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R
ecent years have witnessed dramatically increased 
interest and demand for accurate, easy-to-use, and 
practical image quality assessment (IQA) and video 
quality assessment (VQA) tools that can be used to 
evaluate, control, and improve the perceptual 

quality of multimedia content in a wide variety of practical 
multimedia signal acquisition, communication, and display 
systems. There is a vast and increasing proliferation of such 
content over both wireline and wireless networks. Think of 
the Internet: Youtube, Facebook, Google Video, Flickr and so 
on; networked high-definition television (HDTV), Internet 

Protocol TV (IPTV)  and unicast home video-on-demand 
(Netflix and Hulu, for example); and an explosion of wireless 
video traffic that is expected to more than double every year 
over the next five years [1]. In such an environment of 
extreme growth, limited bandwidths, and diverse content, res-
olutions, and quality, there is considerable concern regarding 
how the quality of service (QoS) of videos being delivered can 
be managed. In short, there is currently no practical method 
for accurately monitoring the perceptual quality of this vast 
proliferation of video data.

A number of successful algorithms have been created that 
can predict subjective visual quality of a distorted image or video 
signal—in agreement with human opinions of visual quality—
when a (presumed) “pristine” signal is fully available [2]. 

[ The natural scene

  statistic model approach]
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Yet, in most present and emerg-
ing  practical real-world  visual 
communication environments, 
such full-reference (FR) meth-
ods are not useful since the ref-
erence signals are not accessible 
at the receiver side (or perhaps 
at all). What are really needed are I/VQA algorithms that can 
operate with little or no reference signal information at all; in 
other words, by operating on the visual signal of interest 
directly, rather than by extensive comparison. Indeed, the 
assumption of a supposedly “pristine” reference image or video 
is highly suspect; even under the most ideal and controlled 
circumstances, a captured optical signal will inevitably suffer 
from some kind of distortion [3].

Thus, creating autonomous algorithms that depend on 
much less specific information from any reference signal is 
now an intense focus of research. Such algorithms fall into 
two categories: reduced-reference (RR) and no-reference 
(NR) (or blind) IQA and VQA algorithms. In the former cate-
gory, a reference signal is assumed only partially accessible 
(in the form of selected features); typically, the amount of 
data from the reference signal is significantly less than in the 
reference signal itself. In the latter category, reference signal 
information is deemed completely inaccessible [3]. Although 
RR and NR algorithms (that accord with perception) have 
been desired for a very long time, progress has been slow. Yet 
the need is large since today’s video consumers have become 
increasingly savvy about the capabilities of digital video, and 
expectations regarding the QoS of delivered visual multime-
dia have risen significantly.

If such RR and/or NR visual QA algorithms could be cre-
ated, they could be deployed as agents over wide-area data 
communications and visual surveillance networks by embed-
ding them in smart routers, set-top boxes, smart phones, 
cameras, tablets and laptops. They could be used as primary 
QoS tools that could feed back time-varying visual signal 
quality information, enabling source adaptation and distrib-
uted network control mechanisms to adapt resource alloca-
tion, source and channel coding, and other network 
parameters. In today’s increasing video-centric consumer 
data communications environment, we think that such algo-
rithms could represent a sea change in visual multimedia 
data delivery.

To date, a wide variety of inventive methods have been 
deployed toward solving the RR and NR I/VQA problems, and 
the universe of ideas are quite large. In attempting to 
describe and help the readers to understand the field, we are 
confronted also with the fact that the various approaches 
attempt to solve diverse problems that operate under differ-
ent assumptions. It is our goal in this tutorial to clarify the 
issues to be solved and how they might be pragmatically 
approached, without clouding things by attempting a broad 
survey of the field. In doing so, we take a certain viewpoint 
regarding how things ought to be done.

TOWARD MODEL-BASED 
VISUAL QA
To better cast the foregoing dis-
cussion against the “big picture,” 
Figure 1 depicts a “knowledge 
map” that contains what we 
regard as the essential building 

blocks in the design of successful visual QA models. We think 
that accurate modeling is the key to successful I/VQA algorithm 
design. Essentially, three types of knowledge may be exploited 
to build such models. The first is knowledge about the image 
source that captures the essence of what a signal ought to look 
like when not distorted. This can be either deterministic when 
the reference signal is fully accessible (FR case) or statistical 
when certain statistical models are available to regulate the 
undistorted images. The second is knowledge about image dis-
tortion, which may help detect particular artifacts created by 
specific distortion processes (e.g., blocking artifacts generated 
in JPEG compression). Furthermore, mathematical models of 
how distortions change image content (by degradation process, 
artifacts, or loss of statistical naturalness) can be used to predict 
distortion severity in an observed visual signal. Finally, since 
most applications direct visual signals toward human viewers, 
the third type of knowledge is about the HVS, which is based on 
perceptual models originated from visual physiology and psy-
chophysical studies. We believe that models derived from these 
three types of knowledge should not be disjoint. In particular, 
statistical signal modeling and perceptual modeling may be 
understood as dual problems, as  discussed later. By analogy, 
communication systems embody knowledge of transmitter 
(analogously visual signal model), channel (distortion model), 
and receiver (perceptual model). The more information that is 
available regarding transmitter, channel, and receiver, the bet-
ter job of communication that can be accomplished. The most 
successful design will use and combine models of all three. 
Most visual QA algorithms can be understood using such a uni-
fied modeling framework, even if not expressed in such terms.

NATURAL SCENE STATISTIC MODELS
We believe that there is a category of statistical models that 
comes close to embodying the three-fold modeling objectives 
just described, and that provides the most promising basis for 
successful RR and NR QA algorithm design. As we shall see, 
these so-called natural scene statistic (NSS) models are highly 
attractive in a number of ways: they reliably capture low-level 
statistical properties of images (hence are very general and flexi-
ble models); they can be used to measure the destruction of 
“naturalness” introduced by distortions (enabling effective dis-
tortion models); and they accurately describe the statistics to 
which the visual apparatus has adapted and evolved over the 
millennia (and so, are regarded as direct duals of low-level per-
ceptual models). A “natural scene” is one captured by an optical 
camera, and can include both naturalistic (e.g., trees and grass) 
content as well as man-made indoor and outdoor scenery. The 
term is meant to distinguish “natural” from artificial image 
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creation processes such as computer graphics. We will describe 
specific NSS models that appear to be well suited for RR and NR 
QA algorithm design. We will also point out ways in which NSS 
models can be improved for QA applications, e.g., by incorporat-
ing perceptual information into them. 

NSS models seek to capture the natural statistical behav-
ior of images, rather than assuming deterministic knowl-
edge of the image source (as in FR QA). Such prior models 
of image statistics enables the use of a rich groundwork of 
Bayesian statistical methods, and are rooted in the widely 
accepted view of biological perceptual systems in computa-
tional neuroscience and psychophysics, that the visual 
apparatus is highly adapted to the natural environment, and 
has evolved to most efficiently extract visual information 
from it [4], [5].

