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It is widely believed that the statistical properties of the natural visual environ-
ment play a fundamental role in the evolution, development and adaptation of the
human visual system (HVS). An important observation about natural image sig-
nals is that they are highly structured. By “structured signal”, we mean that the
signal samples exhibit strong dependencies amongst themselves, especially when
they are spatially proximate. These dependencies carry important information
about the structure of the objects in the visual scene. The principle hypothesis
of structural similarity based image quality assessment is that the HVS is highly
adapted to extract structural information from the visual field, and therefore a
measurement of structural similarity (or distortion) should provide a good approx-
imation to perceived image quality.

In this chapter, we introduce structural similarity as an alternative design phi-
losophy for objective image quality assessment methods. This is different from
and complementary to the typical HVS-based approaches, which usually calculate
signal difference between the distorted and the reference images, and attempt to
quantify the difference “perceptually” by incorporating known HVS properties.

1.1 Structural Similarity and Image Quality

In full-reference image quality assessment methods, the quality of a test image is
evaluated by comparing it with a reference image that is assumed to have perfect
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quality. The goal of image quality assessment research is to design methods that
quantify the strength of the perceptual similarity (or difference) between the test
and the reference images. Researchers have taken a number of approaches to this
end.

The first approach, which we call the error sensitivity approach, assumes that
the test image signal is the sum of the reference image signal and an error signal.
Assuming that the loss of perceptual quality is directly related to the visibility
of the error signal, most HVS-based image quality assessment models attempt to
weight and combine different aspects of the error signal according to their respec-
tive visual sensitivities, which are usually determined by psychophysical measure-
ments. One problem with this approach is that larger visible differences may not
necessarily imply lower perceptual quality. An example is shown in Figure 1.1,
where the original “Einstein” image is altered with different distortions: contrast
stretch, mean shift, JPEG compression, blurring, and impulsive salt-pepper noise
contamination. We adjusted each type of distortion to yield the same mean squared
error (MSE) relative to the original image, except for the JPEG compressed image,
which has a slightly smaller MSE. Despite their nearly identical MSE, the images
can be seen to have significantly different perceptual qualities. It is important to
note that although the difference between the contrast stretched image (Figure
1.1(b)) and the reference image (Figure 1.1(a)) is easily discerned, the contrast
stretched image has good perceptual quality.

The second approach is based on the conjecture that the purpose of the entire
visual observation process is to efficiently extract and make use of the information
represented in natural scenes, whose statistical properties are believed to play a
fundamental role in the evolution, development and adaptation of the HVS (e.g.,
[1]). One distinct example of the second approach is the Structural similarity
based image quality assessment method [2], which is motivated from the observa-
tion that natural image signals are highly “structured,” meaning that the signal
samples have strong dependencies amongst themselves, especially when they are
spatially proximate. These dependencies carry important information about the
structure of the objects in the visual scene. The principle premise of the structural
similarity approach is that the major goal of visual observation is to extract such
information, for which the HVS is highly adapted. Therefore, a measurement of
structural information change or structural similarity (or distortion) should provide
a good approximation to perceived image quality. Let us again take the contrast
stretched image in Figure 1.1(b) as an example. Although its visible difference
from the reference image is significant, it preserves almost all of the important
information that reflects the structure of the objects represented in the image. In
fact, the reference image can almost be fully recovered via a simple point-wise
inverse linear luminance transform. Consequently, a high quality score should be
assigned. On the other hand, some structural information in the original image is
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Figure 1.1: Comparison of 8bits/pixel “Einstein” images with different types of
distortions. (a) original image, MSE = 0, MSSIM = 1; (b) contrast stretched
image, MSE = 144, MSSIM = 0.9133; (c) mean shifted image, MSE = 144, MSSIM
= 0.9884; (d) JPEG compressed image, MSE = 142, MSSIM = 0.6624; (e) blurred
image, MSE = 144, MSSIM = 0.6940; (f) salt-pepper impulsive noise contaminated
image, MSE = 144, MSSIM = 0.8317.

severely distorted and permanently lost in the JPEG compressed and the blurred
images, and therefore they should be assigned lower quality scores.

