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T
he interest in objective 
image quality assessment 
(IQA) has been growing at 
an accelerated pace over the 
past decade. The latest prog-

ress on developing automatic IQA meth-
ods that can predict subjective quality of 
visual signals is exhilarating. For exam-
ple, a handful of objective IQA measures 
have been shown to significantly and 
consistently outperform the widely 
adopted mean squared error (MSE) and 
peak signal-to-noise-ratio (PSNR) in 
terms of correlations with subjective 
quality evaluations [1]. It has been excit-
ing to observe the new progress in both 
theoretical development and novel tech-
niques on this multidisciplinary topic, 
which appears to be a converging point 
from a wide range of research directions 
and includes the following: 

 ■ signal and image processing 
 ■ computer vision 
 ■ visual psychophysics 
 ■ neural physiology 
 ■ information theory 
 ■ machine learning 
 ■ design of image acquisition, com-

munication, and display systems. 
While the field of objective IQA is still 

evolving quickly, and novel and better 
IQA methods will continue to emerge in 
the coming years, it is also interesting to 
discuss how we could make the best use 
of these tools in real-world applications. 
The purpose of this article is to provide 
an overview of the roles of IQA methods 
in these applications. We will start by a 
brief description of the current status of 
the IQA field, followed by discussions on 
benchmarking and monitoring applica-

tions of IQA measures. We will then dis-
cuss the applications of IQA measures in 
the design and optimization of advanced 
image processing algorithms and sys-
tems, where we perceive both great 
promises and major challenges. Finally, 
we will show how IQA measures could 
play important roles in an even more 
extended field of applications and pro-
vide a vision of the future. 

OBJECTIVE IMAGE QUALITY 
ASSESSMENT
Objective IQA measures aim to predict 
perceived image/video quality by human 
subjects, which are the ultimate receiv-
ers in most image processing applica-
tions. Depending on the availability of a 
pristine reference image that is pre-
sumed to have perfect quality, IQA 
 measures may be classified into full-ref-
erence (FR), reduced-reference (RR), 
and no-reference (NR) methods. FR 
measures require full access to the ref-
erence image, while NR methods 
assume completely no access to the ref-
erence. RR methods provides a compro-
mise in-between, where only partial 
information in the form of RR features 
extracted from the reference image is 
available in assessing the quality of the 
distorted image. IQA measures may also 
be categorized into application-specific 
or general-purpose methods. The for-
mer only applies to some specific appli-
cations where the types of distortions 
are often known and fixed, e.g., JPEG 
compression. The latter is employed in 
general applications, where one may 
encounter diverse types and levels of 
image distortions. 

In the literature, a considerable 
number of IQA algorithms have been 
proposed, which exhibit substantial 

diversity in the methodologies being 
used. Meanwhile, they also share some 
common characteristics. In particular, 
all of them are rooted from certain 
knowledge in one or more of the follow-
ing three categories (which, interest-
ingly, constitute the basic building 
blocks in an information communica-
tion framework [1]): 

1) knowledge about the image 
source, which can be either deter-
ministic (when the reference image 
is fully available) or statistical (when 
certain statistical image models are 
employed) 
2) knowledge about the distortion 
channel, which is often associated 
with some known facts about the 
specific distortion process that the 
images underwent, for example, 
blocking and blurring artifacts in 
JPEG compression, and blurring and 
ringing effects in wavelet-based 
image compression
3) knowledge about the receiver, 
i .e.,  the human visual system 
(HVS), where computational models 
originated from visual physiological 
and psychological studies play 
essential roles. 
Until now, the area that has achieved 

the greatest success is FR IQA of gray-
scale still images. Several algorithms, 
including the structural similarity 
index (SSIM) [2] and its derivatives, and 
the visual information fidelity (VIF) [3], 
significantly outperformed PSNR and 
MSE in a series of tests based on large-
scale subject-rated independent image 
databases. There have also been notable 
success in the areas of video quality 
assessment (VQA) as well as RR and NR 
IQA, especially application-specific 
methods [4]. 
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On the other hand, there is also an 
abundant menu of unresolved IQA prob-
lems left for future studies, including the 
following: 

 ■ General-purpose RR and NR IQA, 
where the types of image distortions 
are unavailable, is still at an imma-
ture stage. 

