
F
or more than 50 years, the mean-
squared error (MSE) has been the
dominant quantitative performance
metric in the field of signal process-
ing. It remains the standard criteri-

on for the assessment of signal quality and
fidelity; it is the method of choice for compar-
ing competing signal processing methods and
systems, and, perhaps most importantly, it is
the nearly ubiquitous preference of design
engineers seeking to optimize signal process-
ing algorithms. This is true despite the fact
that in many of these applications, the MSE
exhibits weak performance and has been
widely criticized for serious shortcomings,
especially when dealing with perceptually
important signals such as speech and images.
Yet the MSE has exhibited remarkable staying
power, and prevailing attitudes towards the
MSE seem to range from “it’s easy to use and
not so bad” to “everyone else uses it.”

So what is the secret of the MSE—why
is it still so popular? And is this popularity
misplaced? What is wrong with the MSE
when it does not work well? Just how
wrong is the MSE in these cases? If not the
MSE, what else can be used? These are the
questions we’ll be concerned with in this
article. Our backgrounds are primarily in
the field of image processing, where the
MSE has a particularly bad reputation, but
where, ironically, it is used nearly as much
as in other areas of signal processing. Our
discussion will often deal with the role of
the MSE (and alternative methods) for pro-
cessing visual signals. Owing to the poor
performance of the MSE as a visual metric,
interesting alternatives are arising in the
image processing field. Our goal is to stim-
ulate fruitful thought and discussion
regarding the role of the MSE in processing
other types of signals. More specifically, we
hope to inspire signal processing engineers
to rethink whether the MSE is truly the cri-
terion of choice in their own theories and
applications, and whether it is time to look
for alternatives.
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WHAT IS THE MSE?
We begin with a discussion of the MSE as a signal fidelity measure.
The goal of a signal fidelity measure is to compare two signals by
providing a quantitative score that describes the degree of similari-
ty/fidelity or, conversely, the level of error/distortion between
them. Usually, it is assumed that one of the signals is a pristine
original, while the other is distorted or contaminated by errors.

Suppose that x = {xi|i = 1, 2, · · · , N} and y = {yi|i =
1, 2, · · · , N} are two finite-length, discrete signals (e.g., visual
images), where N is the number of signal samples (pixels, if the
signals are images) and xi and yi are the values of the i th sam-
ples in x and y, respectively. The MSE between the signals is

MSE(x, y) = 1
N

N∑
i=1

(xi − yi)
2. (1)

In the MSE, we will often refer to the error signal ei,= xi − yi,
which is the difference between the original and distorted sig-
nals. If one of the signals is an original signal of acceptable (or
perhaps pristine) quality, and the other is a distorted version of
it whose quality is being evaluated, then the MSE may also be
regarded as a measure of signal quality. Of course, a more gener-
al form is the lp norm

dp(x, y) =
(

N∑
i=1

|ei|p

)1/p

.

In the literature of image processing, MSE is often converted
into a peak signal-to-noise ratio (PSNR) measure

PSNR = 10 log10
L2

MSE
,

where L is the dynamic range of allowable image pixel intensi-
ties. For example, for images that have allocations of 8 b/pixel of
gray-scale, L = 28 − 1 = 255. The PSNR is useful if images hav-
ing different dynamic ranges are being compared, but otherwise
contains no new information relative to the MSE.

WHY DO WE LOVE THE MSE?
The MSE has many attractive features: 

1)  It is simple. It is parameter free and inexpensive to com-
pute, with a complexity of only one multiply and two additions
per sample. It is also memoryless—the squared error can be
evaluated at each sample, independent of other samples.
2)  All lp norms are valid distance metrics in RN , which satis-
fy the following convenient conditions, and allow for consis-
tent, direct interpretations of similarity:

— nonnegativity: dp(x, y) ≥ 0
— identity: dp(x, y) = 0 if and only if x = y
— symmetry: dp(x, y) = dp(y, x)
— triangular inequality: dp(x, z) ≤ dp(x, y) + dp(y, z).

In particular, the p = 2 case (proportional to the square
root of the MSE) is the ordinary distance metric in N-
dimensional Euclidean space.

3)  It has a clear physical meaning—it is the natural way to
define the energy of the error signal. Such an energy measure
is preserved after any orthogonal (or unitary) linear transfor-
mation, such as the Fourier transform (Parseval’s theorem).
The energy preserving property guarantees that the energy of
a signal distortion in the transform domain is the same as in
the signal domain. This property distinguishes d2 from the
other lp energy measures, which are not energy preserving.
4)  The MSE is an excellent metric in the context of optimiza-
tion. The MSE possesses the very satisfying properties of con-
vexity, symmetry, and differentiability. Minimum-MSE (MMSE)
optimization problems often have closed-form analytical solu-
tions, and when they don’t, iterative numerical optimization
procedures are often easy to formulate, since the gradient and
the Hessian matrix of the MSE are easy to compute.
5)  The MSE is also a desirable measure in the statistics and
estimation framework (where the sample average in (1) is
replaced by statistical expectation). The MSE in this form was
first introduced by C.F. Gauss, who also noted its arbitrary
nature relative to actual loss in applications, as well as its con-
veniences [1]. The MSE is additive for independent sources of
distortions. This is illustrated in Figure 1, where a zero-mean
random source x passes through a cascade of K additive inde-
pendent zero-mean distortions n1, n2, . . . , nK , resulting in
y1, y2, . . . , yK , i.e.,

yk = x +
k∑

i=1

ni for k = 1, 2, . . . , K.

The overall MSE is simply the sum of the MSEs from the indi-
vidual distortion stages

MSE(x, yK) = E
[
(x − yK)2

]

= E

⎡
⎣(

K∑
k=1

nk

)2
⎤
⎦

=
K∑

k=1

E
[

n2
k

]
= MSE(x, y1) + MSE(y1, y2) + · · ·

+ MSE(yK−1, yK) ,

so that the contribution from each source of distortion
may be analyzed independently. When a squared error
function is combined with Gaussian assumptions on the
source and noise models, the optimal signal estimate is

[FIG1] Independent additive sources of distortions and the
additive property of the MSE.
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often analytical and linear. An excellent example is the
Wiener filter for signal deconvolution and denoising
(that also requires second-order stationary assumptions
about the signal and the noise).
6)  Finally, the MSE is widely used simply because it is a con-
vention. Historically, it has been employed extensively for
optimizing and assessing a wide variety of signal processing
applications, including filter design, signal compression,
restoration, denoising, reconstruction, and classification.
Moreover, throughout the literature, competing algorithms
have most often been compared using the MSE/PSNR. It
therefore provides a convenient and extensive standard
against which the MSE/PSNR results of new algorithms may
be compared. This saves time and effort but further propa-
gates the use of the MSE.

SO WHAT’S WRONG WITH THE MSE?
It is apparent that the MSE possesses many favorable properties
for application and analysis, but the perspicacious reader might
point out that a more fundamental issue has been missing.
That is, does the MSE really measure signal fidelity? Given all
of its above-mentioned attractive features, a signal processing
practitioner might opt for the MSE if it proved to be a reason-
able signal fidelity measure. But is that the case?