The natural question that follows is then: What constitutes important informa-
tion that reflects the structure of objects represented in an image? This is the key
issue that will define the specific implementation of the image quality assessment
algorithm. While it is difficult to directly provide a relatively small set of features
that sufficiently describe the structural information in an image, it is worthwhile
to consider its opposite: what is the information in an image that is not impor-
tant for representing the structure of the objects? A simple answer comes from
the perspective of image formation. Recall that the luminance of the surface of
an object being observed is the product of the illumination and the reflectance,
but the structures of the objects in the scene are independent of the illumination.
Consequently, we wish to separate out the influence of illumination from the infor-
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Figure 1.2: Diagram of the proposed similarity measurement system. (Adapted
from [2])

mation that is more important for representing object structures. Intuitively, the
major impact of illumination change is the variation of the average luminance and
contrast in the image. Since luminance and contrast can vary across a scene, they
are preferably measured locally. This leads to a localized image similarity mea-
sure that separates (and perhaps removes) the influence of luminance and contrast
variation from the remaining attributes of the local image region.

The first instantiation of the structural similarity-based method was made in
[3, 4] and promising results on simple tests were achieved. This method was further
generalized and improved in [2, 5]. It was also adapted for video quality assessment
in [6]. In Sections 1.2 and 1.3 of this chapter, we will mainly have a close look at
the Structural SIMilarity (SSIM) index introduced in [2].

1.2 The Structural SIMilarity (SSIM) Index

The system diagram of the SSIM image quality assessment system is shown in
Figure 1.2. Suppose x and y are two non-negative image signals, which have
been aligned with each other (e.g., spatial patches extracted from each image).
The purpose of the system is to provide a similarity measure between them. The
similarity measure can serve as a quantitative measurement of the quality of one
signal if we consider the other to have perfect quality. Here x and y can be either
continuous signals with a finite support region, or discrete signals represented as
x = { xi | i = 1, 2, · · · , N} and y = { yi | i = 1, 2, · · · , N}, respectively, where i is
the sample index and N is the number of signal samples (pixels).

The system separates the task of similarity measurement into three compar-
isons: luminance, contrast and structure. First, the luminance of each signal is
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Figure 1.3: Projection onto the hyperplane of
∑

xi = 0. Note: this is an illustra-
tion in 3-D space. In practice, the number of dimensions is equal to the number
of pixels.

compared. Assuming discrete signals, this is estimated as the mean intensity:

µx = x̄ =
1

N

N∑
i=1

xi . (1.1)

The luminance comparison function l(x,y) is then a function of µx and µy:

l(x,y) = l(µx, µy) . (1.2)

Second, we remove the mean intensity from the signal. In discrete form, the
resulting signal x−µx corresponds to the projection of vector x onto the hyperplane
of

N∑
i=1

xi = 0 . (1.3)

as illustrated in Figure 1.3. We use the standard deviation (the square root of
variance) as an estimate of the signal contrast. An unbiased estimate in discrete
form is given by

σx =

(
1

N − 1

N∑
i=1

(xi − µx)
2

)1/2

. (1.4)

The contrast comparison c(x,y) is then the comparison of σx and σy:

c(x,y) = c(σx, σy) . (1.5)

Third, the signal is normalized (divided) by its own standard deviation, so
that the two signals being compared have unit standard deviation. The structure
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comparison s(x,y) is conducted on these normalized signals:

s(x,y) = s

(
x− µx

σx

,
y− µy

σy

)
. (1.6)

Finally, the three components are combined to yield an overall similarity mea-
sure:

S(x,y) = f(l(x,y), c(x,y), s(x,y)) . (1.7)

An important point is that the three components are relatively independent. For
example, the change of luminance and/or contrast has little impact on the struc-
tures of images.

