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Complex wavelet structural similarity (CW-SSIM) index has been recognized as a novel

image similarity measure of broad potential applications due to its robustness to small

geometric distortions such as translation, scaling and rotation of images. Nevertheless,

how to make the best use of it in image classification problems has not been deeply

investigated. In this paper, we introduce a series of novel image classification

algorithms based on CW-SSIM and use handwritten digit recognition, and face

recognition as examples for demonstration. Among the proposed approaches, the best

compromise between accuracy and complexity is obtained by the CW-SSIM support

vector machine based algorithms, which combines an unsupervised clustering method

to divide the training images into clusters with representative images and a supervised

learning method based on support vector machines to maximize the classification

accuracy. Our experiments show that such a conceptually simple image classification

method, which does not involve any registration, intensity normalization or sophisti-

cated feature extraction processes, and does not rely on any modeling of the image

patterns or distortion processes, achieves competitive performance with reduced

computational cost.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Image classification is a common problem in a broad
range of applications. The majority of existing image
classification systems contains a ‘‘feature extraction’’ stage
as a pre-classification step. These features are typically local
or global structural descriptors of the image. The subse-
quent classification step then works in the feature space,
where a large number of classifiers may be employed,
ranging from simple k-nearest neighbor (k-NN) method
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[1] to more advanced approaches such as regularized
discriminant analysis (RDA) [2], principle component ana-
lysis (PCA) mixture model[3], quadratic discriminant func-
tion (QDF) [4], and kernel-based support vector machine
(SVM) [5] and kernel PCA methods [6]. The performance of
these image classification systems is largely constrained by
the extracted features, which need to be selected with great
care, because ‘‘a classifier is only as good as its features’’.
For example, since images or objects are often shifted,
scaled and rotated, it is desirable to define (or design) the
features so that they are invariant or robust to these
changes [7]. There are also powerful machine learning
algorithms, such as artificial neural networks [8] and
convolutionary neural networks [9,10], that can be
employed to automatically ‘‘discover’’ good features from
a large number of training images, where feature discovery
is left to a ‘‘black box’’ that may be obscure and difficult to
understand in intuitive ways. A limitation of these feature-
n based on complex wavelet structural similarity, Signal
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based approaches is that the features are tuned to specific
classification problems and are weak in their generalization
capability. As a result, the features may have to undergo a
new phase of design, training or selection when images
with different shapes and structures are to be classified.

A different type of image classification methods are
based on template matching, where the similarities
between a test image and a set of templates are evaluated
and used to determine the class label without employing
any specific structural features of images. These
approaches are conceptually simple and often exhibit
strong generalization ability. However, the effectiveness
of these methods relies heavily on the image similarity

measure being employed.
Recently, there has been significant progress in the

design of image similarity measures [11]. In particular,
the structural similarity (SSIM) index [12] has been found
to be a much better measure than the widely used mean
squared error (MSE) in predicting perceptual image qual-
ity, where the similarity between a distorted and a
perfect-quality reference images is used as an indicator
of the quality of the distorted image. The philosophy
behind SSIM is to distinguish between structural and
non-structural distortions and treat them unequally,
which is presumably what the human visual system
(HVS) would do.