Unfortunately, the converse appears true when the MSE is
used to predict human perception of image fidelity and quality
[2]–[5]. An illustrative example is shown in Figure 2, where an
original Einstein image is altered by different types of distortion:
a contrast stretch, mean luminance shift, contamination by
additive white Gaussian noise, impulsive noise distortion, JPEG
compression, blur, spatial scaling, spatial shift, and rotation. In

[FIG2] Comparison of image fidelity measures for “Einstein” image altered with different types of distortions. (a) Reference image.
(b) Mean contrast stretch. (c) Luminance shift. (d) Gaussian noise contamination. (e) Impulsive noise contamination. (f) JPEG
compression. (g) Blurring. (h) Spatial scaling (zooming out). (i) Spatial shift (to the right). (j) Spatial shift (to the left). (k) Rotation
(counter-clockwise). (l) Rotation (clockwise).
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MSE=309, SSIM=0.987
CW-SSIM=1.000

MSE=306, SSIM=0.928
CW-SSIM=0.938

MSE=309, SSIM=0.580
CW-SSIM=0.633

MSE=871, SSIM=0.404
CW-SSIM=0.933

MSE=694, SSIM=0.505
CW-SSIM=0.925

MSE=590, SSIM=0.549
CW-SSIM=0.917

MSE=0, SSIM=1
CW-SSIM=1

MSE=313, SSIM=0.730
CW-SSIM=0.811

MSE=309, SSIM=0.576
CW-SSIM=0.814

MSE=308, SSIM=0.641
CW-SSIM=0.603

 MSE=873, SSIM=0.399
CW-SSIM=0.933

MSE=577, SSIM=0.551
CW-SSIM=0.916
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Figure 2, both MSE values and values of another quality index,
the structural similarity (SSIM) index, are given. The SSIM
index is described in detail later where it also refers to this fig-
ure. Note that the MSE values [relative to the original image (a)]
of several of the distorted images are nearly identical [images
(b)–(g)], even though the same images present dramatically
(and obviously) different visual quality. Also notice that images
that undergo small geometrical modifications [images (h)–(i)]
may have very large MSE values relative to the original, yet
show a negligible loss of perceived quality. So a natural question
is: “What’s the problem with the MSE?”

IMPLICIT ASSUMPTIONS WHEN USING THE MSE
We’ll look at this topic from three different viewpoints. First,
we’ll examine the following underlying implicit assumptions
that an engineer is making when she/he decides to use the MSE
(or any lp metric) to evaluate signal fidelity:

1)  Signal fidelity is independent of temporal or spatial rela-
tionships between the samples of the original signal. In
other words, if the original and distorted signals are ran-
domly re-ordered in the same way, then the MSE between
them will be unchanged.
2)  Signal fidelity is independent of any relationship
between the original signal and the error signal. For a
given error signal, the MSE remains unchanged, regard-
less of which original signal it is added to.
3)  Signal fidelity is independent of the signs of the error
signal samples.
4)  All signal samples are equally important to signal fidelity.

All of the above implicit assumptions are very strong, since they
impose significant limitations on the signal samples, how they
interact with each other, and how they interact with the error.
But are they accurate? Are they useful or damaging in the con-
text of measuring signal fidelity?

Unfortunately, not one of them holds (even roughly) in the
context of measuring the visual perception of image fidelity.
Dramatic, visual examples of the failures of the MSE with
respect to the veracity of these assumptions are demonstrated
in Figure 3.

In Figure 3(a), the bottom-left image was created by adding
independent white Gaussian noise to the original image (top-
left). In the top-right image, the spatial ordering of the pixels
was changed (through a sorting procedure), but without chang-
ing any of the pixel values from those in the original. The bot-
tom-right image was obtained by applying the same reordering
procedure to the bottom-left image. Of course, the MSE (or any
lp metric) between the two left images, and between the two
right images, are identical. Yet, the bottom-right image appears
significantly noisier than the bottom-left image—the perceived
visual fidelity of the bottom-right image is much poorer than
that of the bottom-left image. Apparently, MSE Assumption 1 is
not a good one when measuring the fidelity of images. This is an
excellent example of the failure of the MSE (and all other lp met-
rics) to take into account the dependencies (textures, orderings,
patterns, etc.) that occur between signal samples. Since natural

image signals are highly structured—the ordering of the signal
samples carries important perceptual structural information
about the contents of the visual scene—this is a severe short-
coming of the MSE for image fidelity measurement. By exten-
sion, other perceptual signals, such as sound and speech signals,
also contain perceptually important structures, the fidelity of
which might not be well measured by the MSE.

Figure 3(b) conveys a dramatic example of the failure of MSE
Assumption 2. In the figure, the same error signal was added to
both original images (top left) and (top right). The error signal
was created to be fully correlated with the top-left image. Both
distorted images have exactly the same MSE and lp metrics (no
matter what p is chosen) with respect to their originals, but the
visual distortion of the bottom-right image is much stronger
than that of the bottom-left image. Clearly, the correlation (and
dependency) between the error signal and the underlying image
signal significantly affects perceptual image distortion—an
important feature that is completely ignored by any lp metric.

Figure 3(c) depicts the failure of the underlying MSE
Assumption 3. In the figure, the first distorted image was
obtained by adding a constant value to all pixels in the original
image, while the second distorted image was generated by the
same method, except that the signs of the constant were ran-
domly chosen to be positive or negative. The visual fidelity of the
two distorted images is drastically different. Yet, the MSE (or
any lp metric) ignores the effect of signs and reports the same
fidelity measure for both distorted images.

Figure 3(d) supplies a particularly instructive example of
both MSE Assumptions 1 and 4. Distorted image (top right) was
created by adding independent white Gaussian noise to the orig-
inal image (top left). Clearly, the degree of noise-induced visual
distortion varies significantly across the spatial coordinates of
the image. In particular, the noise in the facial (and other
smooth-intensity) regions appears rather severe, yet is visually
negligible in other regions containing patterns and textures.
The perceived fidelity of the distorted image varies over space,
although the error signal (bottom left) has a uniform energy
distribution across space. Since all image pixels are treated
equally in the formulation of the MSE (and all lp metrics), such
image content-dependent variations in image fidelity cannot be
accounted for.

OBSERVING THE MSE IN SIGNAL SPACE
The second method in examining the problem of signal fidelity
measurement is to look at it in N-dimensional signal space,
where each coordinate represents the value of a signal sample
and N is the number of samples in the signal. Thus, each signal
is represented by a single point in signal space. Any distortion
can be interpreted as adding a distortion vector to the signal
point. The set of all distortion vectors of the same length con-
stitutes an equal-MSE hypersphere in signal space. For exam-
ple, in image space, Figure 2(b)–(g) reside near the surface of
the same equal-MSE hypersphere centered about Figure 2(a).
Since images on the same hypersphere can have substantially
different perceptual image fidelity (as in Figure 2), the length of
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a distortion vector does not suffice as a good indication of
image fidelity. Apparently, the directions of these vectors are
also important. This interpretation has been probed by allowing
two signal fidelity measures to compete with each other, by
maximizing/minimizing one measure while holding the other
fixed [6]. This was used to define an optimal signal synthesis
algorithm that seeks to maximally differentiate one measure
from another. An example is shown in Figure 4, where an itera-
tive procedure is used for image synthesis. First, an initial dis-

torted image is generated by adding a random vector in the
image space to the reference image. Starting from the initial
image, the algorithm iteratively moves along the direction of
increasing/decreasing a fidelity metric (in this case, the SSIM
index [7] that will be detailed later), while constraining the
movement to be within the equal-MSE hypersphere. The itera-
tion continues until it converges to the best/worst SSIM images
(shown in Figure 4 along with intermediate images). This
example provides a strong visual demonstration of the failing of

[FIG3] Failures of the MSE and other lp metrics. (a) An original image (top left) is distorted by adding independent white Gaussian noise
(bottom left). In the top-right image, the pixels are reordered by sorting pixel intensity values. The same reordering process is applied to
the bottom-left image to create the bottom-right image. The MSE (and any l p metric) between the two left images and between the
two right images are the same, but the bottom-right image appears much noisier than the bottom-left image. (b) Two original images
(top left and top right) are distorted by adding the same error image (middle), which is fully correlated with the top-left image. The
MSE (and any l p metric) between the two left images and between the two right images are the same, but the perceived distortion of
the bottom-right image is much stronger than that of the bottom-left image. (c) An original image (left) is distorted by adding a
positive constant (top right) and by adding the same constant, but with random signs (bottom right). The MSE (or any l p metric)
between the original and any of the right images are the same, but the right images exhibit drastically different visual distortions.
(d) An original image (top left) is distorted by adding independent white Gaussian noise (top right). The energy distribution of the
absolute difference signal (bottom left, enhanced for visibility), which is the basis in computing all l p metrics, is uniform. However, the
perceived noise level is space variant, which is reflected in the SSIM map (bottom right, enhanced for visibility).
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the MSE, as the various synthesized images with fixed MSE
exhibit astonishingly different image fidelities. The key distinc-
tion from the earlier examples (Figures 2 and 3) is that here,
the images are not hand-designed, but automatically synthe-
sized in an optimal way.