In order to complete the definition of the similarity measure in Eq. (1.7), we
need to define the three functions l(x,y), c(x,y), s(x,y), as well as the combination
function f(·). We also would like the similarity measure to satisfy the following
conditions:

1. Symmetry: S(x,y) = S(y,x). Since our purpose is to quantify the similarity
between two signals, exchanging the order of the input signals should not
affect the resulting similarity measurement.

2. Boundedness: S(x,y) ≤ 1. Boundedness is a useful property for a similarity
metric since an upper bound can serve as an indication of how close the
two signals are to being perfectly identical. This is in contrast with most
signal-to-noise ratio type of measurements, which are typically unbounded.

3. Unique maximum: S(x,y) = 1 if and only if x = y (in discrete representa-
tions, xi = yi for all i = 1, 2, · · · , N). In other words, the similarity measure
should quantify any variations that may exist between the input signals. The
perfect score is achieved only when the signals being compared are exactly
the same.

For luminance comparison, we define

l(x,y) =
2 µx µy + C1

µ2
x + µ2

y + C1

. (1.8)

where the constant C1 is included to avoid instability when µ2
x + µ2

y is very close
to zero. Specifically, we choose

C1 = (K1 L)2 , (1.9)

where L is the dynamic range of the pixel values (255 for 8-bit grayscale images),
and K1 ¿ 1 is a small constant. Similar considerations also apply to contrast
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comparison and structure comparison as described later. Eq. (1.8) is easily seen
to obey the three properties listed above.

Equation (1.8) is also connected with Weber’s law, which has been widely used
to model light adaptation (also called luminance masking) in the HVS. Accord-
ing to Weber’s law, the magnitude of a just-noticeable luminance change ∆I is
approximately proportional to the background luminance I for a wide range of
luminance values. In other words, the HVS is sensitive to the relative luminance
change, and not the absolute luminance change. Letting R represent the ratio of
luminance change relative to background luminance, we rewrite the luminance of
the distorted signal as µy = (1 + R)µx. Substituting this into Eq. (1.8) gives

l(x,y) =
2(1 + R)

1 + (1 + R)2 + C1/µ2
x

. (1.10)

If we assume C1 is small enough (relative to µ2
x) to be ignored, then l(x,y) is

a function only of R instead of ∆I = µy − µx. In this sense, it is qualitatively
consistent with Weber’s law. In addition, it provides a quantitative measurement
for the cases when the luminance change is much more than the visibility threshold,
which is out of the application scope of Weber’s law.

The contrast comparison function takes a similar form:

c(x,y) =
2 σx σy + C2

σ2
x + σ2

y + C2

, (1.11)

where C2 is a non-negative constant

C2 = (K2 L)2 , (1.12)

and K2 satisfies K2 ¿ 1. This definition again satisfies the three properties listed
above. An important feature of this function is that with the same amount of
contrast change ∆σ = σy − σx, this measure is less sensitive to the case of high
base contrast σx than low base contrast. This is related to the contrast masking
feature of the HVS.

Structure comparison is conducted after luminance subtraction and contrast
normalization. Specifically, we associate the direction of the two unit vectors
(x− µx)/σx and (y− µy)/σy, each lying in the hyperplane (Figure 1.3) defined by
Eq. (1.3), with the structures of the two images. The correlation (inner product)
between them is a simple and effective measure to quantify the structural similarity.
Notice that the correlation between (x− µx)/σx and (y− µy)/σy is equivalent
to the correlation coefficient between x and y. Thus, we define the structure
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comparison function as follows:

s(x,y) =
σxy + C3

σx σy + C3

. (1.13)

As in the luminance and contrast measures, we have introduced a small constant
in both denominator and numerator. In discrete form, σxy can be estimated as:

σxy =
1

N − 1

N∑
i=1

(xi − µx)(yi − µy) . (1.14)

Geometrically, the correlation coefficient corresponds to the cosine of the angle
between the vectors x−µx and y−µy. Note also that s(x,y) can take on negative
values.