 ■ Methods for effective IQA of tex-
ture images are still lacking. 

 ■ There have not been good solu-
tions for cross-dynamic range and 
cross-resolution IQA, where the ref-
erence image is available but has a 
different dynamic range of intensity 
levels or a different spatial or tempo-
ral resolution from the image being 
assessed. 

 ■ IQA for image signals with 
extended dimensions creates many 
challenging research problems, 
which include video, color, multi-
spectrum, hyperspectrum, stereo, 
multiview, and three-dimensional 
(3-D) volume IQA. 

 ■ IQA algorithms that can be used 
for evaluating segmentation, half-
toning, and fusion algorithms are 
lacking. 

 ■ In pattern recognition applica-
tions, effective IQA methods are miss-
ing that can assess how the 
recognition accuracy is affected by 
image distortions. 

 ■ In medical imaging applications, it 
is highly desirable to evaluate how 
image distortions affect the diagnos-
tic values (rather than perceptual 
appeal) in images. 

 ■ In network visual communica-
tions, it is worth investigating how 
information regarding the communi-
cation channel conditions, such as 
channel fading characteristics and 
packet loss rate and delay could be 
utilized in the IQA process. 

 ■ In multimedia systems, visual 
quality may not be the only factor 
that affects the overall quality-of-
experience (QoE) of users. Joint 
audio-visual quality assessment and 
joint quality assessment and visual 
discomfort evaluations are ongoing 
research topics. The complication of 
QoE assessment is raised to an even 

higher level in immersive multimedia 
environments such as panoramic 3-D 
displays. 
In the past few years, there has been 

great effort in the research community 
to develop advanced IQA measures to 
solve the problems described above. For 
example, many recent projects carried 
out by the Video Quality Experts Group 
(VQEG) [12] are attempting to address 
these issues. Meanwhile, there are also 
many attempts to apply objective IQA 
measures for a wide variety of real-world 
applications, which will be our major 
focus in the next sections. 

BENCHMARKING AND MONITORING 
APPLICATIONS
A direct application of IQA measures is to 
use them to benchmark image process-
ing algorithms and systems. For instance, 
when multiple image denoising and res-
toration algorithms are available to 
recover images distorted by noise 

 contamination and blur, a perceptual 
objective IQA measure can help pick the 
one that generates the best perceptual 
quality of the restored images. For anoth-
er example, rate-distortion (RD) curves 
are often used to characterize the perfor-
mance of image coding systems, where 
the RD function is defined as the distor-
tion between the original and decoded 
images versus bit rate. A lower RD curve 
indicates a better image coder. 
Traditionally, MSE types of measures are 
employed to compute the distortion. If 
the role of MSE is replaced by a  distortion 
function defined based on a perceptual 
IQA measure, then the RD curve could 
provide a perceptually more meaningful 
evaluation of the image coder. 

A useful feature of many IQA mea-
sures that is often overlooked by practi-
tioners is that they not only create 

overall quality scores of distorted 
images, but also produce quality maps 
that indicate local quality variations 
over the image space. An example is 
given in Figure 1, where the original 
“Barbara” image (a) is contaminated by 
additive white Gaussian noise. Two 
denoising algorithms, spatially adaptive 
Wiener filtering (MATLAB Wiener2 
function) and K singular-value-decom-
position (KSVD)  filtering [5], are 
employed to recover the original image 
from its noisy observation. The quality 
maps created by the SSIM index [2], a 
popular IQA measure, for the noisy 
image (b) and the denoised images (d) 
and (f) are given by (c), (e), and (g), 
respectively. These quality maps provide 
useful information in several aspects. 
First, despite the fact that noise is 
imposed uniformly over space, the per-
ceptual quality varies significantly 
across the image. For example, the face 
region looks much noisier than the tex-
ture regions. These are clearly indicated 
by the quality map (c); Second, the 
quality maps help identify where in the 
image the denoisers yield the most 
improvement, and how one denoiser 
outperforms another. For instance, by 
comparing (e) and (g), we observe sig-
nificant improvement of KSVD over 
Wiener filtering on the smooth regions 
as well as the stripe texture regions at 
the bottom part of the image. Third, the 
quality maps also indicate where the 
denoisers still need further improve-
ment. For example, the textures in the 
upper-right region of the image are not 
well denoised by both algorithms. 