Despite the superior performance of SSIM over MSE,
both of them are very sensitive to geometric image
distortions such as small scaling, rotation, and translation.
In image classification tasks, however, resistance to these
distortions is crucial because it is a common practice that
images are not perfectly aligned to each other before a
similarity measure is computed. In order to remove this
‘‘defect’’ from SSIM while maintaining its advantages, the
complex wavelet SSIM (CW-SSIM) index was proposed
[13], which is based on the correlations of phase patterns
measured in the complex wavelet transform domain. The
construction of CW-SSIM has some interesting connec-
tions with several computational models that account for
a variety of biological vision behaviors. These models
include: (1) the involvement of bandpass visual channels
in image pattern recognition tasks [14]; (2) the represen-
tation of phase information in primary visual cortex using
quadrature pairs of localized bandpass filters [15]; (3) the
computation of complex-valued product in visual cortex
[16]; (4) the computation of local energy (using sums of
squared responses of quadrature-pair filters) by complex
cells in visual cortex [17]; and (5) the divisive normal-
ization of filter responses (using summed energy of
neighboring filter responses) in both visual and auditory
neurons [18,19]. CW-SSIM has been shown to be a useful
measure in a series of applications, including image
quality assessment [20], line-drawing comparison [20],
segmentation comparison [20], range-based face recogni-
tion [21] and palmprint recognition [22]. However, its use
in image classification problems has not been deeply
exploited [23]. The previous CW-SSIM based methods
[21,22] used the CW-SSIM NN case only. These methods
are mainly based on the CW-SSIM values calculated
between a query image and all the images in a database.
The performance of these methods showed the suitability
Please cite this article as: A. Rehman, et al., Image classificatio
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of CW-SSIM as the similarity measure for image recogni-
tion problems. However, the application of these methods
is very limited due to their high computational complex-
ity. The current paper explores a much wider ranger of
CW-SSIM based image recognition methods and attempts
to overcome the limitation of CW-SSIM NN. The method
proposed in [23] for image classification uses CW-SSIM
indirectly by employing it as a kernel function and
exhibits lower recognition as compared to the proposed
method.

In this study, we investigate CW-SSIM as a novel image
classification tool in the context of handwritten digit and
face recognition. The robustness of CW-SSIM against
small geometric distortions allows us to avoid extracting
any structural features that are insensitive to these dis-
tortions or employing any preprocessing methods such as
deskewing, spatial shift, scaling and rotation. A series of
CW-SSIM based classification methods are introduced,
including CW-SSIM k-NN, CW-SSIM weighted k-NN, CW-
SSIM k-means, and CW-SSIM SVM. Among them, CW-
SSIM SVM achieves the best balance between classifica-
tion accuracy and computational complexity, and is
divided into two stages. In the first stage, an unsupervised
clustering method is employed to divide the training
images into clusters, each of which is associated with a
representative image. In the second stage, a supervised
learning method based on SVM is used to maximize the
classification accuracy. The performance improvement of
CW-SSIM SVM is achieved with reduced computational
complexity.

2. Image similarity measures

The performance of template matching-based image
classification systems critically depends on the accuracy
and robustness of the image similarity/dissimilarity mea-
sure being employed, which quantifies the closeness or
departure in the image space between a query image and
any selected image in the training database.

2.1. Mean squared error

The mean squared error (MSE) is the simplest and
most widely used image dissimilarity measure [24]. For
two N-pixel grayscale images x and y with intensity
values fxi9i¼ 1, . . . ,Ng and fyi9i¼ 1, . . . ,Ng, respectively,
the MSE is calculated as

MSE¼
1

N

XN

i ¼ 1

ðxi�yiÞ
2: ð1Þ

The MSE is easy to compute and has a number of desirable
properties in real world applications, but it also suffers
from several fundamental problems [24].

Consider the handwritten digits in Fig. 1, where image
(a) is used as a reference and compared with every other
image. Regarded as collections of pixel intensity values
and compared using MSE, the images are very different.
However, regarded as shapes/structures, they appear
rather similar to a human observer. In such a situation,
if we persist on using MSE, then we need to perform
n based on complex wavelet structural similarity, Signal
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Fig. 1. Comparison of image similarity measures MSE and CW-SSIM.

(a) Reference image; (b)–(h) test images with the same CW-SSIM but

significantly different MSE values with respect to the reference:

(a) MSE¼0, CW-SSIM¼1; (b) MSE¼26, CW-SSIM¼0.73; (c) MSE¼17,

CW-SSIM¼0.72; (d) MSE¼24, CW-SSIM¼0.73; (e) MSE¼15, CW-

SSIM¼0.73; (f) MSE¼21, CW-SSIM¼0.73; (g) MSE¼33, CW-

SSIM¼0.72; and (h) MSE¼14, CW-SSIM¼0.72.

Fig. 2. Comparison of image similarity measures MSE and CW-SSIM.