SIGNAL FIDELITY
IN AN INFORMATION
COMMUNICATION FRAMEWORK
The problem of signal fidelity measure-
ment may also be thought of within an
information communication framework.
An illustration is given in Figure 5. The
general view is that any signal that is
ultimately consumed by a receiver origi-
nated from a transmitter and is passed
through a channel. Here the transmitter,
the channel, and the receiver should be
regarded in a broad sense. For example, if
visual images are the signals under con-
sideration, then the transmitter may
include objects in the visual environ-
ment, the light source(s), atmosphere
conditions, and the sensing/recording
techniques and devices. The channel may
include any storage and transmission
processing that may alter the image sig-
nal. For example, an image communica-
tion/networking system may involve
lossy compression, noise contamination,
packet loss, and/or pre- or postprocess-

ing. The receiver includes image mapping and display devices for
the intended consumers (for example, human eyes and ears).
Correspondingly, there are three types of knowledge that can be
used for signal fidelity measurement: information source/trans-
mitter, distortion channel, and intended receiver. Simple metrics

[FIG4] Finding the maximum/minimum SSIM images along the equal-MSE hypersphere in
image space.
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[FIG5] Signal fidelity measurement expressed within an information communication framework.
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such as the MSE cannot account for these types of knowledge
(another failing of the MSE); however, as we shall see, it is possi-
ble to include, either explicitly or implicitly, all three types of
knowledge into the design of signal fidelity measures.

WHAT ARE THE ALTERNATIVES?
Before one decides to love or leave the MSE, another question
worth asking is: “What are the alternatives?” Following the com-
munication framework previously described, a good signal
fidelity measure would need to be able to effectively and effi-
ciently make use of knowledge about the transmitter, channel,
and receiver. Depending on the application field and the type of
the signals being considered, the nature of this knowledge
might vary considerably: it is unlikely that there is a universal
signal fidelity measure that works in all situations. Therefore, as
we proceed, we use the natural image transmitter and the
human visual receiver as examples as we discuss general
approaches to image and video fidelity measurement.

SIMULATION OF PERCEPTUAL SYSTEMS
The most obvious type of information to incorporate into a
signal fidelity system is probably receiver information, and
this has been the approach taken by researchers in the fields
of image quality assessment (IQA) and human speech quality
assessment (SQA). In human applications, the ultimate
receivers are perceptual systems such as the human visual
system and the human auditory system. In the past century

there has been considerable progress in increasing our depth
of understanding of the functions of our perceptual systems,
and in expanding these psychophysical and neurophysiologi-
cal findings into mathematical models of these functions.
While our overall knowledge of human perception remains in
its nascent stages, current models of biological information
processing mechanisms have become sufficiently sophisticat-
ed that it is of great interest to explore whether it is possible
to deploy them to predict the performance of simple human
behaviors, such as evaluating perceptual signal fidelity.  Not
surprisingly, the most common approach to perceptual signal
fidelity measurement is to mathematically model each func-
tional perceptual component, then integrate the component
models, as basic building blocks, into an overall system
model. The hope, of course, is that the integrated system will
perform in a manner similar to the human perceptual system
in assessing signal fidelity.

A typical framework for this type of approach is illustrated
in Figure 6. First, the reference and the distorted signals are
subject to a preprocessing stage. In the context of image
fidelity measurement, this may include image registration,
color space transformations, and a low-pass filtering process
that simulates the point spread function of the optics of the
eye. Following preprocessing, the signal is decomposed into
multiple channels (or subbands) using a biologically motivat-
ed linear transform. In particular, it is well known that a large
number of neurons in the primary visual cortex are tuned to

visual stimuli with specific spatial
locations, frequencies, and orienta-
tions, thus a wavelet transform [8],
[9] is ideal for this task, since its
bases are localized, band-pass, ori-
ented filters. An example is shown
in Figure 6, where a steerable pyra-
mid wavelet decomposition [9] is
applied to a natural image. In the
next stage, the subband signal sam-
ples (or transform coefficients) are
normalized in a perceptually mean-
ingful way. For visual images, the
most commonly used normalization
elements are the contrast sensitivity
function (CSF) and masking effects.
The CSF accounts for the variation
of visual sensitivity as a function of
spatial frequency. Thus, different
weights may be assigned to the sub-
bands at different levels of decompo-
sition. Masking effects describe the
reduction of visibility of an image
component due to neighboring
components in space, frequency,
and/or orientation. A masking effect
in the wavelet domain is illustrated
in Figure 6, where the masker

[FIG6] A prototypical perceptual signal fidelity measurement system and an example of
image decomposition and visual masking.
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components can come from the spatial neighbors in the same
subband (intra-channel masking) or from the nearby sub-
bands in frequency and orientation (inter-channel masking).
In the final stage, the normalized error signal is pooled to
form a single signal fidelity score. The most commonly used
pooling methods adopt an lp form, possibly with adaptive spa-
tial weighting. Pioneering work of this general approach dates
back as early as the 1970s [10], with a large number of varia-
tions being proposed since then. Representative models
include [11]–[15]. Most of these methods are general purpose,
in the sense that they do not assume any specific distortion
type. They are intended to be flexible enough to be used in a
variety of different applications. There are also many methods
that are designed for specific applications. For example, many
image fidelity measurement methods have been developed
specifically for block-discrete cosine transfer (DCT) [16], [17]
and wavelet-based image compression [18], [19]. Using infor-
mation about the compression process can be viewed as incor-
porating channel knowledge into the design process. For
tutorial reviews and more detailed descriptions about such
methods, refer to [2]–[4].

There is little doubt that if all of the functional components
of a human perceptual system were precisely simulated, then
an accurate prediction of perceived signal fidelity could be
achieved. However, this is quite difficult to accomplish for a
number of reasons. First, our knowledge of the functional
architecture of biological perceptual systems is still quite lim-
ited. Secondly, human perceptual systems are quite complicat-
ed and contain many nonlinearities, while most existing
computational models are linear or quasi-linear and have been
developed based on restricted, simplistic stimuli and threshold
psychophysics (where the visual sensitivities are defined and
measured at the contrast detection threshold levels). An inter-
esting recent algorithm called the visual signal-to-noise ratio
(VSNR) [20] first determines whether the distortions are below
the threshold of visual detection, and then quantifies the dis-
tortions that are beyond the threshold in a separate stage. This
has led to significant improvement over traditional signal
fidelity measures [20], and the algorithm appears to be gener-
ally competitive with other IQA algorithms.