What constitutes a useful model of natural image or video 
statistics? The most important criteria is that the model be 
regular, in the sense that any natural image that has not been 
distorted by unnatural distortions can be expected to follow 
the model with a high degree of confidence. In recent years, a 
number of NSS models have been derived for still images that 
are highly regular. Common NSS models used for both model-
ing of perception and for image processing applications have 
been developed around theories of sparse coding by the visual 
brain [4], [18], [19] and by the observed (self-similar) scaling 
properties of natural images [28], [29]. Importantly, the visual 
brain appears to have both to have evolved to “match” the sta-

tistics of natural images [19] and to seek a efficient, decorre-
lated representations of image information, as evidenced by 
the fact that the principal components (or independent com-
ponents) of natural images closely resemble the spatial 
responses of cortical neurons [61].

While it is beyond the scope of this article to describe the 
function and coding processes in visual cortex, or the broader 
spectrum of NSS models that have been proposed (a good 
introduction can be found in [62]), the connections between 
NSS and perceptual processes are important, since the ulti-
mate goal of objective visual QA algorithms is to predict 
human behavioral responses when evaluating visual quality. 
Of particular importance in this context are NSS models that 
are sensitive to image “unnaturalness” introduced by distor-
tion. The NSS models that we describe later on are quite use-
ful in this regard, as they can be used to successfully predict 
the type and degree of perceptual quality loss introduced by 
common distortions.

Of course, the QA of moving pictures, or videos, can be 
accomplished in a limited manner by applying still-image NSS 
models on a frame-by-frame basis. More desirable, however, 
would be NSS models that capture the statistics of naturalistic 
videos in a natural manner. There is evidence that the spatio-
temporal vision system has adapted to the natural statistics of 
moving images to achieve efficient encoding of the large vol-
ume of data [63]. While some progress has been made on char-
acterizing the statistics of optical flow fields under rather rigid 
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[FIG1] Knowledge map expressing the elements required to construct successful visual QA models.
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assumptions [64], there does 
not yet exist any established sta-
tistically regular model of the 
natural spatiotemporal statistics 
of video data. The problem is 
greatly complicated by the com-
plexity of the natural motions of 
objects, and of the sensor. As 
such, NSS-based VQA remains very much an open problem. 
Because of this, the design of (FR) VQA algorithms that are 
not distortion-specific has been largely driven by structural or 
perceptual models [35], [55], [65], [66].

STATISTICAL IMAGE QA
In essence, NSS-based IQA algorithms seek to capture statisti-
cal regularities of natural images and to quantify how these 
regularities are modified or lost when distortions occur. Since 
these methods do not necessarily rely on directly detecting or 
quantifying specific image artifacts, such algorithms have the 
potential to be more widely applicable than distortion-specific 
approaches. Such “holistic” NR QA algorithms could operate 
by measuring a “distance” from naturalness, thereby gauging 
how severely distorted a visual signal is by how “far” it lies 
from the space of natural images. However, it is also possible 
to distinguish distortions by type according to the “direction” 
in which the distorted signal lies away from “NSS space.” 

The first successful NSS model-based IQA algorithm was 
the FR Visual Information Fidelity (VIF) index [6], which 
uses a wavelet-domain Gaussian scale mixture (GSM) model 
(as described later in the context of RR algorithms) [7] that 
captures both the marginal distributions of wavelet coeffi-
cients and the magnitude dependencies of neighboring coef-
ficients across space, scale, and orientation. This algorithm 
has exhibited excellent performance in two large human 
studies [8], [9]. The GSM was also used to modify the FR 
multiscale structural similarity (SSIM) index [10] by weight-
ing local information content. The resulting information-
weighted SSIM (IW-SSIM) index delivers superior 
performance relative to the state of the art against human 
subjectivity, as shown on multiple public databases [11]. 

These results further motivate 
the use of NSS for the design of 
visual QA algorithms. How 
then, to use these models when 
the amount of information 
from the reference image is 
reduced or eliminated? As we 
will show, promising results 

have been achieved using NSS for still image RR and NR QA, 
for both distortion-specific and “holistic” problems.

TOWARD RR IMAGE QA
The idea of RR QA was first conceived in the 1990s [12] as a 
pragmatic approach to real-time video quality monitoring 
over multimedia communication networks. Figure 2 depicts 
the general idea of how an RR image or video QA system 
works [3]. At the sender side, a feature extractor is applied to 
the reference visual signal. The extracted features are trans-
mitted to the receiver as side information through an ancil-
lary channel. It is usually assumed that the ancillary channel 
is error free. When the distorted signal is transmitted to the 
receiver via an error-prone channel, a feature extractor is 
also applied at the receiver side. This could be the same pro-
cess as at the sender, or it might be adapted according to the 
received side information. In the final QA stage, the RR fea-
tures extracted from both reference and distorted visual sig-
nals are used to compute an overall score indicating the 
quality of the distorted signal.

A good RR approach must achieve a good balance between 
the accuracy of the quality predictions and the RR data rate. One 
would expect that accuracy would improve monotonically as 
more information about the reference image is made available 
[3]. RR algorithms lie within two extremes: if the data rate is 
high enough to deliver the reference signal as side information, 
then an FR method can be applied at the receiver side. 
Conversely, if the data rate is zero (i.e., no reference side infor-
mation), then an NR method is required. In practice, a maxi-
mum RR data rate is specified, which is usually quite low, since 
bandwidth for reference side information is effectively “stolen,” 
since it could be used to improve the quality of the transmitted 
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visual signal. This limited data rate makes the design of RR 
 algorithms a challenging task. It puts strong constraints on the 
selection of RR features, which constitute the most critical com-
ponent of RR algorithms. A good set of RR features should

 ■ efficiently summarize the content of the reference visual 
signal

 ■ be sensitive to specific distortions or (if of the holistic vari-
ety) be sensitive to a broad spectrum of image distortion 
types

 ■ embed aspects of the signal that are perceptually relevant.
The significance of these properties can be demonstrated by a 
naïve example: At the sender side, randomly select image pix-
els (say, 1% of them) as RR features. When (side) transmitted 
to the receiver, they are compared on a pixel-wise basis with 
those in the received signal, so that the mean-squared error 
(MSE) or peak-signal-to-noise ratio (PSNR) between refer-
ence and received signals can be estimated. This approach is 
weak in several regards. First, it is difficult to keep the RR 
data rate low—even 1% of the pixels in a 512 3 512, 8 b/pixel 
image requires transmitting 20,976 b. An additional 47,196 b 
are required if the positions of the randomly selected pixels 
are also transmitted. This is a heavy burden—much greater 
than the NSS-based RR methods that we will discuss later. 
Second, the RR features sparsely sample the reference and do 
not adequately summarize the image. Third, some distortions 
may change only pixels not selected as RR features, and thus 
not be easily detected. Finally, the MSE and PSNR have poor 
correlations relative to the perception of visual quality [3], 
[8], [13], [14].