(a) Reference image; (b)–(h) test images with the same MSE but quite

different CW-SSIM values with respect to the reference: (a) MSE¼0, CW-

SSIM¼1; (b) MSE¼57, CW-SSIM¼0.29; (c) MSE¼57, CW-SSIM¼0.17;

(d) MSE¼57, CW-SSIM¼0.33; (e) MSE¼57, CW-SSIM¼0.37; (f)

MSE¼57, CW-SSIM¼0.33; (g) MSE¼57, CW-SSIM¼0.29; and (h) MSE¼

57, CW-SSIM¼0.55.
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various preprocessing steps and coordinate transforma-
tions to align the image patterns beforehand [25]. How-
ever, such alignment methods are often unreliable and
any mis-registration of the images may lead to erroneous
results. Another example is given in Fig. 2, where shapes
or structures between the reference image (a) and each of
the other images are substantially different, but their MSE
values remain the same. Therefore, in order to operatio-
nalize the notion of shape/structure similarity, with
ultimate goal of using it as a basis of a robust recognition
system, we need to replace MSE with a similarity measure
that is based on the similarity of shapes/structures
between the images being compared.

2.2. Structural similarity indices

The SSIM index was originally proposed to predict
human preference in evaluating image quality [12].
Assuming that the HVS is optimal in extracting structural
Please cite this article as: A. Rehman, et al., Image classificatio
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information from the visual scene, a comparison of
structural similarity should provide a good estimate of
perceptual image similarities. The original SSIM algorithm
works in the spatial domain. Given two image patches
x¼ fxi9i¼ 1, . . . ,Mg and y¼ fyi9i¼ 1, . . . ,Mg, the SSIM
index is defined as

Sðx,yÞ ¼
ð2mxmyþC1Þð2sxyþC2Þ

ðm2
xm2

yþC1Þðs2
xþs2

yþC2Þ
, ð2Þ

where m, s are the sample mean, standard deviation or
covariance, and C1 and C2 are two positive stabilizing
constants, respectively [12]. The SSIM index is computed
locally to compare image patches and then applied to an
image using a sliding window approach followed by a
spatial pooling stage [12]. The major drawback of the
spatial domain SSIM index is its high-sensitivity to trans-
lation, scaling, and rotation of images [13,20], which are
also non-structural distortions.

The CW-SSIM measure was proposed in [13,20], which
was built upon local phase measurements in complex
wavelet transform domain. The underlying assumptions
behind CW-SSIM are that local phase pattern contains
more structural information than local magnitude, and
non-structural image distortions such as small transla-
tions lead to consistent phase shift within a group of
neighboring wavelet coefficients. Therefore, CW-SSIM is
designed to separate phase from magnitude distortion
measurement and impose more penalty to inconsistent
phase distortions.

Given two sets of complex wavelet coefficients
cx ¼ fcx,i9i¼ 1, . . . ,Mg and cy ¼ fcy,i9i¼ 1, . . . ,Mg extracted
at the same spatial location in the same wavelet subbands
of the two images being compared, the local CW-SSIM
index is defined as

~Sðcx,cyÞ ¼
29
PM

i ¼ 1 cx,ic
n

y,i9þK
PM

i ¼ 1 9cx,i9
2
þ
PM

i ¼ 1 9cy,i9
2
þK

, ð3Þ

where cn denotes the complex conjugate of c, and K is a
small positive stabilizing constant. The value of the index
ranges from 0 to 1, where 1 implies no structural distor-
tion (but still could have small spatial shift). The global
CW-SSIM index ~SðIx,IyÞ between two images Ix and Iy is
calculated as the average of local CW-SSIM values com-
puted with a sliding window running across the whole
wavelet subband and then averaged over all subbands. It
was demonstrated that CW-SSIM is simultaneously insen-
sitive to luminance change, contrast change, and small
geometric distortions such as translation, scaling and
rotation [13,20]. This makes CW-SSIM a preferred choice
for image classification tasks because it is versatile and
largely reduces the burden of preprocessing steps such as
contrast and mean adjustment, pixel shifting, deskewing,
zooming and scaling.