In many image processing algo-
rithms, there are certain parameters that 
need to be determined by users to yield 
the best results. This is often a difficult 
task for naive users as the best values 
may be image dependent. A good IQA 
measure could be a useful tool to help 
decide on these parameters automati-
cally. For example, in [6], the Q-index, 
an NR sharpness and contrast measure, 
was used to automatically pick the 
parameters for image denoising algo-
rithm. The idea may be extended further 
when multiple complementary algo-
rithms (or multiple modes under the 
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same algorithm) are available for the 
same goal, for example, different coding 
modes in standard video compression 
systems. In such scenarios, an IQA mea-
sure can help select the right algorithm 
(mode), or to automatically switch 
between different algorithms (modes). 

Objective IQA measures are particu-
larly desirable in network visual com-
munication applications for the purpose 
of quality-of-service (QoS) monitoring. 
Image and video content delivered over 
various wired and wireless networks 
inevitably suffer from visual quality deg-
radations during lossy compression and 
transmission over error prone networks. 
It is imperative for the network service 
providers to monitor such quality degra-
dations in real time, so as to optimize 
network resource allocations and maxi-
mally satisfy user expectations within 
certain cost constraints. It was shown 
that typical error criteria used in net-
work design and testing, such as bit 
error rate (BER), do not correlate well 
with the quality of experience of net-
work consumers [4]. Therefore, accu-
rate and high-speed perceptual IQA 
measures can play important roles. 
Apparently, FR IQA methods are less 
useful here because the original video 

signals (typically with extremely high 
data rate) would not be available at the 
mid or end nodes in the network. NR 
methods are desired but are difficult to 

develop. This is mainly due to the com-
plication of the types of  distortions that 
could occur during video transmission 
in modern communication networks, 
where the distortions could be caused 
by a combination of lossy compression, 
network delay and packet loss, scaling in 
temporal and spatial resolution, scaling 
in bandwidth, spatial and/or temporal 
interpolation at the receiver, and vari-
ous types of pre- and post- processing fil-
tering (e.g. ,  error concealment, 
deblocking filtering, and sharpening). 
RR IQA provides a useful compromise 
between FR and NR solutions, where RR 

features extracted from the original 
images are transmitted to the receiver 
end to evaluate the quality of the 
received distorted images. It was shown 
that with only a fairly low RR data rate, 
one may achieve impressive quality pre-
diction accuracy close to competitive FR 
methods [7]. 

The difficulty with RR based methods 
is how to transmit the RR features to the 
receiver. This typically requires a guar-
anteed ancillary channel, which may be 
expensive or unavailable. An interesting 
method to trace network image quality 
degradations without using an ancillary 
channel is to incorporate modern image 
watermarking techniques [8]. The idea 
is to hide a watermark image or a 
pseudo-random bit sequence inside the 
image being transmitted. The degrada-
tion of the watermark image or the 
error rate of the embedded bit sequence 
gauged at the receiver side can then be 
employed as an indicator of the quality 
degradation of the host image. The idea 
of quality-aware image provides another 
means to incorporate watermarking 
techniques [7], where RR features 
extracted from the original image are 
embedded into the same image as invisi-
ble hidden messages. When a distorted 

(b)
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(d)

(e)

(f)