STRUCTURAL SIMILARITY
Using the framework of image fidelity measurement as an
image communication problem, the perceptual simulation
methods just discussed primarily seek to model the receiver.
Few approaches have attempted to account for the character-
istics of the transmitter. As with any communication system
problem, the more that is known about the transmitter, then,
the better job of communication that can be accomplished,
particularly if the signal source is highly specific. Thus, it is
relevant that the cluster of natural images occupies an
extremely tiny portion in the image space [21]. This poten-
tially provides strong prior information about what an origi-
nal image should look like, which should be a precious
source of information for the design of signal fidelity meas-

ures. In the literature of computational neuroscience, it has
been long hypothesized that the human visual system is
highly adapted to the natural visual environment [21], not
only in terms of short-term adaptation ability (e.g., to light-
ing conditions), but also through long-term neural evolution
and development. As a result, we may view the modeling of
the natural image source (the transmitter) and of the human
visual systems (the receiver) as dual problems [21]. Of
course, such hypothesis may also be adopted with respect to
other biological perceptual systems.

One recently proposed approach to image fidelity measure-
ment, which may also prove highly effective for measuring the
fidelity of other signals, is the SSIM index [7]. SSIM actually
takes a variety of forms, depending on whether it is implement-
ed at a single scale [7], [22], over multiple scales [23], or in the
wavelet domain [24]. Regardless of specifics, the SSIM approach
was originally motivated by the observation that natural image
signals are highly structured, meaning that the samples of natu-
ral image signals have strong neighbor dependencies, and these
dependencies carry important information about the structures
of the objects in the visual scene. Of course, the same may be
said of most other signals.

The principle philosophy underlying the original SSIM
approach is that the human visual system is highly adapted to
extract structural information from visual scenes. Therefore,
at least for image fidelity measurement, the retention of signal
structure should be an important ingredient. Equivalently, an
algorithm may seek to measure structural distortion to
achieve image fidelity measurement. Figure 7 helps illustrate
the distinction between structural and nonstructural distor-
tions. In the figure, the nonstructural distortions (a change of
luminance or brightness, a change of contrast, Gamma distor-
tion, and a spatial shift) are caused by ambient environmental
or instrumental conditions occurring during image acquisi-
tion and display. These distortions do not change the struc-
tures of images of the objects in the visual scene. However,
other distortions (additive noise and blur and lossy compres-
sion) significantly distort the structures of images of the
objects. If we view the human visual system as an ideal infor-
mation extractor that seeks to identify and recognize objects in
the visual scene, then it must be highly sensitive to the struc-
tural distortions and automatically compensates for the non-
structural distortions. Consequently, an effective objective
signal fidelity measure should simulate this functionality.

The main ideas of SSIM were introduced in [22], and more
formally distilled in [7] and [3]. The basic form of SSIM is
very easy to understand. Suppose that x and y are local image
patches taken from the same location of two images that are
being compared. The local SSIM index measures the similari-
ties of three elements of the image patches: the similarity
l(x, y) of the local patch luminances (brightness values), the
similarity c(x, y) of the local patch contrasts, and the similari-
ty s(x, y) of the local patch structures. These local similarities
are expressed using simple, easily computed statistics, and
combined together to form local SSIM [7]
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S(x, y) = l(x, y) · c(x, y) · s(x, y) =
(

2μxμy + C1

μ2
x + μ2

y + C1

)

·
(

2σxσy + C2

σ 2
x + σ 2

y + C2

)
·
(

σxy + C3

σxσy + C3

)
, (2)

where μx and μy are (respectively) the local sample means of  x
and y, σx and σy are (respectively) the local sample standard
deviations of x and y, and σxy is the sample cross correlation of x
and y after removing their means. The items C1, C2, and C3 are
small positive constants that stabilize each term, so that near-
zero sample means, variances, or correlations do not lead to
numerical instability. Actually, even if C1 = C2 = C3 = 0, SSIM
usually works quite well. This choice of constants defined the
first and simplest version of SSIM with the universal image
quality index (UQI) [22].

The SSIM index is symmetric: S(x, y) = S(y, x), so that
two images being compared give the same index value
regardless of their ordering. It is also bounded:
−1 < S(x, y) ≤ 1, achieving maximum value S(x, y) = 1 if
and only if x = y. The SSIM index is computed locally within
a sliding window that moves pixel-by-pixel across the image,
resulting in a SSIM map. The SSIM score of the entire image
is then computed by pooling the SSIM map, e.g., by simply
averaging the SSIM values across the image [7]. More sophis-
ticated adaptive space-variant weighting can also be used
[25]. A recent extension expressed SSIM using an adaptive
basis decomposition framework that allows for explicit sepa-
ration of structural and nonstructural distortions [26]. The
best performance using the SSIM framework (to date) is
obtained when the SSIM score is computed over a range of

scales [23], [27]. This makes sense for a couple of reasons:
first, images, like other natural signals, contain structures
that occur over a range of spatial scales, and second, the
human visual system decomposes visual data into multiscale
spatial channels early in the visual pathway [3].

Despite its simplicity, the SSIM index performs remark-
ably well across a wide variety of image and distortion types
as has been shown in intensive human studies [27]. By
example, Figure 2 shows the SSIM scores of images having
near identical MSE values. Without much effort, it can be
seen that the SSIM scores are much more consistent than
the MSE scores relative to visual perception. Luminance-
shifting and contrast-stretching, which generally does not
degrade image structure, lead to very high SSIM values,
while noise contamination and excessive JPEG-compression
lead to low SSIM values. Similarly, in Figures 3(a)–(c), in
which the MSE was demonstrated to be highly problematic,
the SSIM index provides relative scores that are much more
consonant with perception. Figure 4 describes an algorithm
that seeks to maximally differentiate the SSIM index from
the MSE, where extremely high- and low-SSIM (and corre-
spondingly high- and low-quality) images were found on the
same equal-MSE hypersphere, providing a dramatic example
of the failings of the MSE.

The effectiveness of the structure-centric SSIM method is
better revealed by comparing the SSIM maps with the
absolute error maps in Figure 3(d) and Figure 8. In both
types of maps, brightness corresponds to goodness-of-fidelity
for each measure (i.e., brighter = better). As shown in Figure
3(d), the SSIM index handles the texture masking visual
effect quite well, although the added noise is applied uni-

formly across the image, the visual
appearance of the image is most highly
degraded where the image is smooth,
or relatively texture-less. While any lp
measurement would be likewise uni-
form (as shown), the SSIM scores
accord with visual perception.
Likewise, Figure 8 depicts JPEG-
induced annoying pseudo-contouring
effects (in the sky region) and blocking
artifacts (along the boundaries of the
building) that are successfully cap-
tured by the SSIM index, yet poorly
predicted by the absolute error map.

SSIM has been used for evaluating
image processing results in a rapidly
increasing number of exciting applica-
tions. Some are listed as follows: 

■ image fusion [28]
■ image compression [25] 
■ image watermarking [29] 
■ chromatic image quality [30] 
■ retinal and wearable displays [31]
■ video hashing [32][FIG7] Examples of structural versus nonstructural distortions.
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■ wireless video streaming [33]
■ visual surveillance [34]
■ radar imaging [35]
■ digital camera design [36]
■ infrared imaging [37]
■ MRI imaging [38]
■ chromosome imaging [39]
■ remote sensing [40]
■ target recognition [41]. 

An exciting consideration is the possi-
bility of numerous extended applica-
tions beyond image processing, since
the SSIM index does not rely on specific
image or visual models. The generic
definition of SSIM suggests that it
should find broad applicability.