Finally, we combine the three comparisons of Eqs. (1.8), (1.11) and (1.13)
and name the resulting similarity measure the Structural SIMilarity (SSIM) index
between signals x and y:

SSIM(x,y) = [l(x,y)]α · [c(x,y)]β · [s(x,y)]γ , (1.15)

where α > 0, β > 0 and γ > 0 are parameters used to adjust the relative impor-
tance of the three components. It is easy to verity that this definition satisfies the
three conditions given above. In particular, we set α = β = γ = 1 and C3 = C2/2.
This results in a specific form of the SSIM index:

SSIM(x,y) =
(2 µx µy + C1) (2 σxy + C2)

(µ2
x + µ2

y + C1) (σ2
x + σ2

y + C2)
. (1.16)

The SSIM index may be better understood geometrically in a vector space
of signal components as in Figure 1.4. These signal components can be either
image pixel intensities or other extracted features such as transformed linear coef-
ficients. Figure 1.4 shows equal-distortion contours drawn around three different
example reference vectors, each of which could, for example, represent the local
content of one reference image. For the purpose of illustration, we show only a
two-dimensional space, but in general the dimensionality should match that of
the signal components being compared. Each contour represents a set of test sig-
nals with equal distortion relative to the respective reference signal. Figure 1.4(a)
shows the result for a simple Minkowski metric. Each contour has the same size
and shape (a circle here, as we are assuming an exponent of 2). That is, percep-
tual distance corresponds to Euclidean distance. Figure 1.4(b) shows a Minkowski
metric in which different signal components are weighted differently. This could
be, for example, weighting according to the contrast sensitivity function (CSF),
as is common in many quality assessment models. Here the contours are ellipses,
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Figure 1.4: Equal-distortion contours for different quality measurement systems.
(a) Minkowski error measurement systems; (b) component-weighted Minkowski
error measurement systems; (c) magnitude-weighted Minkowski error measurement
systems; (d) magnitude and component-weighted Minkowski error measurement
systems; (e) SSIM measurement system (a combination of Eqs. (1.11) and (1.13))
with more emphasis on s(x,y); (f) SSIM measurement system (a combination of
Eqs. (1.11) and (1.13)) with more emphasis on c(x,y). Each image is represented
as a vector, whose entries are image components. Note: this is an illustration in
2-D space. In practice, the number of dimensions should be equal to the number
of image components used for comparison (e.g, the number of pixels or transform
coefficients). (From [2])
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but still are all the same size. More advanced quality measurement models may
incorporate contrast masking behaviors, which has the effect of rescaling the equal-
distortion contours according to the signal magnitude, as shown in Figure 1.4(c).
This may be viewed as a simple type of adaptive distortion measure: it depends
not just on the difference between the signals, but also on the signals themselves.
Figure 1.4(d) shows a combination of contrast masking (magnitude weighting) fol-
lowed by component weighting. In comparison of the vectors x − µx and y − µy,
the SSIM index corresponds to the comparison of two independent quantities: the
vector lengths, and their angles. Thus, the contours will be aligned with the axes
of a polar coordinate system. Figures 1.4(e) and 1.4(f) show two examples of this,
computed with different exponents. Again, this may be viewed as an adaptive dis-
tortion measure, but unlike the other models being compared, both the size and
the shape of the contours are adapted to the underlying signal.