The performance of CW-SSIM is in clear contrast to
that of MSE in the examples shown in Figs. 1 and 2. In
Fig. 1, although there are notable variations in the spatial
locations, orientations and thickness of the strokes in the
test digit ‘3’ images, they share similar structures, and
consistently high CW-SSIM values are obtained, while
there are significant differences in MSE values. In Fig. 2,
n based on complex wavelet structural similarity, Signal
.1016/j.image.2012.07.004
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the test images represent different digits and have very
different structures, but they share the same MSE value
with respect to the reference image (a), making it impos-
sible to select the right image (h) out of all test images. By
contrast, CW-SSIM easily distinguishes image (h) among
all test images because its CW-SSIM value is clearly the
highest. These illustrative examples demonstrate the
power of CW-SSIM, which does not require any pre-
registration process but still provides consistently reason-
able comparisons. This inspires us to use CW-SSIM as the
image similarity measure in digit recognition and face
recognition tasks.

3. CW-SSIM based image classification methods

Since CW-SSIM is a new similarity criterion introduced
to the field, a series of image classification methods may
be developed. In this section, we start from simple nearest
neighbor algorithms to more sophisticated methods that
lead to improved performance or reduced complexity.
Here we present our algorithms with handwritten digit
recognition and face recognition as our application in
mind. However, the general approach is not restricted to
this specific example, but should apply to many other
applications as well.

3.1. CW-SSIM based nearest neighbor methods

Given a set of N training images fIi9i¼ 1, . . . ,Ng and
their associated class labels fli9i¼ 1, . . . ,Ng (in the case of
digit recognition, there are 10 classes, each representing a
digit between 0 and 9, i.e., li 2 ½0,9�), the most straightfor-
ward way of applying CW-SSIM for image classification is
to find the image Ij in the training image set that is
‘‘closest’’ to a test query image Iq in CW-SSIM sense and
use lj to label the query image. This CW-SSIM based
nearest neighbor (CW-SSIM NN) classifier can be
expressed as

lðIqÞ ¼ lj where j¼ arg max
i2½1,N�

~SðIq,IiÞ: ð4Þ

Indeed, due to the desirable properties possessed by CW-
SSIM, this conceptually simple algorithm can achieve very
good performance, especially when the training set is
large, as will be shown in Section 4.

The CW-SSIM NN classifier can be easily generalized to
a CW-SSIM k-NN classifier. Given the k nearest neighbors
of Iq (denoted by fIðiÞ9i¼ 1, . . . ,kg and with class labels
flðiÞ9i¼ 1, . . . ,kg) in the training image set in terms of CW-
SSIM, we use a majority vote to decide on the class label
assigned to Iq

lðIqÞ ¼ arg max
j2½0,9�

Xk

i ¼ 1

dðj,lðiÞÞ, ð5Þ

where d is a function such that dða,bÞ ¼ 1 if a¼b and
dða,bÞ ¼ 0 otherwise.

The k-NN approach only considers the k-nearest neigh-
bors of the query image in the full training image set. This
can be interpreted as weighting the full sorted image set
by a hard-weighting function which has value 1 for the
first k images and 0 for the rest. It has been shown that
Please cite this article as: A. Rehman, et al., Image classificatio
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soft-weighted k-NN can perform better than hard-
weighted k-NN [26,27]. Therefore, we extend our CW-
SSIM k-NN classification approach to a CW-SSIM weighted
k-NN classifier, where the weight wi is determined based
on how close Iq is to the ith image in k neighbors

lðIqÞ ¼ arg max
j2½0,9�

Xk

i ¼ 1

~SðIq,IðiÞÞdðj,lðiÞÞ: ð6Þ

3.2. CW-SSIM based K-means method

A major problem with the nearest neighbor based
methods described above is that they demand for CW-SSIM
calculations of the query image with respect to all images in
the training set. This could be computationally extremely
expensive and thus prohibit its use in real-world applica-
tions. Classical methods for clustering such as k-means [28]
have been used frequently in numerous vision applications
[29]. Here we develop a CW-SSIM k-means clustering
method to extract typical structures or representatives from
the training image set and subsequently use these repre-
sentatives to perform classification of the test query image
with the help of nearest neighbor based methods.

k-means is an iterative algorithm that contains two
steps in each iteration—updating the centroid for each
cluster and updating cluster label for each sample image.
Here we perform these two steps using CW-SSIM as the
similarity criterion in replace of the typically used Eucli-
dian distance. Given a set of R training images
fIi9i¼ 1, . . . ,Rg that belong to a cluster, C, the centroid of
the cluster is updated as