The problems exhibited in the above naïve example are 
instructive. Clearly, RR features should more efficiently summa-
rize image information content, be more sensitive to image dis-
tortions, and have stronger perceptual relevance. NSS modeling 
provides a powerful means to approach these goals. To demon-

strate this, we use an RR algorithm proposed in [15] and [60], 
where an NSS model of the marginal distribution of the image 
wavelet coefficients is employed. Owing to space limitations, we 
must assume that the reader is conversant with the discrete 
wavelet transform; otherwise an excellent easy tutorial and a 
deep treatment can be found in [22] and [23], respectively. 

The choice of wavelet space for statistical modeling of 
images has a number of important underpinnings. Images are 
naturally multiscale and the early visual system decomposes 
image information in a multiscale manner, thereby represent-
ing visual signals simultaneously in localized space, frequency, 
and orientation [16], [17]. More importantly, natural images 
exhibit statistical regularities in wavelet space [5]. For exam-
ple, it has been observed that the marginal distributions of 
natural image wavelet coefficients consistently have sharp 
peaks near zero and longer tails than Gaussian. This reflects 
specific intuitive properties of images of the real world: most 
of the world (and images of it) is smooth (hence many near-
zero wavelet or bandpass responses). This smoothness is bro-
ken up by sparse, often large amplitude discontinuities (hence 
relatively many large bandpass responses). Such highly kurtot-
ic distributions have important implications with respect to 
the sensory neural coding of natural scenes [18], and are a 
central focus of recent theories on the evolution and function 
of biological vision systems [19].

Figure 3 shows the histograms of the wavelet coefficients 
from a subband of a natural image and several distorted versions 
of it. A discovery in the literature of NSS is that the marginal 
distribution of the wavelet coefficients of natural images can be 
consistently well fitted by a two-parameter generalized Gaussian 
density (GGD) model with high accuracy [20]

 pm 1x 2 5
b

2 a G 11/ b 2  exp 321 |x|/a 2b 4, (1)
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[FIG3] Wavelet coefficient histograms (solid curves) of (a) original “buildings” image; (b) compressed by JPEG2000; (c) with additive 
white Gaussian noise; and (d) blurred by a linear Gaussian kernel. The histogram in (a) is well fitted by a generalized GGD model 
(dashed curves). The shapes of the histograms (and the GGD fits) change in different ways for different types of distortions.



IEEE SIGNAL PROCESSING MAGAZINE   [34]  NOVEMBER 2011

where G 1a 2 5 e`

0 ta21e2tdt (for a > 0) is the Gamma function. 
Figure 3(a) also depicts GGD fit of the histogram of the natural 
images (dashed curves), which very closely approximates the 
true distribution (solid curve). This is important since only two 
parameters {a, b} are required to summarize the reference 
image coefficient histograms.

Evident from Figure 3(b)–(d) is the fact that the marginal 
distributions of the wavelet coefficients can change in 
diverse ways as the image undergoes different distortions. 
This is ideal for RR QA, since departures from the reference 
distributions (characterized by {a, b}) can be used as a com-
mon measure to quantify the degree of distortions. One such 
measure is the Kullback-Leibler divergence (KLD) [21] 
between the model (1) and the marginal distribution of the 
distorted signal q(x), viz., between the solid and dashed 
curves in Figure 3(b)–(d)

 dQpm y qR 5 3pm 1x 2 log 
pm 1x 2
q 1x 2  dx. (2)

This approach was used in [15] to create a holistic algorithm 
that achieves competitive performance relative to the full refer-
ence PSNR, using a side channel RR data rate of only 162 b/
image. This is powerful evidence of the efficacy of this NSS 
model for IQA.

A number of earlier statistical approaches operated with-
out any models, by extracting local sample statistics from the 
image. For example, in [22], simple local statistical descrip-
tors of spatiotemporal edge and orientation activity were 
extracted from video sequences to form an RR video QA 
index for monitoring perceptual degradations in visual com-
munication systems. In [23], local harmonic magnitudes 
were extracted from local image patches containing edges to 

create a harmonic activity map. The authors showed that dif-
ferent types of distortions (blocking and blurring) alter these 
maps in different ways, thereby providing a way to evaluate 
image quality with reduced reference. In [24], perceptually 
motivated “structural information features” (orientation, 
length, width, and contrast) were extracted near predicted 
visual fixation points. These RR features were transformed to 
be invariant to zoom, translation, and rotation, and stored in 
a database of “visual image memory.” It shows good perfor-
mance when predicting the quality of images compressed by 
JPEG and JPEG2000. In [25], the authors attempt to model 
the visual pathway from “front end” to cortex (starting from 
display, through the eyes, and ending in visual cortex), pro-
ducing a set of local statistics that provide a “reduced 
description” of an image. 

We believe it is useful to design perceptually motivated 
approaches using NSS-based frameworks, making it thereby 
possible to use Bayesian methods to achieve statistically and 
perceptually optimized QA. Such a stratagem is taken in [26], 
where NSS and perceptual models are combined in just such a 
manner, as described next.

Our goal here is not to give a tutorial on current models 
of neural processing, but there are certain aspects that 
require explanation in order that their relevance to QA be 
understood. As mentioned earlier, neurons in visual cortex 
effectively perform frequency- and orientation-selective 
waveletlike decompositions of visual data arriving from the 
two eyes. A nonlinear neural mechanism that has been 
observed is adaptive gain control (AGC), whereby each neu-
ron’s response (or in our case, wavelet coefficient response) 
is divided by the energy of a cluster of neighboring neuronal 
responses (neighboring wavelet coefficients in space, scale, 
and orientation) [27], as depicted in Figure 4. Such a divi-
sive normalization transform (DNT) of the neuronal (wave-
let) responses has been shown to significantly reduce 
statistical dependencies between the responses (coefficients) 
which can lead to efficient representation. Further, the sta-
tistics of the normalized coefficients have been shown to 
closely follow Gaussian marginal distributions [28]. More 
importantly, this DNT deeply affects the degree of visibility 
of image distortions.

The DNT is a critical perceptual model that is both useful for 
IQA algorithm design and that melds seamlessly with the 
Gaussian scale mixture (GSM) model mentioned earlier in the 
context of the VIF index. In fact, VIF uses a form of divisive nor-
malization [6].

We describe the GSM model next. Suppose that y is a 
vector of wavelet responses that are locally clustered over 
neighboring space, scales and/or orientations. Then the 
GSM model is given by y 5 zu, where u is a multidimen-
sional zero-mean Gaussian random vector, and z is a scalar 
random variable called a mixing multiplier. If we assume 
that z takes a fixed value for each selected cluster of wave-
let coefficients, then putting all z values constitutes a vari-
ance field. If an accurate estimate ẑ of z can be found for 
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each coefficient cluster, then 
dividing the observed vector 
of coefficients by ẑ,  which 
accomplishes the DNT, pro-
duces a random vector that is 
Gaussian. This is a form of 
conditioning of y given knowledge of the variance field.