A drawback of the basic SSIM index
as previously described  is its sensitiv-
ity to relative translations, scalings
and rotations of images, as seen in
Figure 2(h)–(l). This is undesirable
and contradictory to the philosophy of
structural similarity, since small geo-
metric distortions are nonstructural.
To handle such situations, a wavelet-
domain version of SSIM, called the
complex wavelet SSIM (CW-SSIM)
index was developed [24]. The CW-
SSIM index is also inspired by the fact
that local phase contains more struc-
tural information than magnitude in
natural images [42], while rigid trans-
lations of image structures leads to
consistent phase shifts. In the com-
p l e x  w a v e l e t  t rans form domain,
l e t  cx = {cx,i|i = 1, 2, · · · N } and
cy = {cy,i|i = 1, 2, · · · N }, respectively,
be two sets of coefficients extracted at
the same spatial location in the same
wavelet subbands of two images x, y
being compared. Then, the CW-SSIM
index [24] has a form similar to the spatial domain counterpart

S̃(cx, cy) = m̃(cx, cy) · p̃(cx, cy)

= 2
∑N

i=1 |cx,i||cy,i| + K∑N
i=1 |cx,i|2 + ∑N

i=1 |cy,i|2 + K

·
2

∣∣∣∑N
i=1 cx,i c∗

y,i

∣∣∣ + K

2
∑N

i=1 |cx,i c∗
y,i| + K

,

where c ∗ is the complex conjugate of c and K is a small posi-
tive constant (stabilizer). The first component m̃(cx, cy) is
completely determined by the magnitudes of the coefficients,
with maximum value one achieved if and only |cx,i| = |cy,i|

for all i. Thus, this term is equivalent to the SSIM index
applied to the magnitudes of the coefficients (note that the
coefficients are zero-mean, owing to the bandpass nature of
the wavelet filters). The second component p̃(cx, cy) is deter-
mined by the consistency of phase changes between cx and cy.
It achieves maximum value one when the phase difference
between cx,i and cy,i is constant for all i. This phase compo-
nent of CW-SSIM effectively captures image structural simi-
larity since local image structure is maintained by the relative
phase patterns of local image frequencies (as sampled by the
wavelet coefficients); moreover, a constant phase shift of all
wavelet coefficients will not change the structure of local
image feature. CW-SSIM is locally computed from each sub-
band, then averaged over space and subbands, yielding an

[FIG8] Comparison of image fidelity/distortion maps. (a) Reference image. (b) JPEG
compressed image. (c) Absolute error map of the distorted image (enhanced for visibility).
(d) SSIM index map of the distorted images (enhanced for visibility).

(a) (b)

(c) (d)
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overall CW-SSIM Index between the original and the distorted
images. The CW-SSIM method is simultaneously robust with
respect to luminance changes, contrast changes and transla-
tions [24], leading to robustness
with respect to small scalings
and rotations, since they can be
locally approximated with trans-
lations. Referring again to
Figure 2, it may be seen that
CW-SSIM delivers high scores to
luminance-shifted, contrast-
stretched, space-shifted, scaled,
and rotated images, and low
scores to the images containing
structural distortions.

VISUAL INFORMATION FIDELITY
Visual information fidelity (VIF) methods explicitly incorpo-
rate statistical models of all the components in the commu-
nication system interpretation of signal fidelity
measurement, viz., the transmitter, the channel, and the
receiver [43], [44]. This approach attempts to relate signal
fidelity to the amount of information that is shared between
two signals. The shared information is quantified using the
concept of mutual information, a widely used measure in
information theory. Since mutual information is purely a sta-
tistical measure that might only be loosely related to human
perception of information, it places fundamental limits on
the amount of perceptually relevant information that could
be extracted from a signal, provided that the hypothesized
statistical models about the signal source, the channel distor-
tion, and the receiver distortion are accurate.

The idea is better explained in Figure 9, which follows the
framework of the VIF index designed for comparing visual
images [44]. The reference image is modeled by a wavelet-
domain Gaussian scale mixture (GSM) [45], which has been
shown to quite effectively model the non-Gaussian marginal
distributions of the wavelet coefficients of natural images, while
also capturing the dependencies between the magnitudes of
neighboring wavelet coefficients. Let c be a collection of M

neighboring wavelet coefficients extracted from a local patch in
a wavelet subband. Then the wavelet-domain GSM model is
simple: model c as c = √

z u, where u is a zero-mean Gaussian
vector, and 

√
z is an independent

scalar random variable. In other
words, the vector c is a mixture
of random Gaussian vectors that
share the same covariance struc-
ture Cu , but scale differently
according to the magnitude of√

z. The GSM model thus pro-
vides a simple, yet powerful VIF
source/transmitter model for the
signal fidelity measurement
framework.

In VIF, a generic and simple image distortion model is
used to model all distortions that may occur between the ref-
erence and the distorted image signals, including artificial
distortions such as compression artifacts. The VIF distortion
model assumes that the image distortion can be roughly
described locally as a combination of a uniform wavelet-
domain energy attenuation with a subsequent independent
additive noise: d = gc + v, where c and d are random vectors
extracted from the same location in the same wavelet sub-
band in the reference and the distorted images, respectively.
Here g represents a scalar deterministic gain factor (viz.,
blur), while v is independent additive zero-mean white
Gaussian noise with covariance Cv = σ 2

v I. Although such a
model may be criticized for being very general, or for not
directly accounting any specific distortion types (such as
JPEG blocking), it provides a reasonable first approximation.
Moreover, it makes the algorithm both mathematically
tractable and computationally accessible. And most impor-
tant of all, it lends exceedingly good performance to the VIF
index over a wide range of distortion types [27], [44]. 

Finally, in the VIF receiver model, the visual distortion
process is modeled as stationary, zero-mean, additive white
Gaussian noise process in the wavelet transform domain,
mainly to account for internal neural noise: e = c + n and
f = d + n. Here, e and f denote random coefficient vectors

in the same wavelet subbands in the
perceived reference and distorted
images, respectively, and n is inde-
pendent white Gaussian noise with
covariance matrix Cn = σ 2

n I .  This
receiver model greatly simplifies prior
image fidelity measurement algo-
rithms that relied upon sophisticated
computational models of the eye, the
retina, and visual cortex.

Given the statistical models of
source/transmitter, channel distortion,
and receiver, the mutual information
between c and e, and between c and f, are
given by [44][FIG9] System diagram of the generic VIF method.
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I(c; e|z) = 1
2

log

∣∣zCu + σ 2
n I

∣∣∣∣σ 2
n I

∣∣ = 1
2

M∑
j=1

log
(

1 + zλ j

σ 2
n

)
;

I(c; f|z) = 1
2

log

∣∣g2 zCu + (
σ 2

v + σ 2
n
)

I
∣∣∣∣(σ 2

v + σ 2
n
)

I
∣∣

= 1
2

M∑
j=1

log

(
1 + g2 zλ j

σ 2
v + σ 2

n

)
.

In these expressions, we have factored the covariance matrix
Cu = Q�QT, where � is a diagonal matrix whose diagonal entries
are the eigenvalues
λ1, λ2, · · · , λM . The mutual
information is computed at each
spatial location in each subband of
the image, using local maximum-
likelihood estimates of z, g and σv

[44]. Assuming independence
between the distortion parameters across local coefficient patches
and independence between the coefficients across different wavelet
subbands, the overall mutual information can be computed by
simple summation. Finally, the VIF index is defined as the ratio of
the summed mutual information

VIF = I(C; F|z)
I(C; E|z) =

N∑
i=1

I(ci; fi|zi)

N∑
i=1

I(ci; ei|zi)

,

where i is the index of local coefficient patches, with all sub-
bands included.