(g)
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[FIG1] Example of performance analysis using IQA measures and quality maps. An original image (a) is contaminated by noise 
and (b) denoised by two denoising algorithms, resulting in (d) and (f), respectively. The SSIM-based quality maps [2] of the noisy 
and denoised images are shown in (c), (e), and (g), respectively, where brighter indicates better local quality.
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version of such a  “quality-aware” image 
is received, users can decode the hidden 
RR features and use an RR IQA method 
to evaluate the quality of the distorted 
image. The advantages of watermarking-
based methods are manifold. First, they 
do not require a separate data channel 
to transmit RR features or any other 
side information to the receiver. Second, 
they do not affect the conventional 
usage of the image content, because the 
data hiding process causes only invisible 
changes to the image. Third, compared 
with the approaches of including side 
information in image headers, they are 
more likely to survive image/video for-
mat conversion [7]. An additional 
and interesting benefit of quality-
aware images is that they provide 
an opportunity for the end users 
to partially “repair” the received 
images using the decoded RR fea-
tures. Such an idea of self-repair-
ing image was demonstrated in 
[9] by matching certain statistical 
properties of the distorted image 
with those of the reference image 
(which are received as RR fea-
tures). It was shown that this 
approach is quite effective for 
image deblurring [9]. 

DESIGN APPLICATIONS
The application scope of objective IQA 
measures is far beyond quality evalua-
tion and algorithm comparison. In 
essence, any scientific design of image 
processing algorithms and systems 
would involve certain quality criterion, 
either explicitly or implicitly. If a good 
quality criterion is available, one may 
use it not only to assess the performance 
of these algorithms and systems, but also 
to optimize them so as to produce the 
best performance under this criterion. 

Figure 2 demonstrates how a percep-
tual objective IQA measure could be use-
ful in the context of image coding. An 

original image (a) is compressed using 
JPEG. Due to a limited bit budget, the 
resulting decompressed image (b) exhib-
its many highly visible distortions. In 
particular, the blocking artifacts in the 
sky can be clearly seen. The loss of 
details in the fence areas and the upper 
boundaries of the building is also obvi-
ous. Assume that some new bit budget is 
now available, and our goal is to decide 
on how to spend the new bits to enhance 
the image quality. Ideally, we would 
spend the bits at the locations that have 
the greatest potentials to improve the 
image quality. An IQA measure could 
assist us in identifying these locations. 
Figure 2(c) shows the absolute error 
map between (a) and (b), which is the 
first step in computing MSE and PSNR 
(as well as any lp norm). Unfortunately, 
this error map provides us with wrong 
guidance, because it suggests that the 
inner parts of the building are where the 
largest distortions are located. By con-
trast, our visual observations are well 
consistent with the SSIM map (d) cre-
ated by a perceptual IQA measure [2]. 
Realizing that most existing image cod-
ers are designed to optimize MSE/PSNR 
or similar criteria, the dramatic differ-
ence between the quality/error maps in 
(c) and (d) reveals the great potentials of 
perceptual image and video coding. 
Some recent work has shown great 
promises along this direction [4]. 

In the optimal design of image pro-
cessing algorithms and systems, objec-
tive IQA measures may be employed in 
two different approaches. In the first 
approach, the core image processing 

module is kept unaltered, and the 
IQA measure is only used to cre-
ate feedback control signals that 
help update the image processing 
module, likely in an iterative 
manner. This is illustrated in 
Figure 3, where depending on the 
application, either FR, RR, or NR 
IQA measures may be employed 
to create the feedback control sig-
nal. For example, in the case of 
image enhancement, an NR 
method may be employed and 
only the image created at the 
 output end is needed for IQA 

(b)

(c) (d)

(a)

[FIG2] An original image (a) is compressed by JPEG (b). The absolute error map and 
the SSIM quality map are shown in (c) and (d), respectively. In both maps, brighter 
indicates better local quality (or lower distortion).

Updating
Algorithm

IQA
Evaluation

OutputInput Image
Processing

System

[FIG3] Diagram of IQA-based feedback optimization 
method.
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 computation. In image coding applica-
tions, an FR IQA measure could be used 
that requires both decoded image from 
the output end and the original refer-
ence image from the input (which is 
linked through the dashed line). 