In [26], the authors used a maximum likelihood proce-
dure [29] to estimate z and observed that the distribution of 
the DNT coefficients (or conditioned wavelet coefficients 
undergone DNT) of natural images are Gaussian, but chang-
es in different ways in images altered with different types of 
distortions. Based on this observation, they form a DNT-
based RR IQA algorithm, which computes the KLD (2) 
between the DNT coefficient histogram in the distorted 
image versus the best Gaussian fit to the DNT coefficients of 
the reference image. In their RR implementation, four fea-
tures are computed from each wavelet subband: the above 
KLD, and the variance, kurtosis, and skewness of the DNT 
coefficients from that band. Their wavelet decomposition, 
which is a steerable pyramid [30], is taken over three scales 
and four orientations, yielding just 48 pieces of RR informa-
tion. Yet the algorithm does quite well as measured against 
human subjectivity, matching the performance of the widely 
used FR index PSNR.

The DNT is relevant to a wide variety of neuroscience, per-
ceptual, engineering, and in particular, QA issues. Since the 
DNT reduces the dependencies between the wavelet coefficients 
(or neural responses) over local space-scale-orientation regions, 
it supports the efficient coding hypothesis of early biological 
vision, wherein as much redundancy in representation is elimi-
nated from low-level visual information before higher-level pro-
cesses act upon it [4]. It also serves as a model of AGC, which 
serves to limit the dynamic range of retinal signals. AGC or DNT 
has an important perceptual byproduct that is easily observed: 
visual masking.

Visual masking is a process whereby one element of a 
visual signal reduces the visibility of another [31], typically 
of similar characteristics such as frequency or orientation. 
Figure 5 is an easy-to-see example, where the image of the 
woman is distorted everywhere by the same level of additive 
Gaussian noise. Although the noise statistics are unchanged 
across the image, it is only highly visible on the smooth 
regions (e.g., face), and much less visible on the more “tex-
tured” hair and scarf, and nearly imperceptible on the wicker 
chair backing. This effect occurs with other distortions that 
introduce artificial high frequencies, such as JPEG compres-
sion [32]. The significance of masking on the obscuration of 
spatial image distortions was observed by Girod [33] as well 
as Teo and Heeger [34], who proposed masking models not 
dissimilar to the DNT outlined above. The most successful 
FR IQA and VQA algorithms, such as SSIM [10] and its deri-
vations [14], VIF [6], and Motion-Based Video Integrity 
Evaluator (MOVIE) [35], and the DNT-based RR algorithm 
out l ined  above ,  a l l  embed   mask ing  mechan i sms 

 implemented by some kind of 
AGC in wavelet or scale-space.

Naturally, NR image QA 
algorithms should also benefit 
by masking models, either by 
some type of DNT, or by condi-

tioning on the signal content, or by adapting to the content in 
some other manner, perhaps through a training procedure. 
The difficulty arises since masking data is not available from a 
reference signal.

TOWARD NR IMAGE QA
The NR (blind) QA problem is both tantalizingly important 
as well as technically difficult. Yet “NR” human judgments of 
image quality occur with little effort. Our visual systems eas-
ily distinguish high-quality against low-quality images, and 
“know” what is right and wrong about them, without seeing 
an “original.” Moreover, humans tend to agree with each 
other to a rather high extent. What is the mystery behind 
perceptual judgments of quality? Do humans have an innate 
ability to judge the quality of pictures relative to an unseen 
high standard of quality?

The answer must be positive in the sense of adaptation. 
Just as people from nontechnological cultures without pho-
tography interpret pictures differently from those exposed to it 
all their lives [36], the customers targeted by purveyors of 
cable, satellite, and wireless video are quite “picture savvy” 
with high expectations regarding the picture quality they pay 
for. These customers, who have observed electronic images all 
their lives, have collectively adapted to high-quality visual sig-
nals and to the distortions that occur. Our neural plasticity 
extends not only over the eons of evolution (wherein the visual 
systems are exposed to a large variety of natural scenes), but 
also over shorter spans within our lifetimes. Short-term plas-
ticity forms the basis for our abilities of visual recognition and 

[FIG5] Easy-to-see example of visual masking of white Gaussian 
noise by high-frequency image content.
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visual memory [37], and no doubt, affects our ability to per-
ceive a loss of quality. In other words, there are models of 
high-quality “reference signals” in our brains, and a learned 
ability to use these models to assess picture quality. High-
definition-equipped readers might try to recall viewing analog 
TV, and how their satisfaction with respect to this older visual 
experience has changed.

While we do not know the exact nature of these models, 
clues are available from prior work on FR and RR QA. We believe 
that the “prior model,” on which the brain relies as it perceives 
levels of picture quality, must be statistical and reflect the statis-
tics of natural scenes. In this regard, the kind of NSS models we 
have been discussing are likely well suited for adaptation into 
theories of visual quality perception, and hence NR QA algo-
rithm design. 

Prior work on NR IQA algorithm design has not empha-
sized statistical image modeling, and most approaches pre-
sume that the distortion affecting the visual signal is 
known. This methods typically estimating image blur (e.g., 
via edge loss) [38], [39] or JPEG and JPEG2000 compres-
sion artifacts by looking for artifact signatures in spatial or 
spectral domains [40]–[44]. Perceptual modeling remains 
underutilized, although the authors of [45] utilize a psycho-
metric model derived from subjective tests to create a per-
ceptual blur index, which interestingly attempts to estimate 
blur relative to image content. Another interesting 
approach to blur assessment is taken in [46], where a loss of 
local phase coherence in the complex wavelet domain quan-
tifies departures from image “naturalness.” One NSS model-
based distortion-specific NR IQA algorithm uses a GSM 
model to characterize correlations between the wavelet 
coefficients of images over scales [47]. By measuring reduc-
tions in these correlations induced by distortion, good qual-
ity prediction performance was demonstrated on JPEG2000 
compressed images.

All of the above-described prior work has been geared 
toward still images only. The field of NR video QA has seen 
less progress, and almost no work at all using statistical 
image models. As mentioned earlier, a primary reason for 
this is a dearth of regular statistical models of naturalistic 
videos. Many proposed algorithms measure blockiness in 
compressed videos, e.g., by MPEG-2 [48], [49] or by H.264 
[50], [51]. A usual technique is to evaluate edge-strength at 
block boundaries then relate it to quality. One recent NR QA 
method for assessing H.264-compressed video quality does 
use an NSS image model (Laplace/Cauchy) of the transform 
coefficient distributions, along with a perceptual model of 
contrast sensitivity and eye movement. They report good per-
formance using their own database of videos and subjective 
scores [52].