The VIF measure has been extensively tested across a wide
variety distortion types. A detailed report can be found in [27],
where ten well-known or state-of-the-art image quality/fideli-
ty measures were tested using the laboratory for image and
video engineering (LIVE) image quality assessment database
that is maintained by the Laboratory of Image and Video
Engineering at The University of Texas at Austin (the com-
plete database, along with extensive subjective ratings of the
images, are available at http://live.ece.utexas.edu). According
to this study, which is, to date, the most extensive that has
been done, the VIF index exhibits superior performance rela-
tive to all other image fidelity measurement algorithms.

FROM IMAGES TO VIDEOS
Naturally, the question arises whether new developments in
image fidelity measurement can be extended to moving images
or video. Indeed, there is strong demand for video fidelity meas-
ures in the multimedia communication industry that has moti-
vated the formation of the industry-controlled video quality
experts group (VQEG), which seeks to develop, validate, and
standardize objective measures for video quality.

A simple and obvious way to implement a video fidelity meas-
ure is to apply a still image measure on a frame-by-frame basis,

then average over all frames. Indeed, SSIM has been deployed in
this manner with rather good results [46], and is now deployed
as a basic video quality assessment tool in popular public-domain
software such as the Moscow State University video quality meas-
urement tool (www.compression.ru/video/quality_measure/) and
the award-winning freeware H.264 codec x.264 (www.
videolan.org/developers/x264.html).

However, two important aspects of video are missing in
frame-by-frame implementations of image fidelity metrics: 1)
there are strong correlations between adjacent video frames
that define temporal and spatio-temporal signal structures;
and 2) video contains perceptually important structured

motion. The most common
method to take into account
temporal correlations is tempo-
ral or spatiotemporal filtering
[4], [47], [48]. The general
approach is similar to the
framework presented in Figure

6. Linear filters or filter banks are first applied along the spa-
tial and temporal directions, and the filtered signals are nor-
malized to reflect additional perceptual effects such as the
temporal CSF (human visual sensitivity as a function of tem-
poral frequency) and temporal masking. A video version of
VIF has also been proposed that includes statistical modeling
of the temporal filter coefficients, followed by an information
fidelity measure [49].

Naturally, motion is one of the most important contributors
to the information content of videos. Yet, only relatively few
existing video quality assessment (VQA) algorithms detect
motion explicitly and use motion information directly [46],
[50]–[53]. Direct use of motion is desirable since temporal filter-
ing cannot fully capture motion. Indeed, motion does not create
all temporal intensity variations in video. Moreover, the respons-
es of temporal filters cannot supply the speed of motion, since
intensity attributes affect the filter responses.

More recent methods seek to detect motion and convert
the motion information into spatiotemporal weighting factors
in the pooling stage of video fidelity measurement [46], [50],
[51]. For example, in [51], visual perception of motion is mod-
eled using a recent psychophysical study of human visual
speed perception [54] that has provided critical information
about the prior and likelihood probability distributions of
visual speed perception. The general approach of motion-
based weighting has proven consistently effective in improv-
ing the performance of video fidelity measures over standard
(i.e., simple averaging) MSE/PSNR and SSIM measures when
tested using the VQEG Phase I database (available at
www.vqeg.org) [46], [50], [51].

A substantially different approach involves using optical
flow estimation [52], [53] to adaptively guide spatiotemporal
filtering using three-dimensional (3-D) Gabor filterbanks. The
key difference of this method is that a subset of filters are
selected adaptively at each location based on the direction and
speed of motion, such that the major axis of the filter set is
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oriented along the direction of motion in the frequency
domain, as illustrated in Figure 10. The video fidelity evalua-
tion process is carried out with coefficients computed from
these selected filters only. Distortions in the video that are
purely spatial, meaning intra-frame distortions, result in
changes in the frequency components along the plane, and
are captured in the Gabor filter outputs. Distortions in the
video that are purely temporal, meaning inter-frame distor-
tions, result in a changes in the axis along which the plane
intersects the Gabor filters. This approach has been incorpo-
rated into the VIF [52] and the CW-SSIM [53] measures, with
improved performance relative to frame-based VIF and SSIM.

FROM VISUAL TO AUDIO SIGNALS
Algorithms for computing objective measures of perceptual
signal quality assessment have also been a focus in the audio
signal processing field, where standards such as the
International Telecommunications Union (ITU) standard
BS.1387–Perceptual Evaluation of Audio Quality (PEAQ) [55],
and the ITU standard P.862–Perceptual Evaluation of Speech
Quality (PESQ) [56] have been developed after many years of
careful collaboration between industry, government, and aca-
demic groups. Although there are differences, PEAQ and PESQ
both share similarities with many of the earlier image quality
assessment algorithms, in that channel decompositions are
used to analyze the data across frequency bands, followed by a
form of perceptual differencing (along with many other facets,
such as aligning the signals and accounting for loudness).

It is unlikely that PEAQ or PESQ would be adaptable to other
applications, since these perceptual indices are built on detailed
audio perception models. However, it is possible that these well-
established standards might benefit by some of the notions

recently developed for image quality assessment, e.g., that the
direct measurement of structural distortions might be effective
for audio signals, since certainly such signals contain one-
dimensional structures not dissimilar to those found in images,
e.g., sudden changes in sound volume (similar to image intensity
edges), periodic or quasi-periodic sounds (similar to many
image textures), and so on. Likewise, information-theoretic
approaches to audio signal quality assessment may be fruitful.

Towards this end, researchers at New Mexico State University
have recently applied variations of SSIM for the assessment of
audio signal quality [57]. Using a set of seven different (original)
44.1-KhZ audio signals, they generated a variety of distorted sig-
nals by adding noise, using different types of audio compression
algorithms, and band-limiting the signals. Subjective tests using
15 subjects were conducted. The linear correlation of SSIM
scores with the subjective scores when applied to the distorted
data was found to be surprisingly high. Further variations of
SSIM using temporal and time-frequency weightings resulted in
even better correlations with the human data.

While there remains much work to be done towards deter-
mining the efficacy of SSIM (or VIF) for audio quality assess-
ment, these results are quite promising, and suggest again, that
differencing methods, whether perceptually weighted or other-
wise, might be replaced by different distance indices.

THE NEXT STEP: OPTIMIZATION
USING NEW SIGNAL FIDELITY MEASURES
The nontraditional methods for signal fidelity measurement
that we have been discussing are well suited for many practical
applications. In particular, they can be used to monitor signal
fidelity as part of quality of service (QoS) efforts, and also to
benchmark signal processing systems and algorithms in com-
parative studies. However, the potential application scope of
these new measurement devices greatly exceeds QoS or bench-
marking algorithms. In particular, they can be used as design
criteria to optimize signal processing algorithms and systems.

WHAT IS OPTIMAL?
As mentioned earlier, the MSE is used not only to evaluate,
but also to optimize a large variety of signal processing algo-
rithms and systems. Of course, a good rule of thumb is that
an optimized system is only as good as the optimization crite-
rion used to design it. Therefore, it makes sense to carefully
study the criteria employed in the design of current signal
processing systems. In particular, a worthwhile direction is to
deploy modern signal fidelity measures that are specifically
suited to each application, then do (or redo) the optimization
work. This is not a new idea, of course; in statistical commu-
nication theory, a basic concept is to inject as much informa-
tion as possible regarding transmitter, channel and receiver,
in order to deliver the best performance possible [58]. Thus, a
priori statistical modeling can be used to refine or establish
weights in the optimization process. The next logical step is
to toss out the optimization criteria altogether and develop
new, specific ones. There has already been interesting work

[FIG10] Frequency domain illustration of motion-guided 3-D
filters for video fidelity assessment. (a) Full set of Gabor filter
bank. (b) Filters selected when there is no motion. (c) Filters
selected when there is motion (orientation depends on the
direction and the speed of motion).