1.3 Image Quality Assessment Based on the SSIM

Index

For image quality assessment, it is useful to apply the SSIM index locally rather
than globally. First, image statistical features are usually highly spatially non-
stationary. Second, image distortions, which may or may not depend on the local
image statistics, may also be space-variant. Third, at typical viewing distances,
only a local area in the image can be perceived with high resolution by the human
observer at one time instance (because of the foveation feature of the HVS, e.g.,
[7]). Fourth, localized quality measurement can provide a spatially varying quality
map of the image, which delivers more information about the quality degradation
of the image and may be useful in some applications.

In [3, 4], the local statistics µx, σx and σxy (Eqs. (1.1),(1.4) and (1.14)) are
computed within a local 8×8 square window. The window moves pixel-by-pixel
from the top-left corner to the bottom-right corner of the image. At each step,
the local statistics and SSIM index are calculated within the local window. One
problem with this method is that the resulting SSIM index map often exhibits
undesirable “blocking” artifacts as exemplified by Figure 1.5(a). Such kind of
“artifacts” are not desirable because it is created from the choice of the quality
measurement system (local square window), but not from image distortions. In
[2], a circular-symmetric Gaussian weighting function w = {wi | i = 1, 2, · · · , N}
with unit sum (

∑N
i=1 wi = 1) is adopted. The estimates of local statistics µx, σx
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(a)
 (b)


Figure 1.5: SSIM index maps of the impulse noise contaminated “Einstein” image
(Figure 1.1(f)). Brightness indicates the magnitude of the local SSIM index value.
(a) square windowing approach; (b) smoothed windowing approach.

and σxy are then modified accordingly as

µx =
N∑

i=1

wi xi . (1.17)

σx =

(
N∑

i=1

wi (xi − µx)
2

)1/2

. (1.18)

σxy =
N∑

i=1

wi (xi − µx)(yi − µy) . (1.19)

With such a windowing approach, the quality maps exhibit a locally isotropic
property, as shown in Figure 1.5(b).

In practice, one usually requires a single overall quality measure of the entire
image. We use a mean SSIM (MSSIM) index to evaluate the overall image quality:

MSSIM =
M∑

j=1

Wj · SSIMj , (1.20)

where M is the number of samples in the quality map, SSIMj is the SSIM index
value at the j-th sample, and Wj is the weight given to the j-th sample and

M∑
j=1

Wj = 1 . (1.21)

If all the samples in the quality map are equally weighted, then Wj = 1/M for all
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j’s. Depending on the application, it is also possible to assign spatially varying
weights to different samples in the SSIM index map. For example, region-of-interest
image processing systems may give different weights to different segmented regions
in the image. For another example, it has been observed that different image
textures attract human fixations with varying degrees (e.g., [8, 9]), and therefore
a fixation probability model can be used to define the weighting model. Further,
since the visual resolution decreases gradually as a function of the distance from
the fixation point (e.g., [10]), a smoothly varying foveated weighting model can
also be employed to define the weights. For the experiments described in this
chapter, however, we use uniform weighting. A MatLab implementation of the
SSIM index algorithm is available online at [11].

Many image quality assessment algorithms have been shown to behave con-
sistently when applied to distorted images created from the same original image,
using the same type of distortions (e.g., JPEG compression). However, the ef-
fectiveness of these models degrades significantly when applied to a set of images
originating from different reference images, and/or including a variety of different
types of distortions. Thus, cross-image and cross-distortion tests are critical in
evaluating the effectiveness of an image quality metric. It is impossible to show a
thorough set of such examples, but the images in Figure 1.1 provide an encouraging
starting point for testing the cross-distortion capability of the quality assessment
algorithms. The MSE and MSSIM measurement results are given in the figure cap-
tion. Obviously, the MSE performs very poorly in this case. The MSSIM values
exhibit much better consistency with the qualitative visual appearance.