Only a small amount of work has been done on the extreme-
ly difficult problem of designing NR QA algorithms that are not 
fixed to a single type or source of distortion. One interesting 
approach taken in [53] observes that the statistics of natural 
images tend to be locally isotropic. The authors hypothesize that 

image distortions destroy this property, making it possible to 
detect distortions. They develop an algorithm to measure the 
degree of local anisotropy across the image using a form of 
(Renyi) entropy, which is then mapped to quality scores. We 
implemented and tested this algorithm on the Laboratory for 
Image and Video Engineering (LIVE) Image Quality database 
[67], where it achieved a poor correlation score relative to 
human subjectivity; however, the idea is sound and likely could 
be improved by an underlying NSS model and additional fea-
tures. Indeed, inspired by this, we created a simple distortion-
agnostic IQA algorithm called Blind Image Integrity Notator 
Using DCT Statistics (BLIINDS) that uses four simple DCT-
domain sample statistics computed from local windows. 
Inspired by the work in [53], BLIINDS-I (as we will refer it, to 
distinguish it from a much more evolved version of the general 
idea) uses two local DCT-domain entropy features and two other 
simple DCT statistics (kurtosis and contrast) which were to fit to 
half of the (content-divided) LIVE IQA Database and tested on 
the other half, using a simple probabilistic prediction model. 
The method has the virtues of conceptual and computational 
simplicity and achieved prediction-performance parity with the 
FR PSNR metric [54]. BLIINDS-I does not rely on a statistical 
image model, however. Instead, it uses intuitive DCT-domains 
sample statistics.

NSS MODEL-BASED APPROACHES TO NR IQA 
Motivated by recent developments in NSS-based image mod-
eling and NSS-based RR algorithm design, we have developed 
new NSS model-based approaches to the NR IQA problem. 
One exemplary method, named BLIINDS-II, retains the moni-
ker since it still uses easily computed statistics of block DCT 
coefficients as features, trained on subjective scores [56]. 
However, BLIINDS-II is quite different from BLIINDS-I: it is 
model based, and uses very different features that are NSS 
model based.

Figure 6 diagrams the overall flow of the BLIINDS-II NR IQA 
algorithm. It is an instructive example, since the features used 
are simple and naturally defined on the NSS model. 

It operates over three scales (performance has been 
found to remain constant if more scales are added). At the 
finest scale, nonoverlapping 5 3 5 image blocks are DCT-
transformed and the resulting (non-DC) coefficients used to 
define statistical model-based features. The coarser scales 
are obtained by downsampling with a 3 3 3 Gaussian anti-
aliasing kernel. The multiscale DCT basis is used to balance 
the need to approximate the natural waveletlike multiscale 
representation of images in the brain with the need for com-
putational efficiency and compatibility with existing DCT-
based image processing algorithms. Fortunately, a simple 
NSS model applies with excellent regularity to the local 
DCT data.

The BLIINDS-II features are also simply defined. The essen-
tial NSS model that is used is the GGD model given in (1) that 
has been successfully used in RR algorithm design. Specifically, 
the non-DCT coefficients are modeled as GGD by fitting each 
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block DCT histogram with the best-fitting GGD function. Each 
block is also divided into subblocks (Figure 7(a) and (b), respec-
tively) designed to capture the radial frequency and orientation 
behavior, and the histogram fit is done on each of these sub-
blocks as well. In this way, the estimated NSS model parameters 
are used to create all features used in BLIINDS-II.

Only very simple parametric features are extracted from 
the fit to the GGD NSS model: the GGD shape parameter b 
(sensitive to distortion signatures); coefficient of variation 
(CoV) z 5 s 0X 0/m 0X 0 of the magnitudes of the GGD variates X (a 
normalized energy measure useful for assessing the amount 
of local image energy, which also accounts for masking); the 
ratios of energy between the radial frequency bands shown in 
Figure 7(a)

 Rn 5

|En 2
1

n 2 1a j,n
Ej|

En 1
1

n 2 1a j,n
Ej

, (3)

where the subband energy is the band variance (the ratios 
indicate the relative proportions of high-, mid-, and low-fre-
quency content in each block). Indexing the subbands outward 
from DC, two energy ratios are used as features: R2 and R3. 
Finally, two orientation features computed from the DCT 
block subdivisions shown in Figure 7(b) are used: the standard 
deviations of the CoV and of the shape parameters: sz and sb, 
which effectively capture changes in the orientation statistics 
over the three bands shown (for each scale).

Thus, just a few (six) NSS-based features are extracted 
using the model fit to the local DCT data. These features are 
computed over three scales. The features are then pooled in 
two ways: 1) the block feature values are averaged over the 
image (standard mean pooling); and (2) only the upper or 

lower 10% of the block feature values are averaged (depend-
ing on the trend of feature against quality). This percentile 
pooling strategy exploits a previously behavioral observation 
that the worst distortions in an image affect subjective judg-
ments most strongly [55], [57].

BLIINDS-II is a holistic NR IQA algorithm in the sense 
that no specific distortion model is used to guide the design 
of the algorithm, and moreover, it is intended to be useful. 
In the absence of any distortion model, it is necessary to 
train NSS model based IQA algorithms using a sufficiently 
large and diverse database of distorted images with associat-
ed subjective data, in the form of mean opinion scores 
(MOS) or difference of MOS (DMOS) [67], [68].

The method of training and testing is important since 
any “large-scale” image database still represents a very 
sparse sampling of the space of all possible images. 
Training with such a small number of samples (relative to 
the image space) can lead to over fitting. Thus NR QA algo-
rithms that are designed using train-test procedures should 
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[FIG7] Block DCT coefficients divided into bands. (a) Radial 
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follow a few simple “rules of 
conduct.” First, there exists a 
s tandardized protocol  for 
obtaining the human scores 
that compose the subjective 
portion of the database [69]. 
Second, training and testing 
should be cross-validated on 
multiple randomized divisions 
of the database. We suggest a minimum of 1,000 train-test 
sequences over which average/median performance and 
standard error are taken. Lastly, each train-test sequence 
should randomly divide the database by content, so that 
content is not learned and used by the algorithm.

BLIINDS-II was trained using the above cross-validation 
procedure on the LIVE IQA database: 1,000 randomized 
train-test divisions, using 80% of the content (and distorted 
versions) for training, and the other 20% for testing. 
Training was accomplished in a simple manner: the mean 
and covariance of the algorithm scores and the subjective 
scores were fit to a multivariate Gaussian distribution to 
form a probability model. In the test phase, prediction is 
accomplished by maximizing the conditional likelihood of 
the subjective scores, given the observed features. Despite 
the simplicity of the model, the features, and the training 
method, the performance of BLIINDS-II is remarkably good. 
Over the 1,000 sequences, the Spearman rank order correla-
tion coefficient (SROCC) and linear correlation coefficient 
were computed, yielding nearly equal median values of 0.91 
against subjectivity, soundly beating the FR PSNR and 
matching the established performance of the FR SSIM index. 
Table 1 shows SROCC scores of BLIINDS-II against several 
leading FR IQA algorithms. Although the performance of 
BLIINDS-II does not quite match that of the best-performing 
FR algorithms such as multiscale SSIM (MS-SSIM) or VIF, 
the level of performance attained by BLIINDS-II is remark-
ably close to that achieved by the best algorithms that have 
available the reference image for comparison.