In the second approach of IQA-based 
optimal design, the objective IQA mea-
sure goes into the core of the image pro-
cessing algorithm. To illustrate this, let 
us use the general image reconstruction 
problem as an example. Assume that 
there exists an original image X that is 
unknown to us. What is available is some 
distorted or partial information Y  pro-
duced by applying an operator D on X: 
Y5D 1X 2 . Our goal is to design a recon-
struction operator R, which, when 
applied to Y, yields a reconstructed 
image X̂5 R 1Y 2 , so that X̂ is as close to 
X as possible. Depending on the opera-
tor D, this formulation could describe 
many practical problems. For example, 
when D denotes noise contamination, 
then this is a denoising problem. When 
D represents a downsampling operator, 
then it corresponds to an interpolation 
problem. Similarly, the same general 
framework could cover other problems 
such as image deblurring, decompres-
sion, inpainting, and reconstruction 
from compressed sensing data. Most of 
these problems are ill posed, in the sense 
that the solutions are not unique. To 
make the problem mathematically 
sound, one would need to define a cost 
function as the goal for minimization. 
For example, in a statistical approach, 
one treats X as a random variable associ-
ated with certain probability distribution 
and may define the optimization prob-
lem as 

 X̂opt5min 
X̂
E5d 1X, X̂ 2 |Y6, (1)

where X̂opt denotes the optimal solu-
tion, E represents the expectation opera-
tor, and d  is an image distortion 
measure. The “standard” option for d is 
the MSE. To convert this to a perceptual 
optimization problem is straightfor-
ward—replacing d with a monotonically 
decreasing function with respect to a 
perceptual IQA measure. 

Although the second approach for 
IQA-based optimal design looks appeal-
ing, when it comes to solving the optimi-
zation problem in (1), one often faces 
major difficulties. This is largely due to 
the lack of desirable mathematical prop-
erties in most perceptual IQA measures. 
To understand this, let us consider why 
the MSE is still the prevailing optimiza-
tion criterion, regardless of the wide crit-
icism on its poor correlation with 
perceptual image quality (as demon-
strated in Figure 2). Indeed, the MSE is 
an ideal target for optimization [1]. It is 
based on a valid distance metric (l2) that 
satisfies positive definiteness, symmetry, 
and triangular inequality properties. It is 
convex, differentiable, memoryless, and 
additive for independent sources of dis-
tortions. It is also energy preserving 

under orthogonal or unitary transforma-
tions [1]. Hardly any perceptual IQA 
measures with good quality prediction 
performance satisfies any of these prop-
erties. In [10], some initial attempts has 
been made to develop novel image dis-
tortion metrics that approximate the 
SSIM index while maintaining some of 
the desirable mathematical properties. It 
was shown that a valid distance metric 
exists that can very well approximate the 
SSIM index. In addition, the metric also 
possesses some useful convexity 
 properties. 

EXTENDED APPLICATIONS
In most of the IQA applications we dis-
cussed so far, the final outputs are 
images. Besides these, IQA measures 
may also be extended to an even broad-
er range of applications where the out-
puts are interpretations or classification 
labels of images. Image-based pattern 

recognition is one such example, where 
the quality of images is often a critical 
factor that affects the accuracy of the 
recognition algorithms. For example, in 
biometrics, the purpose is to recognize 
humans or verify human identities 
based on one or more unique physio-
logical characteristics of humans. Many 
biometric methods are based on imag-
es, including images of faces, finger-
prints, palmprints, hand shapes, and 
handwritings. In practice, the acquisi-
tion process of these images may not be 
perfect, and thus the biometric systems 
may have to work under the conditions 
of noisy, distorted, or partially impaired 
images. In these application scenarios, 
it would be useful to know the level of 
quality degradations of these images 
and what recognition accuracy can be 
expected under such quality degrada-
tions. Different from traditional perfor-
mance evaluation of IQA measures, 
here the IQA measures should be 
assessed and compared based on how 
they can predict the impact of image 
quality degradations on the final recog-
nition performance, rather than the 
perceptual appealingness of the images. 
Once the image quality is estimated, 
some preprocessing procedure may be 
performed to enhance the quality of the 
image before the pattern recognition 
algorithm is applied. Another way of 
using the IQA results is to use them to 
help select between multiple recogni-
tion algorithms or to fuse the results 
from multiple algorithms, so as to 
improve the overall recognition perfor-
mance. Such an approach has been suc-
cessfully used in fingerprint verification 
systems [11]. 