(c)

(b)(a)
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done in this vein in a number of fields, including speech cod-
ing [59], image halftoning [60], image segmentation and clas-
sification [61], image watermarking [62], and image/video
compression [2], [13], [14], [63], [64]. It is no accident that
these examples are perception-related, as models of visual and
audio perception have gained rapid ground over the past few
decades. As examples, simple perceptual models are employed
in the development of the JPEG quantization table [65] and
the JPEG 2000 visual optimization tools [66].

In many mature fields such as image compression, state-
of-the-art algorithms have achieved a performance plateau
levels and significant improvement has become difficult to
attain. The key here, is relative to which performance criteri-
on? Nominally, minimizing the MSE (or PSNR) is the opti-
mization goal. However, the enormous difference in
perceptual relevance between the MSE and modern signal
fidelity measures suggests that there is good reason to be
optimistic about further improvement in established algo-
rithms. Thus far, progress in this direction has been only pre-
liminary, yet very promising. In particular, the SSIM Index
and its relatives have been found effective in growing list of
image processing optimization problems, owing both to its
computational simplicity and its relative analytic tractability
(e.g., it is differentiable [6]). Figure 4 is a simple example of a
SSIM-based iterative optimization algorithm that uses a gra-
dient computation at each iteration.

IMAGE COMPRESSION
Image coding algorithms traditionally optimize the MSE under
the constraint of a limited bit budget. The possibility of using
perceptual cost functions is suggested by Figure 8, where the
SSIM index does a better job of predicting local image quality.
Perceptual image coding algorithms typically deploy perceptual
models in a preprocessing stage. Perceptual normalization trans-
forms the image into a perceptually uniform space, where all
transform coefficients have equal perceptual importance.
Standard coding is then applied uniformly to all coefficients.

Signal compression is a well-suited area in which signal
fidelity metrics may supply enhanced results. For example, in
[67], the SSIM index was applied in an iterative algorithm,
where at each iteration, a bit allocation scheme is used to spa-
tially redistribute the available bits based on the SSIM map
obtained from the last iteration. The scheme seeks to improve
the worst case scenario, so that the lowest quality region in the
image is enhanced. In other words, a maximin (maximum of
minima) SSIM criterion is the optimization goal. The philoso-
phy of the approach is that visual attention is often attracted to
image regions having annoying artifacts, thus degrading the
perceptual quality of the entire image. In [67], the SSIM-based
bit allocation scheme was embedded into the well-known set
partitioning in hierarchical trees (SPIHT) image compression
algorithm [68]. Figure 11 shows comparisons of the maximin
SSIM-optimized coding result with the SPIHT algorithm,

[FIG11] Comparison of coding results of SPIHT and maximin SSIM-optimized algorithms at 0.2 b/pixel.
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showing that the fidelity of the maximin SSIM-optimized com-
pression is more uniformly distributed over the image space.
Those regions having the worst quality in the SPIHT coded
image showed the most improvement, while detailed structures
(e.g., in the enlarged regions) were preserved. 

IMAGE QUANTIZATION
One of the most challenging aspects of achieving perceptually
optimized image or video compression is the selection of quanti-
zation parameters in the compression domain. For example,
quantization of the block DCT coefficients in JPEG, MPEG, or
subband compression algorithms
has in the past been approached
using measured responses of
visual frequency response (con-
trast sensitivity). While this
approach has merit, and does
lead to improved performance
[13], it is of considerable interest
to attempt optimization of the quantization parameters using an
objective criterion that correlates well with overall visual per-
ception of quality, rather than using data measured from one
facet of human vision. There remains much work to be done in
this direction; however, bounds on the SSIM values of quantized
image DCT coefficients have been developed which can be used
to place bounds on the performance of uniformly quantized
image DCT coefficients, and by extension for rate allocation in
image and video coding [69].

IMAGE RESTORATION
Another general class of problems that could clearly benefit
from the use of signal fidelity metrics is signal restoration,
meaning, removal of blur and/or noise from distorted signals.
Given a linearly blurred version of an original signal x to which
noise was somehow added

y = g ∗ x + n,

where g is a linear blur and n is additive noise, the goal of
this classical problem is to attempt recovery of x given g and
the observation y, using a linear filter. The classical solution
to this problem is the Wiener filter hMSE which minimizes
the expectation of the squared error between the true signal
x and the estimate x̂

E[(x̂ − x)2]

over all linear filtered solutions x̂ = h ∗ y. Within the context of
our discussion, it is natural to consider replacing the MSE with
a perceptual distortion measure. In fact, owing to its analytic
simplicity, this can be done with relative ease with the SSIM
index. In [70], a closed-form linear estimator was derived that
maximizes a statistical version of the SSIM index, called stat-
SSIM, as an alternative to the MMSE solution. The stat-SSIM
index of two random vectors x̃ and ỹ is

Stat − SSIM(x̃, ỹ) =
(

2μxμy + C1

μ2
x + μ2

y + C1

)

×
⎛
⎝ 2E

[(
x̃ − μx

) (
ỹ − μy

)] + C2

E
[(

x̃−μx
)2

]
+E

[(
ỹ−μy

)2
]
+C2

⎞
⎠ ,

where μx = E[x̃], μy = E[ỹ]. Finding the SSIM-optimal lin-
ear filter that minimizes the stat-SSIM index is a nonconvex
optimization problem, but one that can be transformed into a
quasi-convex problem that has a tractable solution that is of

similar computational complex-
ity as the MMSE filter [70].
Figure 12 shows four images:
original,  blurred with noise
added, MSE-optimal linear filter,
and SSIM-optimal linear fil-
tered. The images were blurred
using a Gaussian blur kernel

with a standard deviation of five pixels, while the simulated
additive noise is white Gaussian with a standard deviation of
50 [the gray-scale range is (0, 255)]. By visually comparing
Figure 12(c) and (d), it can be seen that the SSIM-optimal
solution is visually crisper, with better contrast, and better
retention of visual details. The sample MSE (1) and sample
SSIM value (2) computed from the restored images are like-
wise in accord with expectations: the MSE-optimal solution
yields a lower MSE, while the SSIM-optimal yields a higher
SSIM value. Naturally, the SSIM-optimal solution has a bet-
ter appearance, since the SSIM value correlates more closely
with visual perception of quality.

It must be remembered, of course, that the image restora-
tions in these examples are accomplished by space-invariant
linear filters only. Although the difference in performance
depicted in Figure 12 is clearly visible (and representative [70]),
better results should be obtainable using SSIM-based optimiza-
tion of nonlinear filters, iterative restoration, and multiscale or
wavelet-based restoration. The possibility of accomplishing
image restoration, denoising, reconstruction, and other basic
processes by optimizing criteria such as SSIM, VIF, or other per-
ceptual criteria reveals important research questions, the
answers to which may markedly elevate the performance of
state-of-the-art image improvement algorithms.

PATTERN RECOGNITION
Image fidelity measurement, as we have previously defined it,
involves making comparisons between original images and dis-
torted versions. Since the algorithms perform image compar-
isons that accord with visual perception, it is natural to wonder if
there are other applications of image comparison which these
tools might be adapted for. One such very broad application is
recognition of patterns or objects in images. The pattern recog-
nition capability of biological perceptual systems is quite remark-
able when cast against the best efforts made thus far by the
engineering and computer science communities. Certainly our
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perceptual systems are highly tuned for
this purpose, although the mechanisms
for visual recognition remain largely
undiscovered. There is evidence, howev-
er, that the type of bandpass channels
that we have been deploying for signal
fidelity measurement, in for example,
CW-SSIM [24], are also used in pattern
recognition processes by humans [71].
This leads us to believe that signal fidelity
measures that accord with human per-
formance have the potential to achieve
success in pattern recognition tasks. As
we will discover, the CW-SSIM index has
several nice properties that promote it for
recognition tasks. In the following, we
will show how it has been successfully
used for several applications.