A completely different and specialized approach that can 
be taken is to attempt distortion identification followed by 
QA. Such a two-stage approach is taken in [58] and [59], 
where GSM and GGD NSS models in the wavelet-domain are 

used to create a holistic NR IQA 
algorithm with very consistent 
performance comparable to 
BLIINDS-II. The method is 
complementary to BLIINDS, 
since it seeks to determine 
what distortion(s) afflict an 
image by computing likeli-
hoods that each distortion is 

present; these are used to weight multiple distortion-specific 
QA algorithm scores derived from the same NSS models. 
When trained using 1,000 iterations of cross-validation on 
the LIVE IQA database, very good performance is also 
attained, equivalent to both BLIINDS-II and the SSIM index 
(Table 1). The reader is referred to [59], since the Distortion 
Identification-Based Image Verity and Integrity Evaluator 
(DIIVINE) method is much more involved than the BLIINDS-
II index, although it delivers more information regarding the 
quality of the distorted image. The division of QA tasks in 
DIIVINE makes it more useful for such important tasks as 
post-QA distortion reduction, but much less useful for real-
time QA applications, as in a video network. 

ENVISIONING THE FUTURE
Despite significant recent progress on the very old visual QA 
problems, there remains significant room for improvement. 
There is a gap in prediction performance between current 
performance and what we believe is possible (RR and NR IQA 
models that predict subject image quality as well as FR algo-
rithms). There is a rather rich literature of NSS models, 
among which only a small proportion have been successfully 
exploited in the context of RR and NR QA [5], [18], [28].

A wide spectrum of novel functionalities could be added to 
RR/NR systems, making them more flexible and versatile in 
user-centric multimedia communication environments. One 
desirable feature is rate-scalability, wherein RR features are 
aligned (and possibly coded) to a continuous bit stream, and 
ordered according to importance. Such a bit stream could be 
truncated at any location, and the quality of the distorted 
images evaluated based on the truncated RR features. Quality 
prediction could be improved with increased length of the 
received bit stream. Ideally, such a rate-scalable method could 

[TABLE 1] IQA ALGORITHM SCORES AGAINST HUMAN DMOS SCORES FROM LIVE IQA DATABASE [67]. 
SROCC OVER THE ENTIRE DATABASE FOR FR IQA INDICES PSNR, SS-SSIM, MS-SSIM, AND VIF. MEDIAN SROCC 
OVER 1,000 RANDOMIZED TRAIN-TEST SEQUENCES FOR NR IQA MODELS BLIINDS-II AND DIIVINE.

IQA ALGORITHM
(RN MODELS IN BOLD) JPEG 2000 JPEG WHITE NOISE GAUSSIAN BLUR FAST FADING NOISE ALL DATA 

PSNR 0.90 0.83 0.99 0.78 0.89 0.87 

SS-SSIM [10] 0.94 0.95 0.96 0.91 0.94 0.91

MS-SSIM [70] 0.97 0.96 0.98 0.95 0.94 0.95

VIF [6] 0.97 0.96 0.98 0.97 0.97 0.96

BLIINDS-II [56] 0.95 0.94 0.98 0.94 0.93 0.91

DIIVINE [59] 0.91 0.91 0.98 0.92 0.86 0.92

THE METHOD OF TRAINING 
AND TESTING IS IMPORTANT SINCE 

ANY “LARGE-SCALE” IMAGE 
DATABASE STILL REPRESENTS A VERY 

SPARSE SAMPLING OF THE SPACE 
OF ALL POSSIBLE IMAGES.
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cover the full range of QA meth-
ods (NR, RR, and FR) within a 
unified framework. It would 
also be interesting to make the 
RR approach reverse-direction-
a l,  where RR features are 
returned to the sender and 
compared with the reference features. This would be useful in 
a networking scenarios (e.g., broadcasting) where central 
quality control is at the sender side and the RR features from 
the receiver could help the sender make adaptive adjustments. 
Even further, one could design bidirectional RR systems, 
where the RR features could be sent either from the sender to 
the receiver or vice-versa.

As progress continues, the need for reference-free meth-
ods is becoming more pronounced. This will be a very fast-
growing area in the next five to ten years, driven by the 
needs of practical applications and by the many open prob-
lems that need to be solved. One of the most important prob-
lems to be solved, as we hinted at, is the RR/NR VQA 
problem, which will require the discovery of comprehensive 
video NSS models that are statistically regular, and that are 
sensitive to losses of naturalness induced by distortion. 
Another important problem is three-dimensional (3-D) ste-
reoscopic image and video QA. Here also, there is a deficit of 
accurate and regular QA models, and good-performing algo-
rithms (relative to two-dimensional algorithms applied to 
3-D data) do not yet exist. We hope that this tutorial article 
can help attract and inspire more academic researchers and 
industrial practitioners to this fast-evolving field.

ACKNOWLEDGMENTS
The research of Alan C. Bovik was supported in part by Intel and 
Cisco Corporation under the VAWN Program and by the U.S. 
National Science Foundation under the IIS program. Zhou 
Wang was supported in part by the National Science and 
Engineering Research Council of Canada and by the Ontario 
Early Researcher Award program.

AUTHORS
Zhou Wang (zhouwang@ieee.org) is an associate professor in 
the Department of Electrical and Computer Engineering, 
University of Waterloo, Canada. His research interests 
include image processing and multimedia communications. 
He has more than 90 publications in these fields with over 
7,000 citations. He was an associate editor of IEEE Signal 
Processing Letters (2006–2010). He is currently an associate 
editor of Pattern Recognition (2006–present) and IEEE 
Transactions on Image Processing (2009–present). He 
received the 2009 IEEE Signal Processing Best Paper Award, 
ICIP 2008 IBM Student Paper Award (as senior author), and 
2009 Ontario Early Researcher Award.

Alan C. Bovik (bovik@ece.utexas.edu) is the Curry/Cullen 
Trust Chair Professor at The University of Texas at Austin. 
He is the director of LIVE in the Department of Electrical 

and Computer Engineering and 
the Institute for Neurosciences. 
His many awards include the 
2011 IS&T Imaging Scientist of 
the Year Award and the 2009 
IEEE Signal Processing Society 
Best Paper Award. He created 

the IEEE International Conference on Image Processing and 
cofounded IEEE Transactions on Image Processing. His 
books, articles on education, and award-winning online 
courseware and SIVA software attest to his dedication to 
engineering education.

REFERENCES
[1] Cisco Corporation. (Feb. 2011). Cisco visual networking index: Global mo-
bile data traffic forecast update, 2010–2015. [Online]. Available: http://www.
cisco.com/en/US/solutions /collateral /ns341/ns525/ns537/ns705/ns827/
white_paper_c11-520862.pdf

[2] A. C. Bovik, “Meditations on video quality,” IEEE Multimedia Commun. E-
Lett., vol. 4, no. 4, pp. 4–10, May 2009.

[3] Z. Wang and A. C. Bovik, Modern Image Quality Assessment. San Rafael, CA: 
Morgan & Claypool, 2006. 