With the fast advances of medical 
imaging technologies, the amount of 
medical image data being acquired 
every day has been increasing dramati-
c ally, largely surpassing the increase of 
available storage space. Efficiently stor-
ing, transmitting, and retrieving medi-
cal image information in large-scale 
databa ses has become a major challenge 
in hospitals and medical organizations. 
Lossy image compression provides a 
powerful means to reduce the data rate, 
but runs the risk of losing or altering 
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 important diagnostic information con-
tained in medical images. It is therefore 
important to provide specific objective 
IQA measures that can help maximize 
the level of compression, but without 
aff ecting the diagnostic value of medical 
images. Moreover, many modern medi-
cal imaging devices acquire images with 
much higher dynamic range of inten-
sity levels than w hat can be appropri-
ately shown on standard dynamic range 
displays. Therefore, it is desirable to 
employ those IQA measures that can 
provide meaningful quality evaluations 
of the images  after dynamic range com-
pression. Furthermore, both data rate 
and dynamic range compression of 
medical images should be optimized for 
the IQA measures specif ically designed 
for medical applications. 

OUTLOOK
We have discussed the application 
aspects of modern objective IQA meth-
ods. Rather than providing an exhaustive 
survey of all applications, we hav e 
emphasized on the great potentials of 

IQA applications, provided instructive 
examples, and also disc ussed the main 
challenges. In the future, it is expected 
that the development and application 
sides of objective IQA measures will 
mutually benefit each ot her. On one 
hand, more accurate and more efficient 
IQA measures will certainly enhance 
their applicability in real-world applica-
tions. On the other hand, new challenges 
arising from real applications (e.g., 
desired mathematical properties for opti-
mization purposes) will impact the new 
development of future IQA measures. 
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fed into a spatial light modulator, a device 
that can modulate light spatially in 
amplitude and phase. “You could get all 
that information and display it in 3-D and 
it can actually be in real time,” he says. 

While most existing telepresence sys-
tems are geared toward conferencing 
applications, Peyghambarian feels that 
real-time holography has the potential 
to drive the technology into a wider 
range of fields. “Benefits include 3-D 
social networking, 3-D remote surgery, 
and 3-D collaborative research,” he says. 
“The advantage of our technology is that 
it can continuously read and replace 
data, so you can use it in an magnetic 
resonance imaging or computer assisted 
tomography scan system that would pro-

vide the information it gathered in 3-D 
to doctors.” The technology could, for 
example, help surgeons performing 
brain surgery or other types of delicate 
operations. “They could use that [tech-
nology] to see the information as they 
do the operation,” Peyghambarian says.

John Apostolopoulos, director of the 
Mobile and Immersive Experience Lab at 
Hewlett-Packard (HP) Laboratories in 
Palo Alto, California, believes that signal 
processing will be vital to overcoming 
many of the challenges telepresence 
researchers currently face. “This includes 
video and audio capture, noise reduction, 
compression, transmission over a packet 
 network, packet-loss concealment, multi-
channel echo cancellation, efficient sig-

nal-processing algorithms for multicore 
and GPU systems and so on,” he says. “I 
believe that advances in signal processing 
will continue to be central to improving 
telepresence in the future.”

None of these improvements will 
come too soon for Microsoft’s Zhang, who 
admits that he has a personal interest in 
seeing sophisticated telepresence systems 
becoming commonplace. “I have fre-
quent phone calls with my parents and 
family members in China as well as my 
research collaborators at Microsoft 
Research Asia in Beijing,” he says. 
“Telephony is a great invention, but 
leaves much more to be desired com-
pared with a face-to-face meeting.”
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