Ic , where c¼ arg max
i2½1,R�

X

j2½1,R�

~SðIi,IjÞ: ð7Þ

Here the centroid Ic is not really the ‘‘mean’’ of all the
images in the cluster, because CW-SSIM is not a valid
distance metric in the image space and there is no simple
definition of the notion of ‘‘mean’’ in terms of CW-SSIM.
Rather, it is a representative image selected from all
images in the cluster that on average is most similar to
all other images in CW-SSIM sense. Given Z clusters with
centroids Ið1Þc ,Ið2Þc , . . . ,IðZÞc , the cluster label updating step is
performed by reassigning the membership of each image
Ii for i¼ 1, . . . ,N by

Ii 2 Cj where j¼ arg max
j2½1,Z�

~SðIi,I
ðjÞ
c Þ, ð8Þ

where Cj denotes the set of all images belonging to the jth
cluster.

The above clustering algorithm group images in the
training set without considering their class labels. As a result,
a ‘‘bad’’ or outlier sample image may be clustered to a group
of sample images that are similar in structure but have
different class labels. To avoid such situations, for each
training image It with class label lt, we examine its k-nearest
neighbors fIðiÞt 9i¼ 1, . . . ,kg with class labels flðiÞt 9i¼ 1, . . . ,kg
and compute the frequency of these neighbors that have the
same class labels as It

~pðItÞ ¼

Pk
i ¼ 1 dðlt ,l

ðiÞ
t Þ

k
: ð9Þ
n based on complex wavelet structural similarity, Signal
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We then exclude the training images from the k-means
clustering process with ~pðItÞoTp, where Tp is a preset
threshold. Our experiments show that this training image
pruning approach helps improve the classification results.

The k-means clustering process provides us with a set
of cluster centroids or representative images. We can then
apply the same weighted k-NN method for image classi-
fication as described in Eq. (6). The only difference is that
the full training set used in Eq. (6) is replaced by the set of
representative images. This leads to a much more efficient
CW-SSIM weighted k-means image classification method.

3.3. CW-SSIM based support vector machine method

Motivated by the success of the SVM method [5] in a
variety of pattern recognition tasks, we develop a CW-SSIM
SVM image classification algorithm. The general structure of
the algorithm is illustrated in Fig. 3, where the training
phase consists of two main stages—an unsupervised clus-
tering stage and a supervised SVM learning stage.

In the first stage, the training images are divided into
clusters and one representative image (or template) is
selected for each cluster. It is useful to be aware that there
could be many different writing styles of the same digit,
thus it makes sense to group the training images not only
by their class labels, but also by their styles or structures.
CW-SSIM is a preferred tool for this task than the existing
similarity measures because images originated from the
same digit and written with the same style are likely to be
shifted, scaled, and/or rotated versions of each other. Our
unsupervised clustering method works as follows. First,
we calculate a matrix C of size N�N, which contains the
CW-SSIM values of every image with every other image in
the training set. Each column of this matrix is a vector
si ¼ f

~SðIi,IjÞ9j¼ 1, . . . ,Ng that contains the CW-SSIM values
between the ith image and all other images in the training
set. This vector may be considered as ‘‘features’’ of the ith
training image (though not the descriptive features of
image structures typically used in many other image
classification methods). The clustering process starts by
taking the whole training set as one cluster and defines
the centroid of the cluster as

Ið1Þc where c¼ arg max
i2½1,N�

X

j2½1,N�

~SðIi,IjÞ: ð10Þ

Now assume that we are at a stage where we have M

clusters with centroids Ið1Þc ,Ið2Þc , . . . ,IðMÞc , respectively (the
CW-SSIM 
clustering

SVM-based
Training

SVM-based
classification

Training phase

Testing phase

classification
results

templates
Training 

   Set

Testing 
Set

CW-SSIM 
computation

CW-SSIM 
computation

Fig. 3. Framework of the proposed CW-SSIM SVM method.
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initial stage corresponds to M¼1 case). We decide on
whether to create a new cluster by checking whether

min
i2½1,N�

max
j2½1,M�

~SðIi,I
ðjÞ
c Þ4T, ð11Þ

where T is a predefined threshold. If this is satisfied, then
we can stop with the current number of clusters and use
the corresponding centroids as representative images for
the clusters. Otherwise, we define a new cluster centroid
as