[4] H. B. Barlow, “Possible principles underlying the transformation of sensory 
messages,” in Sensory Communications, W. A. Rosenblith, Ed. Cambridge, MA: 
MIT Press, 1961, pp. 217–234.

[5] E. P. Simoncelli and B. Olshausen, “Natural image statistics and neural repre-
sentation,” Annu. Rev. Neurosci., vol. 24, pp. 1193–1216, May 2001.

[6] H. R. Sheikh and A. C. Bovik, “Image information and visual quality,” IEEE 
Trans. Image Processing, vol. 15, pp. 430–444, Feb. 2006.

[7] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, “Image denoising 
using scale mixtures of Gaussians in the wavelet domain,” IEEE Trans. Image Pro-
cessing, vol. 12, pp. 1338–1351, Nov. 2003.

[8] H. R. Sheikh and A. C. Bovik, “An evaluation of recent full reference image 
quality assessment algorithms,” IEEE Trans. Image Processing, vol. 15, no. 11, pp. 
3440–3451, Nov. 2006.

[9] N. Ponomarenko, M. Carli, V. Lukin, K. Egiazarian, J. Astola, and F. 
Battisti, “Color image database for evaluation of image quality metrics,” in 
Proc. Int. Workshop Multimedia Signal Processing, Australia, Oct. 2008, 
pp. 403–408.

[10] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assess-
ment: From error visibility to structural similarity,” IEEE Trans. Image Process-
ing, vol. 13, pp. 600–612, Apr. 2004.

[11] Z. Wang and Q. Li, “Information content weighting for perceptual image 
quality assessment,” IEEE Trans. Image Processing, vol. 20, no. 5, pp. 1185–
1198, May 2011.

[12] A. A. Webster, C. T. Jones, M. H. Pinson, S. D. Voran, and S. Wolf, “An objec-
tive video quality assessment systems based on human perception,” Proc. SPIE, vol. 
1913, pp. 15–26, 1993.

[13] B. Girod, “What’s wrong with mean-squared error?” in Visual Factors 
of Electronic Image Communications. Cambridge, MA: MIT Press, 1993.

[14] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? A new look at 
signal fidelity measures,” IEEE Signal Processing Mag., vol. 26, no. 1, pp. 98–117, 
Jan. 2009.

[15] Z. Wang and E. P. Simoncelli, “Reduced-reference image quality as-
sessment using a wavelet domain natural image statistic model,” in Proc. 
SPIE Conf. Human Vision Electronic Imaging, Jan. 2005, vol. 5666, pp. 
149–159.

[16] S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed. San Diego, CA: 
Academic, 1999.

[17] A. C. Bovik, M. Clark, and W. S. Geisler, “Multichannel texture analysis using 
localized spatial filters,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 1, pp. 
55–73, Jan. 1990.

[18] D. J. Field, “What is the goal of sensory coding?” Neural Comput., vol. 6, no. 
4, pp. 559–601, 1994.

[19] W. S. Geisler and R. L. Diehl, “Bayesian natural selection and the evolution of 
perceptual systems,” Phil. Trans. R. Soc. Lond. B, vol. 357, no. 1420, pp. 419–448, 
Apr. 2002.

[20] S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet 
representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 674–
693, July 1989.

AS PROGRESS CONTINUES, THE 
NEED FOR REFERENCE-FREE 

METHODS IS BECOMING MORE 
PRONOUNCED.



IEEE SIGNAL PROCESSING MAGAZINE   [40]  NOVEMBER 2011

[21] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: 
Wiley, 1991.

[22] S. Wolf and M. H. Pinson, “Spatial-temporal distortion metric for in-service 
quality monitoring of any digital video system,” Proc. SPIE, vol. 3845, pp. 266–277, 
Sept. 1999.

[23] I. P. Gunawan and M. Ghanbari, “Reduced-reference picture quality estima-
tion by using local harmonic amplitude information,” in Proc. London Communi-
cations Symp., 2003, pp. 137–140.

[24] M. Carnec, P. Le Callet, and D. Barba, “An image quality assessment method 
based on perception of structural information,” in Proc. IEEE Int. Conf. Image Pro-
cessing, Barcelona, Spain, Sept. 2003, pp. 185–188.

[25] M. Carnec, P. Le Callet, and D. Barba, “Objective quality assessment of color 
images based on a generic perceptual reduced reference,” Signal Process. Image 
Commun., vol. 23, pp. 239–256, Apr. 2008.

[26] Q. Li and Z. Wang, “Reduced-reference image quality assessment using divisive 
normalization-based image representation,” IEEE J. Select. Topics Signal Process. 
(Special Issue on Visual Media Quality Assessment), vol. 3, no. 2, pp. 202–211, 
Apr. 2009.

[27] D. J. Heeger, “Normalization of cell responses in cat striate cortex,” Vis. Neuro-
sci., vol. 9, no. 2, pp. 181–198, 1992.

[28] D. L. Ruderman, “The statistics of natural images,” Network: Comput. Neural 
Syst., vol. 5, no. 4, pp. 517–548, 1996.

[29] M. J. Wainwright and E. P. Simoncelli, “Scale mixtures of Gaussians and 
the statistics of natural images,” Adv. Neural Inform. Process. Syst., vol. 12, pp. 
855–861, 2000.

[30] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, “Shiftable 
multi-scale transforms,” IEEE Trans. Inform. Theory, vol. 38, no. 2, pp. 587–607, 
Mar. 1992.

[31] J. Foley, “Human luminance pattern mechanisms: Masking experiments 
require a new model,” J. Opt. Soc. Amer., vol. 11, no. 6, pp. 1710–1719, 
1994.

[32] A. C. Bovik, “What you see is what you learn,” IEEE Signal Processing Mag., 
vol. 27, no. 5, pp. 117–123, Sept. 2010.

[33] B. Girod, “The information theoretical significance of spatial and temporal 
masking in video signals,” in Proc. SPIE Conf. Human Vision, Visual Processing, 
Digital Display, 1989, vol. 1077, pp. 178–187.

[34] P. C. Teo and D. J. Heeger, “Perceptual image distortion,” in Proc. IEEE Int. 
Conf. Image Processing, Austin, TX, Nov. 1994, pp. 982–986.

[35] K. Seshadrinathan and A. C. Bovik, “Motion-tuned spatio-temporal quality 
assessment of natural videos,” IEEE Trans. Image Processing, vol. 19, no. 2, pp. 
335–350, Feb. 2010.

[36] J. M. Kennedy, A Psychology of Picture Perception. San Francisco, CA: 
Jossey-Bass, 1974.

[37] I. van der Linde, U. Rajashekar, A. C. Bovik, and L. K. Cormack, “Visual mem-
ory for fixated regions of natural scenes dissociates attraction and recognition,” Per-
ception, vol. 38, no. 8, pp. 1152–1171, Aug. 2009.

[38] P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi, “A no-reference per-
ceptual blur metric,” in Proc. IEEE Int. Conf. Image Processing, Rochester, NY, 
Sept. 2002, pp. 57–60.