For a more thorough test, we apply the SSIM index algorithm to the LIVE
database of JPEG and JPEG2000 compressed images that were evaluated by a
number of subjects for perceptual quality [12]. The database was created with
29 high-resolution 24 bits/pixel RGB color images (typically 768 × 512 or simi-
lar size) compressed at a range of quality levels using either JPEG or JPEG2000,
producing a total of 175 JPEG images and 169 JPEG2000 images. The bit rates
were in the range of 0.150 to 3.336 and 0.028 to 3.150 bits/pixel for JPEG and
JPEG2000 images, respectively, and were chosen non-uniformly such that the re-
sulting distribution of subjective quality scores was approximately uniform over
the entire range. Subjects viewed the images from comfortable viewing distances
and were asked to provide their perception of quality on a continuous linear scale
that was divided into five equal regions marked with adjectives “Bad”, “Poor”,
“Fair”, “Good” and “Excellent”. Each JPEG and JPEG2000 compressed image
was viewed by 13 ∼ 20 subjects and 25 subjects, respectively. The subjects were
mostly male college students. Raw scores for each subject were normalized by the
mean and variance of scores for that subject (i.e., raw values were converted to
Z-scores [13]) and then scaled and shifted by the mean and variance of the entire
subject pool to fill the range from 1 to 100. Mean opinion scores (MOSs) were then
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computed for each image, after removing outliers (most subjects had no outliers).
The image database, together with the subjective score and standard deviation for
each image, has been made available on the Internet at [12].

The luminance component of each JPEG and JPEG2000 compressed image is
averaged over a local 2×2 window and downsampled by a factor of 2 before the
MSSIM value is calculated. Our experiments with the current dataset show that
the use of the other color components does not significantly change the performance
of the model, though this should not be considered generally true for color image
quality assessment. Note that no specific training procedure is employed before
applying the SSIM algorithm, because the SSIM index is intended for general-
purpose image quality assessment, as opposed to specific application types (e.g.,
image compression) only.

Figure 1.6 shows two sample JPEG and JPEG2000 images from the database,
together with their SSIM index maps and absolute error maps. By closer inspection
of corresponding spatial locations in the SSIM index and the absolute error maps,
we observe that the SSIM index is generally more consistent with perceived quality
measurement. In particular, note that at low bit rates, the coarse quantization in
JPEG and JPEG2000 algorithms often results in smooth representations of fine-
detail regions in the image (e.g., the tiles in Figure 1.6(c) and the trees in Figure
1.6(d)). Compared with other types of regions, these regions may not be worse in
terms of pointwise difference measures such as the absolute error. However, since
the structural information of the image details are nearly completely lost, they
exhibit poorer visual quality. Comparing Figure 1.6(e) with Figure 1.6(g), and
Figure 1.6(f) with 1.6(h)), we can see that the SSIM index is better in capturing
such poor quality regions.

The scatter plots of MOS versus PSNR and MSSIM image quality prediction are
shown in Figure 1.7, where each sample point represents one test image. It can be
observed that MSSIM supplies better prediction capability of the subjective scores
than PSNR. In order to provide quantitative comparisons on the performance
of the SSIM index measure, we use the logistic function adopted in the video
quality experts group (VQEG) Phase I FR-TV test to provide a non-linear mapping
between the objective/subjective scores [14]. The fitted curves are shown in Figure
1.7. After fitting, a set of quantitative measures are computed, which include the
Pearson correlation coefficient (CC), the mean absolute error (MAE), the root
mean squared error (RMS), the outlier ratio (OR, defined as the proportion of
predictions that are outside the range of two times of the standard error in the
subjective test), and the Spearman rank-order correlation coefficient (SROCC).
Readers can refer to [14, 15] for details about how these measures are calculated.
It can be seen that MSSIM outperforms PSNR in all these comparisons by clear
margins.
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(a)
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(c)
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(e)
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(g)
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Figure 1.6: Sample JPEG and JPEG2000 compressed images and quality maps
(cropped from 768×512 to 240×160 for visibility). (a) and (b) are the original
“Buildings” and “Stream” images, respectively. (c) JPEG compressed “Build-
ings” image, 0.2673 bits/pixel; (d) JPEG2000 compressed “Stream” image, 0.1896
bits/pixel; (e) and (f) show SSIM maps of the compressed images, where bright-
ness indicates the magnitude of the local SSIM index (squared for visibility). (g)
and (h) show absolute error maps of the compressed images, where brighter point
indicates smaller error (for easier comparison with the SSIM map).
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Figure 1.7: Scatter plots of subjective mean opinion score (MOS) versus model
prediction. Each sample point represents one test image. (a) PSNR prediction for
JPEG images; (b) MSSIM prediction for JPEG images; (c) PSNR prediction for
JPEG2000 images; (d) MSSIM prediction for JPEG2000 images.
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Table 1.1: Performance comparison of PSNR and MSSIM using the JPEG and
JPEG2000 image databases. CC: correlation coefficient; MAE: mean absolute
error; RMS: root mean squared error; OR: outlier ratio; SROCC: Spearman rank-
order correlation coefficient.