IðMþ1Þ
c ¼ Im where m¼ arg min

i2½1,N�
max
j2½1,M�

~SðIi,I
ðjÞ
c Þ, ð12Þ

and let M¼Mþ1. After a new cluster is added, we
reassign the membership of each image Ii for i¼ 1, . . . ,N
by

Ii 2 Cj where j¼ arg max
j2½1,M�

~SðIi,I
ðjÞ
c Þ, ð13Þ

where Cj is the collection of all images belonging to the jth
cluster. The new centroid for each class j 2 ½1,M� is then
updated by

IðjÞc ¼ Im, where m¼ arg max
Ii2Cj

X

Ik2Cj

~SðIi,IkÞ: ð14Þ

This is followed by the next stage of judgement on
whether a new cluster should be created, as in Eq. (11).

In the second stage of the training phase, we have the
representative templates at hand. We can then describe
any training image using a length-M vector of CW-SSIM
values between the training image and all templates.
Since every training image has a class label associated
with it, this is a supervised learning problem. In particu-
lar, we develop a classifier by using support vector
machines (SVM) with Gaussian kernels, which has been
proven to be a powerful classifier of excellent general-
ization capability. Interested users can refer to [5] for
details of the SVM learning algorithm.

The testing part of our CW-SSIM SVM classification
algorithm is straightforward. For each test query image,
we compute its CW-SSIM values with respect to all
templates, resulting a length-M vector of CW-SSIM values.
We then feed this vector to the SVM classifier, which
produces a classification result.

4. Experimental results

4.1. Handwritten digit recognition

Our experiments were performed on the MNIST data-
base of handwritten digit images [30], which has been the
most widely used benchmark in the literature. The data-
base includes 60,000 training and 10,000 test samples. All
images provided in the database have already been size-
normalized and centered in a 28�28 box.

The performance of all the methods is given in Table 1
for different sizes of training set. Each experiment is
performed five times with training data selected ran-
domly for each experiment. The average values of the
five experiments are presented. First, we compare the
performance of MSE and CW-SSIM based nearest neigh-
bor methods. The results for MSE NN and CW-SSIM NN
n based on complex wavelet structural similarity, Signal
.1016/j.image.2012.07.004
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with different numbers of training images are shown in
the second and third rows of Table 1. It appears that
CW-SSIM alone, as a ‘‘raw’’ similarity measure (without
any machine learning process involved), can achieve very
good performance (less than 3% error rate) which is
significantly better than the performance of MSE. As
expected, the performance of CW-SSIM k-NN method can
be improved when the values of k41 are considered, as
can be observed from the results in Table 1. Using CW-
SSIM weighted k-NN (denoted as CW-SSIM (w) k-NN)
helps us further improve the performance as the error rate
reduces to 1.73% when the whole MNIST training data set
is used for classification. Figs. 4 and 5 show the perfor-
mance of CW-SSIM k-NN and CW-SSIM weighted k-NN,
respectively, as a function of training set size for the values
of k¼1,3,5,7. It can be observed that the best performance
is achieved for the value of k¼5. Therefore, we use k¼5 for
all the experiments where k-NN is used as a classifier.

Second, we test the performance of, more practical,
template based methods for different number of training
images. For the results presented in Table 1, we learned
1150 representatives for each template based method. It
can be observed that CW-SSIM pruned k-means (denoted
as CW-SSIM (p) k-means) performs better than the
Table 1
Performance comparisons based on recognition error rate using MNIST

database.

Training

samples

2000

(%)

5000

(%)

10,000

(%)

20,000

(%)

30,000

(%)

60,000

(%)

MSE NN 12.57 10.41 9.56 8.23 7.62 6.92

linear

classifier [9]

8.4

2-layer NN

MSE [9]

4.7

CW-SSIM NN 5.72 4.35 3.75 3.41 2.50 2.18

CW-SSIM k-

NN

5.26 3.65 3.05 2.51 2.17 1.77

CW-SSIM (w)

k-NN

5.08 3.57 2.95 2.39 2.12 1.73

CW-SSIM

k-means

7.48 6.65 6.04 5.59 5.45 4.74

CW-SSIM (p)

k-means

7.16 5.99 5.71 5.42 5.21 4.56

MSE SVM 10.22 7.61 6.31 5.15 4.60 4.16

CW-SSIM

SVM

6.02 4.24 3.70 2.81 2.45 1.91

CW-SSIM (AP)

SVM

5.00 3.93 3.46 2.71 2.40 1.89
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Fig. 4. Performance of CW-SSIM k-NN method as a function of training

set size for different values of k.

