE quality level (SSIMPLUS = 90), using a fixed bandwidth to 
encode all videos may be a waste, depending on video content, e.g., using a fixed 4Mbps when 
only 3.1Mbps is necessary for Title 2. Second, when the same content is encoded to two or 
more spatial/temporal resolutions, the capability of picking the most cost-effective 
spatial/temporal resolution to achieve the guaranteed quality level can also help save large 
bandwidth, e.g., a bandwidth reduction from 3.1Mbps to 2.4Mbps is obtained by switching from 
1080p to 720p resolutions, as shown in the middle graph of Fig. 3. Finally, the perceptual QoE 
varies significantly on different viewing devices. This can be seen in the quality-bitrate curves in 
the bottom graph, which shows that when the user is known to use a smartphone rather than a 
TV to watch the video, a bandwidth of 0.8Mbps is sufficient to achieve the same target quality 
level (SSIMPLUS = 90). With all three factors combined, a total of 80% bandwidth savings may 
be obtained (from 4Mbps to 0.8Mbps). 
Although the example given here is for illustration purposes only, and in practice users may be 
constrained to explore all three factors for maximum cost-savings, our intensive study suggests 
that for most video content and the most common usage profiles, an average cost saving of 
20%-60% is typically achieved by properly adopting this QoE metric-driven bandwidth 
optimization technology. Such bandwidth savings can be implemented by adaptive operation of 
video encoders/transcoders, and may also be incorporated into adaptive streaming frameworks 
to achieve similar goals in a dynamic way. 
 

Conclusion 
We propose a framework for unified end-to-end QoE monitoring, optimization and management. 
The principle behind the design of the framework is to start with end user’s QoE. All the QoE 
monitoring points should produce instantaneous scoring that reflects the end user’s QoE up to 
the monitoring point in the video delivery chain. The QoE scores need to be accurate, consistent 
and directly comparable, such that the monitoring solutions of the entire video distribution 
network speaks the same language, from the head-end, media center, network, access server, 
to the client viewing devices. Such a unified end-to-end solution laid the groundwork for the 
subsequent operations of great benefits. Specifically, operation engineers will be able to 
immediately identify, localize and resolve quality problem, design engineers will be able to 
perform effective and accurate optimizations on individual components in the video delivery 
chain, and managing executives will have a clear picture about how video quality evolves 
throughout the distribution system and over long time scales, so as to make intelligent strategic 
decisions to manage user QoE. 
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Figure. 3 Illustration of how bandwidth savings is achieved by using a QoE metric that is able to 
adapt to video content (top-graph), video resolution (middle-graph), and user viewing device 
(bottom-graph). All levels of adaptations contribute to the final bandwidth savings, without 
compromising the guaranteed user QoE level (SSIMPLUS = 90). 
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The most challenging task in implementing the proposed framework is to create an objective 
QoE metric that is not only accurate, fast, easy-to-understand and easy-to-use, but also 
applicable and consistent across resolutions, frame rates, dynamic ranges, viewer devices and 
contents. Moreover, it needs to be highly versatile for use in single-ended, double-ended and 
more sophisticated scenarios. Conventional and well-known video quality metrics such as 
PSNR, SSIM, MS-SSIM, IW-SSIM, VQM and VMAF are far from meeting these requirements, in 
terms of not only accuracy and speed, but also applicability and functionality. As a result, their 
usage is limited to lab-testing environment or small-scale use cases. In today’s environment, a 
metric is required that satisfies all critical requirements for a unified end-to-end QoE monitoring 
system. Such great needs have motivated the recent development of novel video QoE metrics 
such as SSIMPLUS [14], [15], which has been successfully deployed in real-world large-scale 
QoE monitoring systems. 
To further demonstrate the benefits of adopting the proposed framework and QoE metric, we 
use bandwidth optimization as an example, which demonstrates that large bandwidth savings 
can be obtained with little effort, purely by adopting a QoE metric such as SSIMPLUS. 
With the wide deployment of the proposed framework and QoE metrics in large-scale video 
distribution networks. The QoE data collected in large and varying space and time-scales 
constitutes a valuable source for big data analytics and strategic intelligence which is a highly 
promising direction for future investigations. 
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