Database JPEG JPEG2000
Model PSNR MSSIM PSNR MSSIM
CC 0.904 0.978 0.910 0.958

MAE 6.769 3.324 6.300 4.352
RMS 8.637 4.176 8.062 5.540
OR 0.200 0.006 0.095 0.024

SROCC 0.893 0.973 0.906 0.955

1.4 Discussions

This chapter discusses the motivation, the general idea, and a specific SSIM index
algorithm of the structural similarity-based image quality assessment method. It
is worthwhile to look into the relationship between this method and the traditional
error sensitivity based image quality assessment algorithms.

On the one hand, we consider “structural similarity” as a substantially different
design principle for image quality assessment and would like to emphasize two dis-
tinct features of this method in comparison with the error sensitivity-based models.
First, in terms of the nature of the distortions that a quality measure attempts
to capture, it is targeted at perceived structural information variation, instead of
perceived error. Second, in terms of the construction of the quality assessment
system, it is a top-down approach that mimics the hypothesized functionality of
the overall HVS, as opposed to a bottom-up approach that simulates the function
of relevant early-stage components in the HVS.

On the other hand, we also view the structural similarity-based methods as
being complementary to, rather than opposed to, the typical error sensitivity
based approaches. Notice that error sensitivity based methods often involve signal
decompositions based on linear transforms such as the wavelet transforms (e.g.,
[16, 17, 18, 19]). Such signal decompositions can be thought of as specific descrip-
tive representations of the signal “structures”. In this sense, the error between
transformed wavelet coefficients implicitly suggests the structural change between
the image signals being compared. On the other hand, the SSIM indexing method
as described in the previous sections might be converted into an equivalent “error”
measure in a specific coordinate system, only that such a coordinate system is
locally adaptive, non-linear, and input-dependent. It needs to be mentioned that
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certain divisive-normalization based masking models (e.g., [20, 21]) exhibit input-
dependent behavior in measuring signal distortions, which leads to a departure
from the distortion contours shown in Figures 1.4(a)-(d), although precise align-
ment with the axes of a polar coordinate system as in Figures 1.4(e) and 1.4(f) is
not observed. Although not clear at this moment, we think it is possible that the
two types of approaches may eventually converge into similar solutions.

The SSIM indexing algorithm is quite encouraging not only because it supplies
good quality prediction accuracy in the current tests, but also because of its simple-
formulation and low complexity implementation. This is in contrast with many
complicated HVS-based quality assessment systems. Its simplicity makes it much
more tractable in the context of algorithm and parameter optimizations for the
development of perceptually-optimized image processing and coding systems.

Finally, we would like to point out that the SSIM indexing approach is only a
particular implementation of the philosophy of structural similarity, from an image
formation point of view. Under the same philosophy, other approaches may emerge
that could lead to algorithms significantly different from the SSIM index. Creative
investigation of the concepts of structural information and structural distortion is
likely to drive the success of these innovations.
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