0 200 400 600 800 1000 1200
0

Fig. 6. Recognition error rate comparison of template-based proposed

methods as a function of the number of templates.

Please cite this article as: A. Rehman, et al., Image classificatio
Processing-Image Communication (2012), http://dx.doi.org/10
method without pruning. The performance difference is
higher for smaller sizes of training sets because pruning is
expected to be more effective when the number of
training images is lower in number. The value of the
threshold, Tp, is set to be 0.5 which means that the
training images that can not be correctly classified using
the training set based on k-NN classifier are ignored. Test
error rate of 4.56% suggests that the similarity measure
helps us to achieve high accuracy even when a small
fraction of training set is used for classification. Our CW-
SSIM SVM algorithm outperforms aforementioned tem-
plate based methods. An SVM is a binary classifier with
discriminant function being the weighted combination of
kernel functions over all training samples. For multi-class
classification, binary SVMs are combined in either one-
against-others or one-against-one (pairwise) scheme [31].
Note that in the clustering stage, the resulting number of
clusters (and thus templates) varies with different choices
of the threshold value T. The recognition error rate as a
function of the number of templates is shown in Fig. 6. It
can be observed that using a very small number of
templates (38 out of 60,000 training images), the CW-
SSIM SVM algorithm can achieve around 95% of accuracy.
The error rate further decreases with the increasing
number of templates, which collect more variations of
representative structures. Some of the learned templates
are shown in Fig. 7, where we can see that the templates
are fairly different from each other even within each digit
category, representing different writing styles.

The proposed CW-SSIM SVM method achieves lower
error rate than the other two template based methods for
n based on complex wavelet structural similarity, Signal
.1016/j.image.2012.07.004
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Fig. 7. Sample templates learned from MNIST training set.

Table 2
Time saving by using CW-SSIM SVM as compared to CW-SSIM 1-NN.

Training samples 2000 5000 10,000 20,000 30,000 60,000

Time savings (%) 88.60 95.24 97.57 98.76 99.20 99.61
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all the sizes of training set. The performance improves
with the size of the training set. When all 60,000 training
images are used, the error rate is reduced to less than 2%.
It is important to mention that such improvement in
recognition accuracy is obtained with largely reduced
computational complexity because only a very small
percentage of images (i.e., the selected templates) need
to be compared as compared to the method that calcu-
lates CW-SSIM with all the images in the training set.
As reported in Table 2, the time saving could be as high
as 99.6%. Our non-optimal MATLAB implementation
on a Intel Q9400 @ 2.66 GHz computer in single core
mode takes about 2.5 s to classify a test image using
228 templates. It has the potential to achieve real-
time performance with code optimization and hardware
implementation.

The performance of the proposed method depends on
the selection of templates. The use of better templates can
lead to a better set of features for SVM that can result in
higher classification accuracy. We use a recently proposed
Affinity Propagation (AP) clustering method [32] for find-
ing the templates, which has been shown to perform
better than k-means based clustering methods. We refer
to the classification algorithm with AP used for clustering
as CW-SSIM (AP) SVM. Table 1 contains the performance
of CW-SSIM (AP) SVM for different sizes of training set.
Affinity propagation is an efficient algorithm, and it offers
better templates, which means more complete and typical
representation of all training images, for our later stage.
The improvement of accuracy as compared to CW-SSIM
Please cite this article as: A. Rehman, et al., Image classificatio
Processing-Image Communication (2012), http://dx.doi.org/10
SVM method decreases as the training set grows, because
in that case, our former algorithm (described in Section
3.3) can achieve better results by increasing the number
of clusters, which may finally cover almost all data points
(used to be 30% more than affinity propagation). By using
a relatively small number of templates, the SVM method
with affinity propagation can achieve better classification
accuracy.