[39] X. Zhu and P. Milanfar, “A no-reference sharpness metric sensitive to blur and 
noise,” in Proc. 1st Int. Workshop Quality of Multimedia Experience, San Diego, 
CA, July 2009.

[40] Z. Wang, A. C. Bovik, and B. Evans, “Blind measurement of blocking artifacts 
in images,” in Proc. IEEE Int. Conf. Image Processing, Vancouver, BC, Canada, 
Sept. 2000, pp. 981–984.

[41] S. Liu and A. C. Bovik, “Efficient DCT-domain blind measurement and reduc-
tion of blocking artifacts,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 
12, pp. 1139–1149, 2002.

[42] Z. Wang, H. R. Sheikh and A. C. Bovik, “No-reference perceptual quality as-
sessment of JPEG compressed images,” in Proc. IEEE Int. Conf. Image Processing., 
Rochester, NY, 2002, pp. 477–480.

[43] L. Meesters and J. Martens, “A single-ended blockiness measure for JPEG-
coded images,” Signal Processing, vol. 82, no. 3, pp. 369–387, 2002.

[44] P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi, “Perceptual blur and 
ringing metrics: Applications to JPEG2000,” Signal Process. Image Commun., vol. 
19, pp. 163–172, Feb. 2004.

[45] R. Ferzli and L. J. Karam, “A no-reference objective image sharpness metric 
based on the notion of just noticeable blur (JNB),” IEEE Trans. Image Processing, 
vol. 18, no. 4, pp. 717–728, Apr. 2009.

[46] R. Hassen, Z. Wang, and M. Salama, “No-reference image sharpness 
assessment based on local phase coherence measurement,” in Proc. IEEE 

Int. Conf. Acoustics, Speech, Signal Processing, Dallas, TX, Mar. 2010, 
pp. 2434–2437.

[47] H. R. Sheikh, A. C. Bovik, and L. K. Cormack, “No-reference quality assess-
ment using natural scene statistics: JPEG2000,” IEEE Trans. Image Processing, 
vol. 14, no. 11, pp. 1918–1927, Nov. 2005.

[48] K. Tan and M. Ghanbari, “Blockiness detection for MPEG2-coded video,” IEEE 
Signal Processing Lett., vol. 7, no. 8, pp. 213–215, 2000.

[49] T. Vlachos, “Detection of blocking artifacts in compressed video,” Electron. 
Lett., vol. 36, no. 13, pp. 1106–1108, 2000.

[50] M. Ries, O. Nemethova, and M. Rupp, “Motion based reference-free quality 
estimation for H.264/AVC video streaming,” in Proc. Int. Symp. Wireless Pervasive 
Computing, 2007, pp. 355–359.

[51] M. F. Sabir, R. W. Heath, and A. C. Bovik, “Joint source-channel distortion 
modeling for MPEG-4 video,” IEEE Trans. Image Processing, vol. 18, no. 1, pp. 
90–105, Jan. 2009.

[52] T. Brandao and M. P. Queluz, “No-reference quality assessment of H.264/AVC 
encoded video,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 11, pp. 
1437–1447, Nov. 2010.

[53] S. Gabarda and G. Cristobal, “Blind image quality assessment through anisot-
ropy,” J. Opt. Soc. Amer., vol. 24, no. 12, pp. B42–B51, 2007.

[54] M. A. Saad and A. C. Bovik, “A DCT statistics-based blind image qual-
ity index,” IEEE Signal Processing Lett., vol. 17, no. 6, pp. 583–586, June 
2010.

[55] M. H. Pinson and S. Wolf, “A new standardized method for objectively measur-
ing video quality,” IEEE Trans. Broadcast., vol. 50, pp. 312–322, Sept. 2004.

[56] M. A. Saad, A. C. Bovik, and C. Charrier, “DCT statistics model-based blind 
image quality assessment,” submitted for publication.

[57] A. K. Moorthy and A. C. Bovik, “Visual importance pooling for image quality 
assessment,” IEEE J. Special Topics Signal Processing, vol. 3, pp. 193–201, Apr. 
2009.

[58] A. K. Moorthy and A. C. Bovik, “A two-step framework for constructing blind 
image quality indices,” IEEE Signal Processing Lett., vol. 17, no. 5, pp. 513–516, 
May 2010.

[59] A. Moorthy and A. C. Bovik, “Blind image quality assessment: From natural 
scene statistics to perceptual quality,” submitted for publication.

[60] Z. Wang, G. Wu, H. R. Sheikh, E. P. Simoncelli, E.-H. Yang, and A. C. Bovik, 
“Quality-aware images,” IEEE Trans. Image Processing, vol. 15, no. 6, pp. 1680–
1689, June 2006.

[61] J. H. Van Hateren and A. Van Der Schaaf, “Independent component filters of 
natural images compared with simple cells in primary visual cortex,” Proc. R. Soc. 
Lond. B Biol. Sci., vol. 265, no. 1394, pp. 359–366, 1998.

[62] E. P. Simoncelli, “Capturing visual image properties with probabilistic mod-
els,” in The Essential Guide to Image Processing, A. C. Bovik, Ed. San Diego, CA: 
Academic, 2009.

[63] J. H. van Hateren and D. L. Ruderman, “Independent component analy-
sis of natural image sequences yields spatio-temporal filters similar to simple 
cells in primary visual cortex,” Proc. R. Soc. Lond. B, vol. 265, no. 1412, pp. 
2315–2320, 1998.

[64] S. Roth and M. J. Black, “On the spatial statistics of optical flow,” Int. J. Com-
put. Vis., vol. 74, pp. 33–50, Aug. 2007.

[65] K. Seshadrinathan and A. C. Bovik, “A structural similarity metric for video 
based on motion models,” in Proc. IEE Int. Conf Acoustics, Speech, Signal Pro-
cessing, Honolulu, HI, Apr. 2007.

[66] K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack, 
“Study of subjective and objective quality assessment of video,” IEEE Trans. Image 
Processing, vol. 19, no. 6, pp. 1427–1441, June 2010.

[67] H. R Sheikh, Z. Wang, L. K. Cormack, and A. C. Bovik. (2005, Sept.). LIVE 
Image Quality Database [Online]. Available: http://live.ece.utexas.edu/research/
quality/subjective.htm

[68] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “An evaluation of recent full refer-
ence image quality assessment algorithms,” IEEE Trans. Image Processing, vol. 15, 
no. 11, pp. 3440–3451, Nov. 2006.

[69] International Telecommunication Union. (2003). Methodology for the Sub-
jective Assessment of the Quality for Television Pictures. ITU-R Rec. BT 500-11. 
[Online]. Available: http://www.dii.unisi.it/~menegaz/DoctoralSchool2004/ 
papers/ITU-R_BT.500-11.pdf

[70] Z. Wang, E. Simoncelli, and A. C. Bovik, “Multi-scale structural similarity for 
image quality assessment,” in Proc. Annu. Asilomar Conf. Signals, Systems, Com-
puting, Pacific Grove, CA, Nov. 2003, pp. 1398–1402.

 
[SP]