Printed character recognition is a
classic problem in the pattern recogni-
tion field—one that is simple when the
characters are machine printed, and
much more difficult when they are
printed by hand. As an example applica-
tion, the CW-SSIM index was used in a
digit recognition test which can be
described as image matching without
registration [24]. First, ten standard
digit templates were created manually,
as shown in Figure 13. A total of 2,430
distorted images (243 for each digit)
were then generated by shifting, scal-
ing, rotating, and blurring the standard

[FIG13] Image matching without registration-application to digit recognition.

Templates Sample Test Images (Randomly Selected from Database)

1 016.0

2

3

4

5

6

7

8

9

0

All

1.6

2.9

0

3.7

2.1

5.8

0.4

0

7.0

2.3

34.6

50.6

36.2

52.3

43.6

31.7

50.2

40.7

48.6

40.4

Recognition
Error Rate (%) 

Digit MSE CW-
SSIM

[FIG12] Linear image restoration. (a) Original image. (b) Blurred, noisy image (MSE=3,131,
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templates (examples shown in Figure 13). Each distorted
image is then recognized by direct image matching with the
ten standard templates, without any prior alignment or regis-
tration process. The MSE and
the CW-SSIM index were used as
the matching standards. As
expected, the MSE is sensitive to
translation, scaling, and rotation
of images, leading to poor recog-
nition error rates. By contrast,
the performance of the CW-
SSIM index was surprisingly
good, with an overall recogni-
tion error rate of only 2.3%. Of
course, the CW-SSIM index was
not developed for digit recognition, and there exist other
sophisticated digit recognition systems that may perform bet-
ter. However, the simple CW-SSIM approach just described
performs rather impressively, given that it requires no train-
ing, nor any of the complex preprocessing steps often encoun-
tered in such systems, such as registration, edge detection,
feature extraction, and contour processing, etc., nor any prob-
abilistic modeling of the patterns or the distortions.

Automatic face recognition is a topic of considerable recent
interest in biometrics and security applications. Here again,
there are many sophisticated face recognition systems that uti-
lize multiple stages of processing of two-dimensional (2-D) or 3-
D images of human faces. In another experiment regarding its
applicability to recognition problems, the CW-SSIM index was
applied to the problem of recognizing human face images from
3-D range maps obtained using a binocular scanner [72]. 3-D
face recognition is a compelling new application with great
promise relative to 2-D systems. In the experiment, a test data
set consisting of 360 face images was partitioned into a gallery

set containing one image of each of the 12 subjects with a neu-
tral expression, and a probe set of 348 images (29 for each sub-
ject) with a neutral or an arbitrary expression. Figure 14 shows

several sample images from the
database. Three popular face
recognition measures were evalu-
ated on the face image database
along with the CW-SSIM index,
and standard receiver operating
characteristic (ROC) curves (false
rejection rate versus false accept-
ance rate) generated for each
algorithm. The algorithms
deployed were the depth MSE
(MSEZ) [73], the close-point MSE

(MSECP) [74], the Hausdorff distance [75], and the CW-SSIM
index. The ROC curves for false rejection rate against false
acceptance rate are shown in Figure 14, showing CW-SSIM to
significantly outperform the other algorithms. The success of
the CW-SSIM index in this application can likely also be attrib-
uted its robustness against small misregistrations. Moreover,
since it does not involve any search procedure, it is less costly in
terms of computation as compared to the MSECP measure and
the Hausdorff distance [72]. The complexity of CW-SSIM is
bounded by the complexity of calculating the wavelet coeffi-
cients, which for images of size M × N is O(MNlogMN), whereas
the search procedure in MSECP or using the Hausdorf distance
have a natural complexity of O(M2N2).

Medical pattern recognition is a broad area of increasing
interest. An important problem in many biomedical imaging
applications is to evaluate intra- and inter-observer agree-
ment of experts (usually physicians) in identifying and local-
izing structures of interest in medical images, such as
radiographs. An algorithm that has gained wide usage in

medical imaging studies is the Dice
similarity coefficient (DSC) [76]. As a
third example of the applicability of
perceptual metrics such as CW-SSIM
for a broad array of recognitions prob-
lems, the CW-SSIM was compared
with DSC using both simulated and
clinical data sets [77]. The simulated
images were artificially generated
from binary images of line structures,
followed by rotations of 0.1– 2◦ and
translations from 0–4 pixels. In the
test with the clinical data set, two
radiologists marked structures of
interest and outlined the lesions on a
set of digitized mammograms images.
One of the radiologists repeated the
process. As reported in [77], the CW-
SSIM measure proved to be much
more robust than DSC on the simulat-
ed data set. For the clinical data, the

[FIG14] Face recognition using range images. (a) Sample range images of human face. The
top two faces are from the same person. (b) ROC curves of the recognition results.
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DSC measure failed to capture the obvious agreement
between the two radiologists, while the CW-SSIM index indi-
cated the agreement. Interestingly, the intra-observer agree-
ment was consistently rated as higher than inter-observer
agreement by CW-SSIM, which
agrees with visual inspection of
the images as well as the intu-
itive expectation that a human
observer should agree more
with himself in recognizing
structures of interest than with
another individual.

Palmprint verif ication is
another promising biometric
for which the CW-SSIM index
has also been employed [78]. A
test database of palmprints was created by the Biometrics
Research Center at The Hong Kong Polytechnic University
(www4.comp.polyu.edu.hk/~biometrics/) containing 600
palmprint images from 100 different palms (six each). Each
palmprint image was matched with all the other images,
resulting in a total of 179,700 pairs of comparisons. Figure
15(a) shows the genuine and the impostor distributions
using the CW-SSIM index, revealing a clear separation
between the two. The method was compared with the com-
petitive coding scheme [79], one of the most successful
palmprint verification algorithms. Figure 15(b) plots the

ROC curves for genuine acceptance rate against false
acceptance rate, showing that the CW-SSIM index again
performed better in most cases. Finally, Figure 15(c) depicts
two palmprint images from the same person that were cor-

rectly identified by the CW-
SSIM method, but not by the
competitive coding scheme.

FINAL COMMENTS
In this article, we have reviewed
the reasons why we (collective-
ly) want to love or leave the ven-
erable (but perhaps hoary) MSE.
We have also reviewed emerging
alternative signal fidelity meas-
ures and discussed their poten-

tial application to a wide variety of problems. The message we
are trying to send here is not that one should abandon use of
the MSE nor to blindly switch to any other particular signal
fidelity measure. Rather, we hope to make the point that there
are powerful, easy-to-use, and easy-to-understand alternatives
that might be deployed depending on the application environ-
ment and needs. While we expect (and indeed, hope) that the
MSE will continue to be widely used as a signal fidelity meas-
ure, it is our greater desire to see more advanced signal fideli-
ty measures being used, especially in applications where
perceptual criteria might be relevant. Ideally, the performance

[FIG15] Palmprint verification. (a) Genuine and impostor distributions of CW-SSIM. (b) ROC curves for CW-SSIM and competitive coding.
(c) Two palmprints from the same person that are correctly identified by CW-SSIM but not by the competitive coding algorithm.
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of a new signal processing algorithm might be compared to
other algorithms using several fidelity criteria. Lastly, we
hope that we have given further motivation to the community
to consider recent advanced signal fidelity measures as design
criteria for optimizing signal processing algorithms and sys-
tems. It is in this direction that we believe that the greatest
benefit eventually lies.
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