Table 1 also compares the proposed approach with the
following traditional approaches:
�

n b
.10
MSE SVM
J MSE SVM uses exactly the same method as the

proposed method except for the use of MSE instead
of CW-SSIM as the similarity measure. A significant
difference between the performance of CW-SSIM
SVM and MSE SVM can be observed.
ase
16
�
 Linear classifier with deskewing as a pre-processing
step [9].

�
 2-Layer MSE based neural networks method [9].

Some of the misclassified digits are shown in Fig. 9. As
can be observed that many of them are ambiguous and/or
uncharacteristic, with obviously missing parts or strange
strokes. Although there exist other recognition systems
that achieved higher accuracy [30], they typically involve
preprocessing stages (e.g., deskewing and denoising) and/
or training and testing algorithms that are much more
complicated in terms of both algorithm implementation
and computational complexity.
4.2. Face recognition

In order to test the suitability of the proposed scheme
as a general purpose image classification method, we
employ it for face recognition. We used the proposed
method to identify test images among 900 grayscale
images as show in Fig. 8, available at [32], extracted from
the Olivetti face database [33]. Olivetti database, or ORL
database, contains a set of face images and was used in
various face image applications. There are 10 different
images from each of the 40 distinct subjects. For some
subjects, the images were taken at different times, with
varying lighting conditions, facial expressions (open or
closed eyes, smiling or not smiling) and facial details
(glasses or no glasses).

We compare the performance of four algorithms
namely MSE SVM, CW-SSIM AP k-NN, CW-SSIM SVM
and CW-SSIM (AP) SVM as shown in Table 3. Each
experiment is performed five times with training data
selected randomly from the training database, and the
average values of five experiments are presented. Our
CW-SSIM based image recognition methods are more
efficient and accurate than other methods given in
Table 3. It can be observed that CW-SSIM (AP) SVM
uniformly achieves much lower error rate, and also as
expected, save more than 60% computation time. It is also
worth mentioning that with less than half of all data
(400 training image out of 900, other 500 as testing set),
the CW-SSIM (AP) SVM scheme can obtain a classification
d on complex wavelet structural similarity, Signal
/j.image.2012.07.004
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Fig. 8. Samples of 900 images extracted from Olivetti database.

Fig. 9. Samples of misclassified test digits using proposed method. True label is given in the top right corner and the assigned label in given at the bottom

of each image.
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accuracy of more than 97.2% using fewer than 50
templates.

We then test the performance of our CW-SSIM (AP)
SVM method with k-NN algorithm, with different values
of k, and MSE SVM using the same templates clustered
using affinity propagation. Table 3 shows that SVM
Please cite this article as: A. Rehman, et al., Image classificatio
Processing-Image Communication (2012), http://dx.doi.org/10
significantly outperforms a series of k-NN methods, prov-
ing SVM is a much better tool to model training data
behavior and produce competitive test results. In addi-
tion, our face recognition algorithm, implemented in
MATLAB on a single-core, is sufficiently fast to achieve
real-time performance.
n based on complex wavelet structural similarity, Signal
.1016/j.image.2012.07.004
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Table 3
Performance comparisons based on recognition error rate using Olivetti face database.

Training images 900 800 700 600 500 400 300 200

Testing images 900 100 200 300 400 500 600 700

MSE SVM (%) 3.56 4.00 7.25 11.67 19.75 20.33 20.50 30.29

CW-SSIM AP k-NN (%) 3.11 5.00 5.50 7.33 12.25 20.75 23.83 29.14

CW-SSIM SVM (%) 1.34 2.25 3.33 4.47 6.25 7.75 10.76 15.23

CW-SSIM (AP) SVM (%) 0.00 0.00 0.00 1.33 2.00 2.80 6.25 10.14
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5. Conclusion

We studied the problem of image classification using
CW-SSIM as the image similarity criterion, which is con-
nected with a number of computational models in biolo-
gical vision and is robust to small geometric distortions of
images. We use digit and face recognition as examples and
propose a series of CW-SSIM based algorithms, which do
not rely on any normalization, registration or image
structure description-based feature extraction processes,
and do not involve any statistical modeling of the image
patterns or distortion processes, but achieve competitive
performance in recognition accuracy. These properties
make the proposed algorithms readily adaptable to a broad
range of image classification problems.
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